Skip to main content
Log in

The Diagnostic and Prognostic Value of miR-155 in Cancers: An Updated Meta-analysis

  • Systematic Review
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

MicroRNA-155 has been discussed as a biomarker in cancer diagnosis and prognosis. Although relevant studies have been published, the role of microRNA-155 remains uncertain because of insufficient data.

Methods

We conducted a literature search in PubMed, Embase, and Web of Science databases to obtain relevant articles and extract data to evaluate the role of microRNA-155 in cancer diagnosis and prognosis.

Results

The pooled results showed that microRNA-155 presented a remarkable diagnostic value in cancers (area under the curve = 0.90, 95% confidence interval (CI 0.87–0.92; sensitivity = 0.83, 95% CI 0.79–0.87; specificity = 0.83, 95% CI 0.80–0.86), which was maintained in the subgroups stratified by ethnicity (Asian and Caucasian), cancer types (breast cancer, lung cancer, hepatocellular carcinoma, leukemia, and pancreatic ductal adenocarcinoma), sample types (plasma, serum, tissue), and sample size (n >100 and n <100). In prognosis, a combined hazard ratio (HR) showed that microRNA-155 was significantly associated with poor overall survival (HR = 1.38, 95% CI 1.25–1.54) and recurrence-free survival (HR = 2.13, 95% CI 1.65–2.76), and was boundary significant with poor progression-free survival (HR = 1.20, 95% CI 1.00–1.44), but not significant with disease-free survival (HR = 1.14, 95% CI 0.70–1.85). Subgroup analyses in overall survival showed that microRNA-155 was associated with poor overall survival in the subgroups stratified by ethnicity and sample size. However, the significant association was maintained in cancer types subgroups of leukemia, lung cancer, and oral squamous cell carcinoma, but not in colorectal cancer, hepatocellular carcinoma, and breast cancer, and was maintained in sample types subgroups of bone marrow and tissue, but not in plasma and serum.

Conclusions

Results from this meta-analysis demonstrated that microRNA-155 was a valuable biomarker in cancer diagnosis and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Van Roosbroeck K, Pollet J, Calin GA. MirRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn. 2013;13:183–204. https://doi.org/10.1586/erm.12.134.

    Article  CAS  PubMed  Google Scholar 

  2. Van Roosbroeck K, Calin GA. MicroRNAs in chronic lymphocytic leukemia: miracle or mirage for prognosis and targeted therapies? Semin Oncol. 2016;43:209–14. https://doi.org/10.1053/j.seminoncol.2016.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jurkovicova D, Magyerkova M, Kulcsar L, et al. Mir-155 as a diagnostic and prognostic marker in hematological and solid malignancies. Neoplasma. 2014;61:241–51. https://doi.org/10.4149/neo_2014_032.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou H, Huang X, Cui H, et al. Mir-155 and its star-form partner mir-155* cooperatively regulate type i interferon production by human plasmacytoid dendritic cells. Blood. 2010;116:5885–94. https://doi.org/10.1182/blood-2010-04-280156.

    Article  CAS  PubMed  Google Scholar 

  5. Anwar SL, Tanjung DS, Fitria MS, et al. Dynamic changes of circulating mir-155 expression and the potential application as a non-invasive biomarker in breast cancer. Asian Pac J Cancer Prev. 2020;21:491–7. https://doi.org/10.31557/apjcp.2020.21.2.491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roa WH, Kim JO, Razzak R, et al. Sputum microRNA profiling: a novel approach for the early detection of non-small cell lung cancer. Clin Investig Med. 2012;35:E271. https://doi.org/10.25011/cim.v35i5.18700.

    Article  CAS  Google Scholar 

  7. Słotwiński R, Słotwińska SM. Diagnostic value of selected markers and apoptotic pathways for pancreatic cancer. Cent Eur J Immunol. 2016;41:392–403. https://doi.org/10.5114/ceji.2016.65139.

    Article  CAS  PubMed  Google Scholar 

  8. Due H, Svendsen P, Bødker JS, et al. Mir-155 as a biomarker in b-cell malignancies. Biomed Res Int. 2016;2016:9513037. https://doi.org/10.1155/2016/9513037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ning S, Liu H, Gao B, et al. Mir-155, mir-96 and mir-99a as potential diagnostic and prognostic tools for the clinical management of hepatocellular carcinoma. Oncol Lett. 2019;18:3381–7. https://doi.org/10.3892/ol.2019.10606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Z, Ma T, Huang C, et al. The pivotal role of microrna-155 in the control of cancer. J Cell Physiol. 2014;229:545–50. https://doi.org/10.1002/jcp.24492.

    Article  CAS  PubMed  Google Scholar 

  11. Hou Y, Wang J, Wang X, et al. Appraising microrna-155 as a noninvasive diagnostic biomarker for cancer detection: a meta-analysis. Medicine (Baltimore). 2016;95:e2450. https://doi.org/10.1097/md.0000000000002450.

    Article  CAS  PubMed  Google Scholar 

  12. Liu K, Zhao K, Wang L, et al. Prognostic value of microrna-155 in human carcinomas: an updated meta-analysis. Clin Chim Acta. 2018;479:171–80. https://doi.org/10.1016/j.cca.2018.01.036.

