Skip to main content
Log in

Functional Association of miR-133b and miR-21 Through Novel Gene Targets ATG5, LRP6 and SGPP1 in Coronary Artery Disease

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Atherosclerosis, a progressive manifestation of coronary artery disease, has been observed to be regulated by microRNAs (miRNAs) targeting various protein-coding genes involved in several pathophysiological events of coronary artery disease.

Objective

In our previous report, we identified differential expression profiles of candidate miRNAs, miR-133b and miR-21, in patients with coronary artery disease as compared with controls, suggesting their possible implication in the pathophysiology of coronary artery disease. To better understand the functional role of these miRNAs, we sought to predict and validate their target genes while assessing the expression pattern of these genes in patients with coronary artery disease, as well as in macrophages.

Methods

Potential target genes of miR-133b and miR-21 were predicted bioinformatically followed by validation through the identification of their expression at  the protein level in patients with coronary artery disease (n-30), as well as in macrophages treated with respective miRNA inhibitors (antagomiRs), through immunoblotting.

Results

SGPP1, a gene associated with the sphingolipid pathway, was predicted to be a potential target gene of miR-133b while ATG5 and LRP6 were target genes of miR-21 while being associated with autophagy and Wnt signalling pathways, respectively. SGPP1 was observed to be upregulated significantly (p = 0.019) by 2.07-fold, whereas ATG5 and LRP6 were found to be downregulated (p = 0.026 and 0.007, respectively) by 3.28-fold and 8.46-fold, respectively, in patients with coronary artery disease as compared with controls. Expression patterns of all the genes were also found to be modulated when cells were treated with respective miRNA inhibitors.

Conclusions

Results from the present study suggest that SGPP1, ATG5 and LRP6, target genes of miR-133b and miR-21, may serve as potential therapeutic hotspots in the management of coronary artery disease, which undoubtedly merit further experimental confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74. https://doi.org/10.1038/nature01323.

    Article  PubMed  CAS  Google Scholar 

  2. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889–934. https://doi.org/10.1016/j.jacc.2013.11.002.

  3. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551–61. https://doi.org/10.1161/01.atv.15.5.551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jahangir Z, Bakillah A, Iqbal J. Regulation of sphingolipid metabolism by microRNAs: a potential approach to alleviate atherosclerosis. Diseases. 2018;6(3):82. https://doi.org/10.3390/diseases6030082.

    Article  PubMed Central  CAS  Google Scholar 

  5. Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol Rev. 2003;83:1069–112. https://doi.org/10.1152/physrev.00005.2003.

    Article  PubMed  CAS  Google Scholar 

  6. Shashkin P, Dragulev B, Ley K. Macrophage differentiation to foam cells. Curr Pharm Des. 2005;11:3061–72. https://doi.org/10.2174/1381612054865064.

    Article  PubMed  CAS  Google Scholar 

  7. Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol. 2005;25:2255–64. https://doi.org/10.1161/01.ATV.0000184783.04864.9f.

    Article  PubMed  CAS  Google Scholar 

  8. Chen JW, Chen YH, Lin SJ. Long-term exposure to oxidized low-density lipoprotein enhances tumor necrosis factor-alpha-stimulated endothelial adhesiveness of monocytes by activating superoxide generation and redox-sensitive pathways. Free Radic Biol Med. 2006;40:817–26. https://doi.org/10.1016/j.freeradbiomed.2005.10.037.

    Article  PubMed  CAS  Google Scholar 

  9. Miller YI, Chang MK, Binder CJ, Shaw PX, Witztum JL. Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol. 2003;14:437–45. https://doi.org/10.1097/00041433-200310000-00004.

    Article  PubMed  CAS  Google Scholar 

  10. Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15(4):545–53. https://doi.org/10.1016/j.cmet.2012.01.022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Grootaert MOJ, Roth L, Schrijvers DM, De Meyer GRY, Martinet W. Defective autophagy in atherosclerosis: to die or to senesce? Oxid Med Cell Longev. 2018;2018:7687083. https://doi.org/10.1155/2018/7687083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gleissner CA, Leitinger N, Ley K. Effects of native and modified low- density lipoproteins on monocyte recruitment in atherosclerosis. Hypertension. 2007;50:276–83. https://doi.org/10.1161/HYPERTENSIONAHA.107.089854.

    Article  PubMed  CAS  Google Scholar 

  13. Badimon L, Luquero A, Crespo J, Peña E, Borrell-Pages M. PCSK9 and LRP5 in macrophage lipid internalization and inflammation. Cardiovasc Res. 2021;117:2054–68. https://doi.org/10.1093/cvr/cvaa254.

    Article  PubMed  CAS  Google Scholar 

  14. Tüfekci KU, Meuwissen RL, Genç S. The role of microRNAs in biological processes. Methods Mol Biol. 2014;1107:15–31. https://doi.org/10.1007/978-1-62703-748-8_2.

