Skip to main content
Log in

Whipple’s Disease: Diagnostic Value of rpoB Gene PCR from Peripheral Blood Mononuclear Cells

  • Short Communication
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

Chronic infection with Tropheryma whipplei, known as Whipple’s disease (WD), classically affects the gastrointestinal tract, but any organ system may be affected, and isolated manifestations occur. Reliable diagnosis based on a combination of periodic acid–Schiff (PAS) staining, T. whipplei-specific immunohistochemistry (IHC), and polymerase chain reaction (PCR) from duodenal biopsies may be challenging in cases without classical gastrointestinal infection, so the need for additional diagnostic materials is urgent.

Objective

Our objective was to evaluate additional diagnostic possibilities for WD.

Methods

We analyzed samples from 20 patients with WD and 18 control subjects in a prospective observational pilot study. In addition to WD diagnosis by PAS staining, T. whipplei-specific IHC and PCR of duodenal or extra intestinal tissues, whole EDTA blood, peripheral blood mononuclear cells (PBMCs) and PBMC fractions enriched with or depleted of cluster of differentiation (CD)-14+ cells were examined using T. whipplei rpoB gene PCR.

Results

Tropheryma whipplei DNA was detected in 35 of 60 (58.3%) preparations from 16 of 20 patients with WD, most of whom lacked gastrointestinal signs and characteristic PAS-positive duodenal macrophages.

Conclusion

This study provides evidence for the potential suitability of blood, particularly PBMCs, as material to assist in the diagnosis of WD via rpoB gene real-time PCR. Thus, PCR from blood preparations can be helpful for diagnostic decision making in atypical cases of WD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Fenollar F, Puechal X, Raoult D. Whipple’s disease. N Engl J Med. 2007;356(1):55–66.

    Article  PubMed  CAS  Google Scholar 

  2. Schneider T, Moos V, Loddenkemper C, Marth T, Fenollar F, Raoult D. Whipple’s disease: new aspects of pathogenesis and treatment. Lancet Infect Dis. 2008;8(3):179–90.

    Article  PubMed  CAS  Google Scholar 

  3. La Scola B, Fenollar F, Fournier PE, Altwegg M, Mallet MN, Raoult D. Description of Tropheryma whipplei gen. nov., sp. nov., the Whipple’s disease bacillus. Int J Syst Evol Microbiol. 2001;51(Pt 4):1471–9.

    Article  PubMed  Google Scholar 

  4. Fenollar F, Laouira S, Lepidi H, Rolain JM, Raoult D. Value of Tropheryma whipplei quantitative polymerase chain reaction assay for the diagnosis of Whipple disease: usefulness of saliva and stool specimens for first-line screening. Clin Infect Dis. 2008;47(5):659–67. https://doi.org/10.1086/590559.

    Article  PubMed  Google Scholar 

  5. Hinrikson HP, Dutly F, Nair S, Altwegg M. Detection of three different types of ‘Tropheryma whippelii’ directly from clinical specimens by sequencing, single-strand conformation polymorphism (SSCP) analysis and type-specific PCR of their 16S–23S ribosomal intergenic spacer region. Int J Syst Bacteriol. 1999;4:1701–6.

    Article  Google Scholar 

  6. Moos V, Schneider T. Changing paradigms in Whipple’s disease and infection with Tropheryma whipplei. Eur J Clin Microbiol Infect Dis. 2011;30(10):1151–8.

    Article  PubMed  CAS  Google Scholar 

  7. Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med. 1992;327(5):293–301.

    Article  PubMed  CAS  Google Scholar 

  8. Fenollar F, Celard M, Lagier JC, Lepidi H, Fournier PE, Raoult D. Tropheryma whipplei endocarditis. Emerg Infect Dis. 2013;19(11):1721–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Geissdorfer W, Moos V, Moter A, Loddenkemper C, Jansen A, Tandler R, et al. High frequency of Tropheryma whipplei in culture-negative endocarditis. J Clin Microbiol. 2012;50(2):216–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lehmann P, Ehrenstein B, Hartung W, Dragonas C, Reischl U, Fleck M. PCR analysis is superior to histology for diagnosis of Whipple’s disease mimicking seronegative rheumatic diseases. Scand J Rheumatol. 2016. https://doi.org/10.1080/03009742.2016.1183038.

    Article  PubMed  Google Scholar 

  11. Lagier JC, Fenollar F, Raoult D. Whipple’s disease and Tropheryma whipplei infections in internal medicine. When to think about it? How to treat? La Revue de medecine interne/fondee par la Societe nationale francaise de medecine interne. 2014;35(12):801–7. https://doi.org/10.1016/j.revmed.2014.04.016.

    Article  Google Scholar 

  12. Gunther U, Moos V, Offenmuller G, Oelkers G, Heise W, Moter A, et al. Gastrointestinal diagnosis of classical Whipple disease: clinical, endoscopic, and histopathologic features in 191 patients. Medicine. 2015;94(15):714.