    Article  CAS  PubMed  Google Scholar 

  13. He J, Zhang F, Wu Y, et al. Prognostic role of microrna-155 in various carcinomas: results from a meta-analysis. Dis Markers. 2013;34:379–86. https://doi.org/10.3233/dma-130984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu C, Liu Q, Liu B. MicroRNA-155 hallmarks promising accuracy for the diagnosis of various carcinomas: results from a meta-analysis. Dis Mark. 2015;2015:327287. https://doi.org/10.1155/2015/327287.

    Article  CAS  Google Scholar 

  15. Abd-El-Fattah AA, Sadik NA, Shaker OG, et al. Differential micrornas expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys. 2013;67:875–84. https://doi.org/10.1007/s12013-013-9575-y.

    Article  CAS  PubMed  Google Scholar 

  16. Amr KS, Ali MOS, Afify M, et al. Role of miRNA-155 and-10b as biomarkers of breast cancer in Egyptian women. Int J Pharm Clin Res. 2019;11:57–62.

    Google Scholar 

  17. Azimi T, Paryan M, Mondanizadeh M, et al. Pap smear mir-92a-5p and mir-155-5p as potential diagnostic biomarkers of squamous intraepithelial cervical cancer. Asian Pac J Cancer Prev. 2021;22:1271–7. https://doi.org/10.31557/apjcp.2021.22.4.1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caivano A, La Rocca F, Simeon V, et al. MicroRNA-155 in serum-derived extracellular vesicles as a potential biomarker for hematologic malignancies: a short report. Cell Oncol (Dordr). 2017;40:97–103. https://doi.org/10.1007/s13402-016-0300-x.

    Article  CAS  PubMed  Google Scholar 

  19. Canatan D, Yılmaz O, Sonmez Y, et al. Use of micrornas as biomarkers in the early diagnosis of prostate cancer. Acta Biomed. 2022;93:e2022089. https://doi.org/10.23750/abm.v93i3.11642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Khazragy N, Noshi MA, Abdel-Malak C, et al. MiRNA-155 and miRNA-181a as prognostic biomarkers for pediatric acute lymphoblastic leukemia. J Cell Biochem. 2019;120:6315–21. https://doi.org/10.1002/jcb.27918.

    Article  CAS  PubMed  Google Scholar 

  21. Emami N, Mohamadnia A, Mirzaei M, et al. Mir-155, mir-191, and mir-494 as diagnostic biomarkers for oral squamous cell carcinoma and the effects of avastin on these biomarkers. J Korean Assoc Oral Maxillofac Surg. 2020;46:341–7. https://doi.org/10.5125/jkaoms.2020.46.5.341.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Erbes T, Hirschfeld M, Rücker G, et al. Feasibility of urinary microrna detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer. 2015;15:193. https://doi.org/10.1186/s12885-015-1190-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ezzat WM, Amr KS, Raouf HA, et al. Relationship between serum microrna155 and telomerase expression in hepatocellular carcinoma. Arch Med Res. 2016;47:349–55. https://doi.org/10.1016/j.arcmed.2016.08.003.

    Article  CAS  PubMed  Google Scholar 

  24. Fan T, Mao Y, Sun Q, et al. Branched rolling circle amplification method for measuring serum circulating microrna levels for early breast cancer detection. Cancer Sci. 2018;109:2897–906. https://doi.org/10.1111/cas.13725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang C, Zhu DX, Dong HJ, et al. Serum micrornas are promising novel biomarkers for diffuse large b cell lymphoma. Ann Hematol. 2012;91:553–9. https://doi.org/10.1007/s00277-011-1350-9.

    Article  CAS  PubMed  Google Scholar 

  26. Gao F, Chang J, Wang H, et al. Potential diagnostic value of mir-155 in serum from lung adenocarcinoma patients. Oncol Rep. 2014;31:351–7. https://doi.org/10.3892/or.2013.2830.

    Article  CAS  PubMed  Google Scholar 

  27. Geng Q, Fan T, Zhang B, et al. Five micrornas in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer. Respir Res. 2014;15:149. https://doi.org/10.1186/s12931-014-0149-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gombos K, Horváth R, Szele E, et al. MiRNA expression profiles of oral squamous cell carcinomas. Anticancer Res. 2013;33:1511–7.

    CAS  PubMed  Google Scholar 

  29. Han JG, Jiang YD, Zhang CH, et al. A novel panel of serum mir-21/mir-155/mir-365 as a potential diagnostic biomarker for breast cancer. Ann Surg Treat Res. 2017;92:55–66. https://doi.org/10.4174/astr.2017.92.2.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hosseini Mojahed F, Aalami AH, Pouresmaeil V, et al. Clinical evaluation of the diagnostic role of microrna-155 in breast cancer. Int J Genom. 2020;2020:9514831. https://doi.org/10.1155/2020/9514831.

    Article  CAS  Google Scholar 

  31. Huang SK, Luo Q, Peng H, et al. A panel of serum noncoding RNAs for the diagnosis and monitoring of response to therapy in patients with breast cancer. Med Sci Monit. 2018;24:2476–88. https://doi.org/10.12659/msm.909453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ibrahim FK, Ali-Labib R, Galal IH, et al. MicroRNA-155 expression in exhaled breath condensate of patients with lung cancer. Egypt J Chest Dis Tuberc. 2017;66:687–91. https://doi.org/10.1016/j.ejcdt.2017.10.003.