    Article  PubMed  CAS  Google Scholar 

  15. Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38(9):e159–70. https://doi.org/10.1161/ATVBAHA.118.310227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Novák J, Bienertová-Vašků J, Kára T, Novák M. MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediat Inflamm. 2014;2014: 275867. https://doi.org/10.1155/2014/275867.

    Article  CAS  Google Scholar 

  17. Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X, et al. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(6):1058–67. https://doi.org/10.1161/ATVBAHA.116.308916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120(15):1524–32. https://doi.org/10.1161/CIRCULATIONAHA.109.864629.

    Article  PubMed  CAS  Google Scholar 

  19. Yamakuchi M, Ferlito M, Lowenstein CJ. MiR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 2008;105:13421–6. https://doi.org/10.1073/pnas.0801613105.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deng S, Wang H, Jia C, Zhu S, Chu X, Ma Q, et al. MicroRNA-146a induces lineage-negative bone marrow cell apoptosis and senescence by targeting polo-like kinase 2 expression. Arterioscler Thromb Vasc Biol. 2017;37(2):280–90. https://doi.org/10.1161/ATVBAHA.116.308378.

    Article  PubMed  CAS  Google Scholar 

  21. Karunakaran D, Rayner KJ. Macrophage miRNAs in atherosclerosis. Biochim Biophys Acta. 2016;1861:2087–93. https://doi.org/10.1016/j.bbalip.2016.02.006.

    Article  PubMed  CAS  Google Scholar 

  22. Maegdefessel L. The emerging role of microRNAs in cardiovascular disease. J Intern Med. 2014;276:633–44. https://doi.org/10.1111/joim.12298.

    Article  PubMed  CAS  Google Scholar 

  23. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84. https://doi.org/10.1161/CIRCRESAHA.109.215566.

    Article  PubMed  CAS  Google Scholar 

  24. Kumar D, Narang R, Sreenivas V, Rastogi V, Bhatia J, Saluja D, et al. Circulatory miR-133b and miR-21 as novel biomarkers in early prediction and diagnosis of coronary artery disease. Genes (Basel). 2020;1(2):164. https://doi.org/10.3390/genes11020164.

    Article  CAS  Google Scholar 

  25. Gonzalez Segura G, Cantelli BA, Peronni K, Rodrigo Sanches P, Komoto TT, Rizzi E, et al. Cellular and molecular response of macrophages THP-1 during co-culture with inactive Trichophyton rubrum Conidia. J Fungi (Basel). 2020;6(4):363. https://doi.org/10.3390/jof6040363.

    Article  PubMed Central  CAS  Google Scholar 

  26. Xue Z, Xi Q, Liu H, Guo X, Zhang J, Zhang Z, et al. miR-21 promotes NLRP3 inflammasome activation to mediate pyroptosis and endotoxic shock. Cell Death Dis. 2019;10:461. https://doi.org/10.1038/s41419-019-1713-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jiang L, He L, Fountoulakis M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A. 2004;1023(2):317–20. https://doi.org/10.1016/j.chroma.2003.10.029.

    Article  PubMed  CAS  Google Scholar 

  28. Lund ME, To J, O’Brien BA, Donnelly S. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. J Immunol Methods. 2016;430:64–70. https://doi.org/10.1016/j.jim.2016.01.012.

    Article  PubMed  CAS  Google Scholar 

  29. Liu J, Liu Y, Sun YN, Li S, Liu XQ, Li J, et al. miR-28-5p involved in LXR-ABCA1 pathway is increased in the plasma of unstable angina patients. Heart Lung Circ. 2015;24(7):724–30. https://doi.org/10.1016/j.hlc.2014.12.160.

    Article  PubMed  Google Scholar 

  30. Han H, Qu G, Han C, Wang Y, Sun T, Li F, et al. MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort. Exp Mol Med. 2015;47(2): e138. https://doi.org/10.1038/emm.2014.81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cortez-Dias N, Costa MC, Carrilho-Ferreira P, Silva D, Jorge C, Calisto C, et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ J. 2016;80(10):2183–91. https://doi.org/10.1253/circj.CJ-16-0568.

    Article  PubMed  CAS  Google Scholar 

  32. Del Gaudio I, Sasset L, Lorenzo AD, Wadsack C. Sphingolipid signature of human feto-placental vasculature in preeclampsia. Int J Mol Sci. 2020;21(3):1019. https://doi.org/10.3390/ijms21031019.

    Article  PubMed Central  CAS  Google Scholar 

  33. Jiang XC, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2000;20:2614–8. https://doi.org/10.1161/01.atv.20.12.2614.

    Article  PubMed  CAS  Google Scholar 

  34. Nicholls M. Plasma ceramides and cardiac risk. Eur Heart J. 2017;38(18):1359–60. https://doi.org/10.1093/eurheartj/ehx205.