    Article  Google Scholar 

  13. Marth T, Fredericks D, Strober W, Relman DA. Limited role for PCR-based diagnosis of Whipple’s disease from peripheral blood mononuclear cells. Lancet. 1996;348(9019):66–7.

    Article  PubMed  CAS  Google Scholar 

  14. Moter A, Schmiedel D, Petrich A, Wiessner A, Kikhney J, Schneider T, et al. Validation of an rpoB gene PCR assay for detection of Tropheryma whipplei: 10 years’ experience in a National Reference Laboratory. J Clin Microbiol. 2013;51(11):3858–61. https://doi.org/10.1128/JCM.01703-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Raoult D, Lepidi H, Harle JR. Tropheryma whipplei circulating in blood monocytes. N Engl J Med. 2001;345(7):548.

    Article  PubMed  CAS  Google Scholar 

  16. Lepidi H, Costedoat N, Piette JC, Harle JR, Raoult D. Immunohistological detection of Tropheryma whipplei (Whipple bacillus) in lymph nodes. Am J Med. 2002;113(4):334–6.

    Article  PubMed  Google Scholar 

  17. von Herbay A, Ditton HJ, Maiwald M. Diagnostic application of a polymerase chain reaction assay for the Whipple’s disease bacterium to intestinal biopsies. Gastroenterology. 1996;110(6):1735–43.

    Article  Google Scholar 

  18. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA. 1985;82(20):6955–9.

    Article  PubMed  CAS  Google Scholar 

  19. Blessin UB, Fischer A, Schneider T, Moos V, Muller T, Weylandt KH, et al. More than meets the eye. Gut. 2018;67(1):69. https://doi.org/10.1136/gutjnl-2016-312390.

    Article  PubMed  Google Scholar 

  20. Schinnerling K, Moos V, Geelhaar A, Allers K, Loddenkemper C, Friebel J, et al. Regulatory T cells in patients with Whipple’s disease. J Immunol. 2011;187(8):4061–7. https://doi.org/10.4049/jimmunol.1101349.

    Article  PubMed  CAS  Google Scholar 

  21. Schinnerling K, Geelhaar-Karsch A, Allers K, Friebel J, Conrad K, Loddenkemper C, et al. Role of dendritic cells in the pathogenesis of Whipple’s disease. Infect Immun. 2015;83(2):482–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Drancourt M, Carlioz A, Raoult D. rpoB sequence analysis of cultured Tropheryma whippelii. J Clin Microbiol. 2001;39(7):2425–30. https://doi.org/10.1128/JCM.39.7.2425-2430.2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Moos V, Schmidt C, Geelhaar A, Kunkel D, Allers K, Schinnerling K, et al. Impaired immune functions of monocytes and macrophages in Whipple’s disease. Gastroenterology. 2010;138(1):210–20. https://doi.org/10.1053/j.gastro.2009.07.066.

    Article  PubMed  CAS  Google Scholar 

  24. Desnues B, Raoult D, Mege JL. IL-16 is critical for Tropheryma whipplei replication in Whipple’s disease. J Immunol. 2005;175(7):4575–82.

    Article  PubMed  CAS  Google Scholar 

  25. Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol. 2007;82(2):244–52. https://doi.org/10.1189/jlb.0307191.

    Article  PubMed  CAS  Google Scholar 

  26. Epple HJ, Friebel J, Moos V, Troeger H, Krug SM, Allers K, et al. Architectural and functional alterations of the small intestinal mucosa in classical Whipple’s disease. Mucosal Immunol. 2017;10(6):1542–52. https://doi.org/10.1038/mi.2017.6.

    Article  PubMed  CAS  Google Scholar 

  27. Fredricks DN, Relman DA. Localization of Tropheryma whippelii rRNA in tissues from patients with Whipple’s disease. J Infect Dis. 2001;183(8):1229–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Moos.

Ethics declarations

Funding

This work was supported by Deutsche Forschungsgemeinschaft SFB633, KFO104, SCHN 616/6-2, European commission QLG1-CT-2002-01049 and Charité doctorate grants. The German Consiliary Laboratory for T. whipplei is supported by the Robert Koch Institute. The funders had no role in the study design, the data collection and interpretation, or the decision to submit the work for publication.

Conflict of interest

KW, AW, AM, FF, DR, KA, TS, and VM have no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study (ethical commission of the Charité; EA4/122/10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weigt, K., Wiessner, A., Moter, A. et al. Whipple’s Disease: Diagnostic Value of rpoB Gene PCR from Peripheral Blood Mononuclear Cells. Mol Diagn Ther 22, 459–469 (2018). https://doi.org/10.1007/s40291-018-0339-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0339-7

Navigation