    Article  Google Scholar 

  33. Itani MM, Nassar FJ, Tfayli AH, et al. A signature of four circulating micrornas as potential biomarkers for diagnosing early-stage breast cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22116121.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jin X, Zhang Y, Wang H, et al. Expression and clinical values of serum mir-155 and mir-224 in Chinese patients with HCV infection. Int J Gen Med. 2022;15:1393–403. https://doi.org/10.2147/ijgm.S344345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lao TD, Nguyen MT, Nguyen DH, et al. Upregulation of miRNA-155 in nasopharyngeal carcinoma patients. Iran J Public Health. 2021;50:1642–7. https://doi.org/10.18502/ijph.v50i8.6810.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee YS, Lim YS, Lee JC, et al. Differential expression levels of plasma-derived mir-146b and mir-155 in papillary thyroid cancer. Oral Oncol. 2015;51:77–83. https://doi.org/10.1016/j.oraloncology.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  37. Liu R, Liao J, Yang M, et al. Circulating mir-155 expression in plasma: a potential biomarker for early diagnosis of esophageal cancer in humans. J Toxicol Environ Health A. 2012;75:1154–62. https://doi.org/10.1080/15287394.2012.699856.

    Article  CAS  PubMed  Google Scholar 

  38. Liu X, Luo HN, Tian WD, et al. Diagnostic and prognostic value of plasma microrna deregulation in nasopharyngeal carcinoma. Cancer Biol Ther. 2013;14:1133–42. https://doi.org/10.4161/cbt.26170.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mar-Aguilar F, Mendoza-Ramírez JA, Malagón-Santiago I, et al. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers. 2013;34:163–9. https://doi.org/10.3233/dma-120957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mohamed AA, Allam AE, Aref AM, et al. Evaluation of expressed microRNAs as prospective biomarkers for detection of breast cancer. Diagnostics (Basel). 2022. https://doi.org/10.3390/diagnostics12040789.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mohamed AA, Omar AAA, El-Awady RR, et al. Mir-155 and mir-665 role as potential non-invasive biomarkers for hepatocellular carcinoma in Egyptian patients with chronic hepatitis c virus infection. J Transl Int Med. 2020;8:32–40. https://doi.org/10.2478/jtim-2020-0006.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mohamed MA, Mohamed EI, El-Kaream SAA, et al. Underexpression of mir-486-5p but not overexpression of mir-155 is associated with lung cancer stages. Microrna. 2018;7:120–7. https://doi.org/10.2174/2211536607666180212124532.

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura S, Sadakari Y, Ohtsuka T, et al. Pancreatic juice exosomal microRNAs as biomarkers for detection of pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2019;26:2104–11. https://doi.org/10.1245/s10434-.019-07269-z.

    Article  PubMed  Google Scholar 

  44. Ni YH, Huang XF, Wang ZY, et al. Upregulation of a potential prognostic biomarker, mir-155, enhances cell proliferation in patients with oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:227–33. https://doi.org/10.1016/j.oooo.2013.10.017.

    Article  PubMed  Google Scholar 

  45. Papadaki C, Thomopoulou K, Monastirioti A, et al. MicroRNAs regulating tumor and immune cell interactions in the prediction of relapse in early stage breast cancer. Biomedicines. 2021. https://doi.org/10.3390/biomedicines9040421.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Park S, Eom K, Kim J, et al. Mir-9, mir-21, and mir-155 as potential biomarkers for hpv positive and negative cervical cancer. BMC Cancer. 2017;17:658. https://doi.org/10.1186/s12885-017-3642-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sequeira JP, Constâncio V, Salta S, et al. Likidmirs: a ddPCR-based panel of 4 circulating miRNAs for detection of renal cell carcinoma. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14040858.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shaheen J, Shahid S, Shahzadi S, et al. Identification of circulating miRNAs as non-invasive biomarkers of triple negative breast cancer in the population of pakistan. Pak J Zoology. 2019;51:1113–21. https://doi.org/10.17582/journal.pjz/2019.51.3.1113.1121.

    Article  CAS  Google Scholar 

  49. Shaker O, Maher M, Nassar Y, et al. Role of microRNAs -29b-2, -155, -197 and -205 as diagnostic biomarkers in serum of breast cancer females. Gene. 2015;560:77–82. https://doi.org/10.1016/j.gene.2015.01.062.

    Article  CAS  PubMed  Google Scholar 

  50. Sheneef A, Gouda AM, Mohammad AN, et al. Serum microRNA-122 and microRNA-155: markers of disease progression in hepatitis C viral infection. Egypt J Immunol. 2017;24:33–46.

    PubMed  Google Scholar 

  51. Shi S-Q, Ke J-J, Wu W-Q, et al. Serum miRNA-203 expression is associated with chemo-response to standard folfox treatment of patients with colorectal cancer. Int J Clin Exp Pathol. 2017;10:105–16.

    CAS  Google Scholar 

  52. Sun Y, Wang M, Lin G, et al. Serum microRNA-155 as a potential biomarker to track disease in breast cancer. PLoS ONE. 2012;7:e47003. https://doi.org/10.1371/journal.pone.0047003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Swellam M, Zahran RFK, Abo El-Sadat Taha H, et al. Role of some circulating miRNAs on breast cancer diagnosis. Arch Physiol Biochem. 2019;125:456–64. https://doi.org/10.1080/13813455.2018.1482355.