    Article  CAS  Google Scholar 

  35. Summers SA. Could ceramides become the new cholesterol? Cell Metab. 2018;27(2):276–80. https://doi.org/10.1016/j.cmet.2017.12.003.

    Article  PubMed  CAS  Google Scholar 

  36. Yu Z, Peng Q, Huang Y. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond). 2019;133(6):763–76. https://doi.org/10.1042/CS20180911.

    Article  CAS  Google Scholar 

  37. Le Stunff H, Peterson C, Thornton R, Milstien S, Mandala SM, Spiegel S. Characterization of murine sphingosine-1-phosphate phosphohydrolase. J Biol Chem. 2002;277(11):8920–7. https://doi.org/10.1074/jbc.M109968200.

    Article  PubMed  CAS  Google Scholar 

  38. Schissel SL, Tweedie-Hardman J, Rapp JH, Graham G, Williams KJ, Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein: proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Investig. 1996;98(6):1455–64. https://doi.org/10.1172/JCI118934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Badacz R, Przewłocki T, Gacoń J, Stępień E, Enguita F, Karch I, et al. Circulating miRNA levels differ with respect to carotid plaque characteristics and symptom occurrence in patients with carotid artery stenosis and provide information on future cardiovascular events. Postepy Kardiol Interwencyjnej. 2018;14(1):75–84. https://doi.org/10.5114/aic.2018.74358.

    Article  PubMed  PubMed Central  Google Scholar 

  40. He J, Zhang G, Pang Q, Yu C, Xiong J, Zhu J, et al. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition. FEBS J. 2017;284(9):1324–37. https://doi.org/10.1111/febs.14055.

    Article  PubMed  CAS  Google Scholar 

  41. Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012;15(4):534–44. https://doi.org/10.1016/j.cmet.2012.02.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang ZM, Luo JQ, Xu LY, Zhou HH, Zhang W. Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases. Pharmacogenom J. 2018;8(3):351–8. https://doi.org/10.1038/tpj.2017.28.

    Article  CAS  Google Scholar 

  43. Du J, Li J. The role of Wnt signaling pathway in atherosclerosis and its relationship with angiogenesis. Exp Ther Med. 2018;16(3):1975–81. https://doi.org/10.1038/tpj.2017.28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. J Biol Chem. 2012;287(2):1335–44. https://doi.org/10.1074/jbc.M111.295287.

    Article  PubMed  CAS  Google Scholar 

  45. Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-Williams C, et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science. 2007;315:1278–82. https://doi.org/10.1126/science.1136370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Go GW. Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients. 2015;7(6):4453–64. https://doi.org/10.3390/nu7064453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the infrastructural support to Kamna Srivastava and Daman Saluja from ACBR, University of Delhi and the Department of Science and Technology grant to Kamna Srivastava. Dinesh Kumar gratefully acknowledges University Grant Commission/Council of Scientific and Industrial Research, India for providing the JRF/SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamna Srivastava.

Ethics declarations

Funding

This research was supported by the following grants: infrastructure facility from the Department of Science and Technology, WOS-A/LS-633/2017 granted to Kamna Srivastava and the University Grant Commission/Council of Scientific and Industrial Research UGC/CSIR-JRF/SRF fellowship (Ref. No. 22/12/2013(ii)EU-V) granted to Dinesh Kumar.

Conflict of interest

Dinesh Kumar, Rajiv Narang, Daman Saluja and Kamna Srivastava have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

The study protocol for human samples was approved by the Human Ethics Committee, AIIMS, New Delhi (IEC/NP-207/2012 and RP-17/2012) as well as the Human Ethics Committee, ACBR, DU, Delhi (F.50-2/Eth.Com/ACBR/169/2014).

Consent to participate

A written and signed informed consent form was obtained from all the participants of this study.

Consent for Publication

The investigators have adhered to controlled-access publication and obtained consent to publish the study results.

Availability of data and material

The data that support the findings of this study are available on reasonable request from the corresponding author.

Code availability

Not applicable.

Authors' Contributions

DK and KS initiated the study, contributed to its conception and design, and drafted the manuscript. KS contributed to the project administration. DK and KS performed the experimental investigation. RN contributed to the screening and recruitment of the study subjects as well as clinical sample analysis. KS, DS, and DK did the formal analysis of the data. KS, DS, and DK reviewed and edited the manuscript. KS and DS supervised the research process. All authors have read and approved the publication of the manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Narang, R., Saluja, D. et al. Functional Association of miR-133b and miR-21 Through Novel Gene Targets ATG5, LRP6 and SGPP1 in Coronary Artery Disease. Mol Diagn Ther 26, 655–664 (2022). https://doi.org/10.1007/s40291-022-00615-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-022-00615-0

Navigation