    Article  CAS  PubMed  Google Scholar 

  54. Tang D, Shen Y, Wang M, et al. Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer. Eur J Cancer Prev. 2013;22:540–8. https://doi.org/10.1097/CEJ.0b013e32835f3be9.

    Article  CAS  PubMed  Google Scholar 

  55. Thuan Duc L, Thuy Ai Huyen L. Association between lmp-1, lmp-2, and mir-155 expression as potential biomarker in nasopharyngeal carcinoma patients: a case/control study in Vietnam. Genet Test Mol Biomarkers. 2019;23:815–22. https://doi.org/10.1089/gtmb.2019.0089.

    Article  CAS  Google Scholar 

  56. Tulinsky L, Dzian A, Matakova T, et al. Overexpression of the mir-143/145 and reduced expression of the let-7 and mir-126 for early lung cancer diagnosis. J Appl Biomed. 2022;20:1–6. https://doi.org/10.32725/jab.2022.004.

    Article  PubMed  Google Scholar 

  57. Vila-Navarro E, Vila-Casadesus M, Moreira L, et al. Micrornas for detection of pancreatic neoplasia biomarker discovery by next-generation sequencing and validation in 2 independent cohorts. Ann Surg. 2017;265:1226–34. https://doi.org/10.1097/sla.0000000000001809.

    Article  PubMed  Google Scholar 

  58. Wang J, Chen J, Chang P, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila). 2009;2:807–13. https://doi.org/10.1158/1940-.6207.Capr-09-0094.

    Article  CAS  PubMed  Google Scholar 

  59. Wang JL, Wang X, Yang D, et al. The expression of microrna-155 in plasma and tissue is matched in human laryngeal squamous cell carcinoma. Yonsei Med J. 2016;57:298–305. https://doi.org/10.3349/ymj.2016.57.2.298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang W, Chen D, Chen W, et al. Early detection of non-small cell lung cancer by using a 12-microRNA panel and a nomogram for assistant diagnosis. Front Oncol. 2020;10:855. https://doi.org/10.3389/fonc.2020.00855.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu J, Al-Zahrani A, Beylerli O, et al. Circulating miRNAs as diagnostic and prognostic biomarkers in high-grade gliomas. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.898537.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xi KX, Zhang XW, Yu XY, et al. The role of plasma miRNAs in the diagnosis of pulmonary nodules. J Thorac Dis. 2018;10:4032–41. https://doi.org/10.21037/jtd.2018.06.106.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xie Y, Todd NW, Liu Z, et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 2010;67:170–6. https://doi.org/10.1016/j.lungcan.2009.04.004.

    Article  PubMed  Google Scholar 

  64. Yang JY, Sun YW, Liu DJ, et al. MicroRNAs in stool samples as potential screening biomarkers for pancreatic ductal adenocarcinoma cancer. Am J Cancer Res. 2014;4:663–73.

    PubMed  PubMed Central  Google Scholar 

  65. Zhang J, Jiang C, Shi X, et al. Diagnostic value of circulating mir-155, mir-21, and mir-10b as promising biomarkers in human breast cancer. Int J Clin Exp Pathol. 2016;9:10258–65.

    CAS  Google Scholar 

  66. Zheng D, Haddadin S, Wang Y, et al. Plasma micrornas as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol. 2011;4:575–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhi F, Cao X, Xie X, et al. Identification of circulating micrornas as potential biomarkers for detecting acute myeloid leukemia. PLoS ONE. 2013;8:e56718. https://doi.org/10.1371/journal.pone.0056718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aftab M, Poojary SS, Seshan V, et al. Urine miRNA signature as a potential non-invasive diagnostic and prognostic biomarker in cervical cancer. Sci Rep. 2021;11:10323. https://doi.org/10.1038/s41598-021-89388-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lv ZC, Fan YS, Chen HB, et al. Investigation of microrna-155 as a serum diagnostic and prognostic biomarker for colorectal cancer. Tumour Biol. 2015;36:1619–25. https://doi.org/10.1007/s13277-014-2760-9.

    Article  CAS  PubMed  Google Scholar 

  70. Raeisi F, Mahmoudi E, Dehghani-Samani M, et al. Differential expression profile of mir-27b, mir-29a, and mir-155 in chronic lymphocytic leukemia and breast cancer patients. Mol Ther Oncol. 2020;16:230–7. https://doi.org/10.1016/j.omto.2020.01.004.

    Article  CAS  Google Scholar 

  71. Wotschofsky Z, Busch J, Jung M, et al. Diagnostic and prognostic potential of differentially expressed miRNAs between metastatic and non-metastatic renal cell carcinoma at the time of nephrectomy. Clin Chim Acta. 2013;416:5–10. https://doi.org/10.1016/j.cca.2012.11.010.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang X, Zhang Y, Liu X, et al. Direct quantitative detection for cell-free mir-155 in urine: a potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget. 2016;7:3255–66. https://doi.org/10.18632/oncotarget.6487.

    Article  PubMed  Google Scholar 

  73. Zheng YJ, Liang TS, Wang J, et al. MicroRNA-155 acts as a diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Artif Cells Nanomed Biotechnol. 2020;48:977–82. https://doi.org/10.1080/21691401.2020.1773479.

    Article  CAS  PubMed  Google Scholar 

  74. Ahmadvand M, Eskandari M, Pashaiefar H, et al. Over expression of circulating mir-155 predicts prognosis in diffuse large b-cell lymphoma. Leuk Res. 2018;70:45–8. https://doi.org/10.1016/j.leukres.2018.05.006.

    Article  CAS  PubMed  Google Scholar 

  75. Baba O, Hasegawa S, Nagai H, et al. MicrRNA-155-5p is associated with oral squamous cell carcinoma metastasis and poor prognosis. J Oral Pathol Med. 2016;45:248–55. https://doi.org/10.1111/jop.12351.

    Article  CAS  PubMed  Google Scholar 

  76. Chen J, Wang BC, Tang JH. Clinical significance of microrna-155 expression in human breast cancer. J Surg Oncol. 2012;106:260–6. https://doi.org/10.1002/jso.22153.

    Article  CAS  PubMed  Google Scholar 

  77. Donnem T, Eklo K, Berg T, et al. Prognostic impact of mir-155 in non-small cell lung cancer evaluated by in situ hybridization. J Transl Med. 2011;9:6. https://doi.org/10.1186/1479-5876-9-6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Due H, Schönherz AA, Ryø L, et al. MicroRNA-155 controls vincristine sensitivity and predicts superior clinical outcome in diffuse large B-cell lymphoma. Blood Adv. 2019;3:1185–96. https://doi.org/10.1182/bloodadvances.2018029660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fang H, Shuang D, Yi Z, et al. Up-regulated microRNA-155 expression is associated with poor prognosis in cervical cancer patients. Biomed Pharmacother. 2016;83:64–9. https://doi.org/10.1016/j.biopha.2016.06.006.

    Article  CAS  PubMed  Google Scholar 

  80. Han ZB, Chen HY, Fan JW, et al. Up-regulation of microRNA-155 promotes cancer cell invasion and predicts poor survival of hepatocellular carcinoma following liver transplantation. J Cancer Res Clin Oncol. 2012;138:153–61. https://doi.org/10.1007/s00432-011-1076-z.

    Article  CAS  PubMed  Google Scholar 

  81. Hanafi AR, Jayusman AM, Alfasunu S, et al. Serum miRNA as predictive and prognosis biomarker in advanced stage non-small cell lung cancer in Indonesia. Zhongguo Fei Ai Za Zhi. 2020;23:321–32. https://doi.org/10.3779/j.issn.1009-3419.2020.104.02.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hess AK, Müer A, Mairinger FD, et al. Mir-200b and mir-155 as predictive biomarkers for the efficacy of chemoradiation in locally advanced head and neck squamous cell carcinoma. Eur J Cancer. 2017;77:3–12. https://doi.org/10.1016/j.ejca.2017.02.018.

    Article  CAS  PubMed  Google Scholar 

  83. Huang GH, Du L, Li N, et al. Methylation-mediated mir-155-fam133a axis contributes to the attenuated invasion and migration of idh mutant gliomas. Cancer Lett. 2018;432:93–102. https://doi.org/10.1016/j.canlet.2018.06.007.

    Article  CAS  PubMed  Google Scholar 

  84. Huang YH, Lin KH, Chen HC, et al. Identification of postoperative prognostic microrna predictors in hepatocellular carcinoma. PLoS ONE. 2012;7:e37188. https://doi.org/10.1371/journal.pone.0037188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jakob M, Mattes LM, Küffer S, et al. MicroRNA expression patterns in oral squamous cell carcinoma: hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck. 2019;41:3499–515. https://doi.org/10.1002/hed.25866.

    Article  PubMed  Google Scholar 

  86. Jang MH, Kim HJ, Gwak JM, et al. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum Pathol. 2017;68:69–78. https://doi.org/10.1016/j.humpath.2017.08.026.

    Article  CAS  PubMed  Google Scholar 

  87. Kapodistrias N, Mavridis K, Batistatou A, et al. Assessing the clinical value of micrornas in formalin-fixed paraffin-embedded liposarcoma tissues: overexpressed mir-155 is an indicator of poor prognosis. Oncotarget. 2017;8:6896–913. https://doi.org/10.18632/oncotarget.14320.

    Article  PubMed  Google Scholar 

  88. Kono H, Nakamura M, Ohtsuka T, et al. High expression of microRNA-155 is associated with the aggressive malignant behavior of gallbladder carcinoma. Oncol Rep. 2013;30:17–24. https://doi.org/10.3892/or.2013.2443.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Marcucci G, Maharry KS, Metzeler KH, et al. Clinical role of micrornas in cytogenetically normal acute myeloid leukemia: mir-155 upregulation independently identifies high-risk patients. J Clin Oncol. 2013;31:2086–93. https://doi.org/10.1200/jco.2012.45.6228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Metzeler KH, Maharry K, Kohlschmidt J, et al. A stem cell-like gene expression signature associates with inferior outcomes and a distinct microrna expression profile in adults with primary cytogenetically normal acute myeloid leukemia. Leukemia. 2013;27:2023–31. https://doi.org/10.1038/leu.2013.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Osaka E, Kelly AD, Spentzos D, et al. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget. 2015;6:9125–39. https://doi.org/10.18632/oncotarget.3273.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Papaconstantinou IG, Manta A, Gazouli M, et al. Expression of micrornas in patients with pancreatic cancer and its prognostic significance. Pancreas. 2013;42:67–71. https://doi.org/10.1097/MPA.0b013e3182592ba7.

    Article  CAS  PubMed  Google Scholar 

  93. Papadaki C, Monastirioti A, Rounis K, et al. Circulating micrornas regulating DNA damage response and responsiveness to cisplatin in the prognosis of patients with non-small cell lung cancer treated with first-line platinum chemotherapy. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12051282.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Papageorgiou SG, Kontos CK, Diamantopoulos MA, et al. Microrna-155-5p overexpression in peripheral blood mononuclear cells of chronic lymphocytic leukemia patients is a novel, independent molecular biomarker of poor prognosis. Dis Markers. 2017;2017:2046545. https://doi.org/10.1155/2017/2046545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ramamurthy R, Hughes M, Morris V, et al. Mir-155 expression and correlation with clinical outcome in pediatric AML: a report from children’s oncology group. Pediatr Blood Cancer. 2016;63:2096–103. https://doi.org/10.1002/pbc.26157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ratnasari N, Lestari P, Renovaldi D, et al. Potential plasma biomarkers: miRNA-29c, miRNA-21, and miRNA-155 in clinical progression of hepatocellular carcinoma patients. PLoS ONE. 2022;17:e0263298. https://doi.org/10.1371/journal.pone.0263298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rossi S, Shimizu M, Barbarotto E, et al. MicroRNA fingerprinting of cll patients with chromosome 17p deletion identify a mir-21 score that stratifies early survival. Blood. 2010;116:945–52. https://doi.org/10.1182/blood-2010-01-263889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Saito M, Schetter AJ, Mollerup S, et al. The association of microrna expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res. 2011;17:1875–82. https://doi.org/10.1158/1078-0432.Ccr-10-2961/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sanfiorenzo C, Ilie MI, Belaid A, et al. Two panels of plasma micrornas as non-invasive biomarkers for prediction of recurrence in resectable nsclc. PLoS ONE. 2013;8:e54596. https://doi.org/10.1371/journal.pone.0054596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shen X, Wang B, Li K, et al. Microrna signatures in diagnosis and prognosis of cutaneous t-cell lymphoma. J Investig Dermatol. 2018;138:2024–32. https://doi.org/10.1016/j.jid.2018.03.1500.

    Article  CAS  PubMed  Google Scholar 

  101. Shi LJ, Zhang CY, Zhou ZT, et al. MicroRNA-155 in oral squamous cell carcinoma: overexpression, localization, and prognostic potential. Head Neck. 2015;37:970–6. https://doi.org/10.1002/hed.23700.

    Article  PubMed  Google Scholar 

  102. Shibuya H, Iinuma H, Shimada R, et al. Clinicopathological and prognostic value of microRNA-21 and microrna-155 in colorectal cancer. Oncology. 2010;79:313–20. https://doi.org/10.1159/000323283.

    Article  CAS  PubMed  Google Scholar 

  103. Shinmei S, Sakamoto N, Goto K, et al. MicroRNA-155 is a predictive marker for survival in patients with clear cell renal cell carcinoma. Int J Urol. 2013;20:468–77. https://doi.org/10.1111/j.1442-2042.2012.03182.x.

    Article  CAS  PubMed  Google Scholar 

  104. Szabo A, Gurlich R, Liberko M, et al. Expression of selected micrornas in pancreatic ductal adenocarcinoma: is there a relation to tumor morphology, progression and patient’s outcome? Neoplasma. 2020;67:1170–81. https://doi.org/10.4149/neo_2020_200123N87.

    Article  CAS  PubMed  Google Scholar 

  105. Thomopoulou K, Papadaki C, Monastirioti A, et al. Micrornas regulating tumor immune response in the prediction of the outcome in patients with breast cancer. Front Mol Biosci. 2021;8:668534. https://doi.org/10.3389/fmolb.2021.668534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ulivi P, Canale M, Passardi A, et al. Circulating plasma levels of mir-20b, mir-29b and mir-155 as predictors of bevacizumab efficacy in patients with metastatic colorectal cancer. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19010307.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wang H, Men CP. Correlation of increased expression of microRNA-155 in bladder cancer and prognosis. Lab Med. 2015;46:118–22. https://doi.org/10.1309/lmwr9cea2k2xvsox.

    Article  PubMed  Google Scholar 

  108. Wang J, Wang Q, Guan Y, et al. Breast cancer cell-derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and anti-tumor function. J Clin Investig. 2022. https://doi.org/10.1172/jci157248.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang X, Zhang Y, Zhi X. Correlation between microrna expression, clinicopathological characteristics, and prognosis in patients with non-small cell lung cancer: a retrospective study. Thorac Cancer. 2017;8:511–6. https://doi.org/10.1111/1759-7714.12480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yanaihara N, Caplen N, Bowman E, et al. Unique microrna molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98. https://doi.org/10.1016/j.ccr.2006.01.025.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang J, Ye Y, Chang DW, et al. Global and targeted miRNA expression profiling in clear cell renal cell carcinoma tissues potentially links mir-155-5p and mir-210-3p to both tumorigenesis and recurrence. Am J Pathol. 2018;188:2487–96. https://doi.org/10.1016/j.ajpath.2018.07.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang XL, Chen JH, Qin CK. MicroRNA-155 expression as a prognostic factor in patients with gallbladder carcinoma after surgical resection. Int J Clin Exp Med. 2015;8:21241–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao X, Zhang W, Ji W. Yb-1 promotes laryngeal squamous cell carcinoma progression by inducing mir-155 expression via c-myb. Future Oncol. 2018;14:1579–89. https://doi.org/10.2217/fon-2018-0058.

    Article  CAS  PubMed  Google Scholar 

  114. Zheng Z, Sun R, Zhao H-J, et al. Mir155 sensitized B-lymphoma cells to anti-PD-l1 antibody via PD-1/PD-l1-mediated lymphoma cell interaction with CD8+ T cells. Mol Cancer. 2019;18:54. https://doi.org/10.1186/s12943-019-0977-3.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhong H, Xu L, Zhong J H, et al. Clinical and prognostic significance of mir-155 and mir-146a expression levels in formalin-fixed/paraffin-embedded tissue of patients with diffuse large b-cell lymphoma. Exp Ther Med. 2012;3:763–70. https://doi.org/10.3892/etm.2012.502.

  116. Zhou G, Cao Y, Dong W, et al. The clinical characteristics and prognostic significance of AID, mir-181b, and mir-155 expression in adult patients with de novo B-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2017;58:1–9. https://doi.org/10.1080/10428194.2017.1283028.

    Article  CAS  PubMed  Google Scholar 

  117. Zajdel M, Rymkiewicz G, Sromek M, et al. Tumor and cerebrospinal fluid micrornas in primary central nervous system lymphomas. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11111647.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Dusílková N, Bašová P, Polívka J, et al. Plasma mir-155, mir-203, and mir-205 are biomarkers for monitoring of primary cutaneous t-cell lymphomas. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102136.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mehterov N, Sacconi A, Pulito C, et al. A novel panel of clinically relevant miRNAs signature accurately differentiates oral cancer from normal mucosa. Front Oncol. 2022;12:1072579. https://doi.org/10.3389/fonc.2022.1072579.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chuang MK, Chiu YC, Chou WC, et al. A 3-microRNA scoring system for prognostication in de novo acute myeloid leukemia patients. Leukemia. 2015;29:1051–9. https://doi.org/10.1038/leu.2014.333.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang G, Zhong L, Luo H, et al. MicroRNA-155-3p promotes breast cancer progression through down-regulating CADM1. Onco Targets Ther. 2019;12:7993–8002. https://doi.org/10.2147/ott.S206180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang CM, Zhao J, Deng HY. Mir-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J Biomed Sci. 2013;20:79. https://doi.org/10.1186/1423-0127-20-79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu F, Mao Q, Zhu S, et al. MicroRNA-155-5p promotes cell proliferation and invasion in lung squamous cell carcinoma through negative regulation of fibroblast growth factor 9 expression. J Thorac Dis. 2021;13:3669–79. https://doi.org/10.21037/jtd-21-882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hou L, Chen J, Zheng Y, et al. Critical role of mir-155/FOXO1/ROS axis in the regulation of non-small cell lung carcinomas. Tumour Biol. 2016;37:5185–92. https://doi.org/10.1007/s13277-015-4335-9.

    Article  CAS  PubMed  Google Scholar 

  125. Xie Q, Chen X, Lu F, et al. Aberrant expression of microRNA 155 may accelerate cell proliferation by targeting sex-determining region y box 6 in hepatocellular carcinoma. Cancer. 2012;118:2431–42. https://doi.org/10.1002/cncr.26566.

    Article  CAS  PubMed  Google Scholar 

  126. Fu X, Wen H, Jing L, et al. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the pi3k/akt pathway. Cancer Sci. 2017;108:620–31. https://doi.org/10.1111/cas.13177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang L, Wang W, Li X, et al. MicroRNA-155 promotes tumor growth of human hepatocellular carcinoma by targeting ARID2. Int J Oncol. 2016;48:2425–34. https://doi.org/10.3892/ijo.2016.3465.

    Article  CAS  PubMed  Google Scholar 

  128. Ji H, Tian D, Zhang B, et al. Overexpression of mir-155 in clear-cell renal cell carcinoma and its oncogenic effect through targeting FOXO3a. Exp Ther Med. 2017;13:2286–92. https://doi.org/10.3892/etm.2017.4263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Varol U, Kucukzeybek Y, Alacacioglu A, et al. BRCA genes: BRCA 1 and BRCA 2. J BUON. 2018;23:862–6.

    PubMed  Google Scholar 

  130. Baretta Z, Mocellin S, Goldin E, et al. Effect of BRCA germline mutations on breast cancer prognosis: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e4975. https://doi.org/10.1097/md.0000000000004975.

    Article  CAS  PubMed  Google Scholar 

  131. Kong W, He L, Richards EJ, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33:679–89. https://doi.org/10.1038/onc.2012.636.

    Article  CAS  PubMed  Google Scholar 

  132. Wan J, Xia L, Xu W, et al. Expression and function of mir-155 in diseases of the gastrointestinal tract. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17050709.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yu DD, Lv MM, Chen WX, et al. Role of mir-155 in drug resistance of breast cancer. Tumour Biol. 2015;36:1395–401. https://doi.org/10.1007/s13277-015-3263-z.

    Article  CAS  PubMed  Google Scholar 

  134. Lv L, An X, Li H, et al. Effect of mir-155 knockdown on the reversal of doxorubicin resistance in human lung cancer a549/dox cells. Oncol Lett. 2016;11:1161–6. https://doi.org/10.3892/ol.2015.3995.

    Article  CAS  PubMed  Google Scholar 

  135. Chen L, Jiang K, Jiang H, et al. Mir-155 mediates drug resistance in osteosarcoma cells via inducing autophagy. Exp Ther Med. 2014;8:527–32. https://doi.org/10.3892/etm.2014.1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li Y, Tian Z, Tan Y, et al. BMI-1-induced mir-27a and mir-155 promote tumor metastasis and chemoresistance by targeting RKIP in gastric cancer. Mol Cancer. 2020;19:109. https://doi.org/10.1186/s12943-020-01229-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gao Y, Liu Z, Ding Z, et al. MicroRNA-155 increases colon cancer chemoresistance to cisplatin by targeting forkhead box o3. Oncol Lett. 2018;15:4781–8. https://doi.org/10.3892/ol.2018.7976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Luo X, Dong J, He X, et al. Mir-155-5p exerts tumor-suppressing functions in Wilms tumor by targeting IGF2 via the PI3k signaling pathway. Biomed Pharmacother. 2020;125:109880. https://doi.org/10.1016/j.biopha.2020.109880.

    Article  CAS  PubMed  Google Scholar 

  139. Li S, Zhang T, Zhou X, et al. The tumor suppressor role of mir-155-5p in gastric cancer. Oncol Lett. 2018;16:2709–14. https://doi.org/10.3892/ol.2018.8932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ma Z, Ma Y, Xia Q, et al. MicroRNA-155 expression inversely correlates with pathologic stage of gastric cancer and it inhibits gastric cancer cell growth by targeting cyclin D1. J Cancer Res Clin Oncol. 2016;142:1201–12. https://doi.org/10.1007/s00432-016-2139-y.

    Article  CAS  PubMed  Google Scholar 

  141. Qin W, Ren Q, Liu T, et al. MicroRNA-155 is a novel suppressor of ovarian cancer-initiating cells that targets CLDN1. FEBS Lett. 2013;587:1434–9. https://doi.org/10.1016/j.febslet.2013.03.023.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang X, Wang Y, Guo Q, et al. Prognostic role of microRNA-155 in patients with leukemia: a meta-analysis. Clin Chim Acta. 2018;483:6–13. https://doi.org/10.1016/j.cca.2018.04.015.

    Article  CAS  PubMed  Google Scholar 

  143. Huang HM, Wei YJ, Wang D, et al. Mechanism of mir-155 promoting drug resistance in childhood acute lymphoblastic leukemia by regulating wnt/β-catenin signaling pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2022;30:418–24. https://doi.org/10.19746/j.cnki.issn.1009-2137.2022.02.016.

    Article  PubMed  Google Scholar 

  144. Yu Y, Kou D, Liu B, et al. Lncrna meg3 contributes to drug resistance in acute myeloid leukemia by positively regulating alg9 through sponging mir-155. Int J Lab Hematol. 2020;42:464–72. https://doi.org/10.1111/ijlh.13225.

    Article  PubMed  Google Scholar 

  145. Rashed WM, Hammad AM, Saad AM, et al. Microrna as a diagnostic biomarker in childhood acute lymphoblastic leukemia; systematic review, meta-analysis and recommendations. Crit Rev Oncol Hematol. 2019;136:70–8. https://doi.org/10.1016/j.critrevonc.2019.02.008.

    Article  PubMed  Google Scholar 

  146. Chen N, Feng L, Qu H, et al. Overexpression of il-9 induced by stat3 phosphorylation is mediated by mir-155 and mir-21 in chronic lymphocytic leukemia. Oncol Rep. 2018;39:3064–72. https://doi.org/10.3892/or.2018.6367.

    Article  CAS  PubMed  Google Scholar 

  147. Wang F, Hou J, Jin W, et al. Increased circulating microRNA-155 as a potential biomarker for breast cancer screening: a meta-analysis. Molecules. 2014;19:6282–93. https://doi.org/10.3390/molecules19056282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shao C, Yang F, Qin Z, et al. The value of mir-155 as a biomarker for the diagnosis and prognosis of lung cancer: a systematic review with meta-analysis. BMC Cancer. 2019;19:1103. https://doi.org/10.1186/s12885-019-6297-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to Lubanga Nasifu for polishing the language and grammar of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenlin Nie or Bangshun He.

Ethics declarations

Funding

This study was supported by the Nanjing Medical Science and Technology Development Foundation (YKK22117) and Jiangsu Provincial Medical Key Discipline Cultivation Unit (JSDW202239).

Conflicts of interest/competing interests

Yanan Wu, Author Qiwei Hong, Fang Lu, Author Zhongqiu Zhang, Jingjing Li, Zhenlin Nie, and Bangshun He have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All data generated or analyzed during this study are included in this published article and supplementary information files, which are available from the corresponding author upon reasonable request.

Code availability

The software and code used in this study are available from the corresponding author upon reasonable request.

Authors’ contributions

All authors contributed to this study. YW and QH retrieved and screened the literature, performed the quality assessment, extracted and analyzed the data, and drafted the manuscript. ZZ, FL, and JL contributed to broadening ideas and making part of figures. BH and ZN designed the study and revised the manuscript. All authors read and approved the final version of this manuscript.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Hong, Q., Lu, F. et al. The Diagnostic and Prognostic Value of miR-155 in Cancers: An Updated Meta-analysis. Mol Diagn Ther 27, 283–301 (2023). https://doi.org/10.1007/s40291-023-00641-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-023-00641-6

Navigation