Skip to main content
Log in

Levels of MicroRNA Heterogeneity in Cancer Biology

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, involved in the silencing of messenger RNA (mRNA) translation. The importance of miRNA signatures in disease screening, prognosis, and progression of different tumor types and subtypes is increasing. miRNA expression levels change depending on numerous factors. In this review, we are describing the circumstances under which miRNA levels can change, these are named ‘levels’ of heterogeneity of miRNAs. miRNAs can have oncogenic, tumor suppressive, or both roles depending on tumor type and target mRNA whose translation they silence. The expression levels of a single miRNA may vary across different cancer types and subtypes, indicating that a miRNA signature may be tissue specific. miRNA levels of expression also vary during disease formation and propagation, indicating the presence of a time profile for their expression. The complexity of the miRNA-mRNA interference network mirrors different genetic and epigenetic changes that influence miRNA and mRNA availability to each other, and hence, their binding ability. The potential role of miRNAs as biomarkers is two-fold; first, for monitoring of the phases of cancer pathogenesis, and second, to characterize the particular type/subtype of cancer. It is important that a particular miRNA should be characterized by examining as many types and subtypes of cancers as are available, as well as being extracted from different types of samples, in order to obtain a complete picture of its behavior and importance in the disease pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006;66:7390–4.

    Article  CAS  PubMed  Google Scholar 

  2. Galasso M, Sandhu SK, Volinia S. MicroRNA expression signatures in solid malignancies. Cancer J. 2012;18:238–43.

    Article  CAS  PubMed  Google Scholar 

  3. Kinose Y, Sawada K, Nakamura K, et al. The role of microRNAs in ovarian cancer. BioMed Res Internat. 2014;2014:11.

    Article  Google Scholar 

  4. Vrba L, Muñoz-Rodríguez JL, Stampfer MR, et al. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One. 2013;8:e54398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61:24R–9R.

    Article  CAS  PubMed  Google Scholar 

  6. Schee K, Fodstad Ø, Flatmark K. MicroRNAs as biomarkers in colorectal cancer. Am J Pathol. 2010;177:1592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiosea S, Jelezcova E, Chandran U, et al. Overexpression of dicer in precursor lesions of lung adenocarcinoma. Cancer Res. 2007;67:2345–50.

  8. Zhang BL, Song FJ, Zheng H, Zhang LN, Zhao YR, Chen KX. SNP rs16917496 within SETS 3′UTR is associated with the age of onset of breast cancer. Chin J Oncol. 2012;23(34):835–7.

    CAS  Google Scholar 

  9. Lee AR, Park J, Jung KJ, et al. genetic variation rs7930 in the mir-4273-5p target site is associated with a risk of colorectal cancer. OncoTargets Ther. 2016;9:6885.

    Article  Google Scholar 

  10. Chang S, Sharan SK. BRCA1 and MicroRNAs: emerging networks and potential therapeutic targets. Mol Cells. 2012;34:425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Z, Wu L, Wang AT, et al. dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucl Acids Res. 2016;45(D1):D812–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang D, Gu J, Wang T, et al. OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics. 2014;30:2237–8.

    Article  CAS  PubMed  Google Scholar 

  13. Petrovic N. miR-21 might be involved in breast cancer promotion and invasion rather than in initial events of breast cancer development. Mol Diagn Ther. 2016;20:97–110.

    Article  CAS  PubMed  Google Scholar 

  14. Petrovic N, Davidovic R, Jovanovic-Cupic S, et al. Changes in miR-221/222 levels in invasive and in situ carcinomas of the breast: differences in association with estrogen receptor and TIMP3 expression levels. Mol Diagn Ther. 2016;20:603–15.

    Article  CAS  PubMed  Google Scholar 

  15. Petrovic N, Kolakovic A, Stankovic A, et al. miR-155 expression level changes might be associated with initial phases of breast cancer pathogenesis and lymph-node metastasis. Cancer Biomark. 2016;16:385–94.

  16. Petrovic N, Mandusic V, Stanojevic B, et al. The difference in miR-21 expression levels between invasive and non-invasive breast cancers emphasizes its role in breast cancer invasion. Med Oncol. 2014;31:867.

    Article  PubMed  Google Scholar 

  17. Ergun S, Arman K, Temiz E, et al. Expression patterns of miR-221 and its target Caspase-3 in different cancer cell lines. Mol Biol Rep. 2014;41:5877–81.

    Article  CAS  PubMed  Google Scholar 

  18. Ergun S, Oztuzcu S. Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. Tumor Biol. 2015;36:3129–36.

    Article  CAS  Google Scholar 

  19. Ergun S, Tayeb TS, Arslan A, et al. The investigation of miR-221-3p and PAK1 gene expressions in breast cancer cell lines. Gene. 2015;555:377–81.

    Article  CAS  PubMed  Google Scholar 

  20. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garzon R, Fabbri M, Cimmino A, et al. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.

    Article  CAS  PubMed  Google Scholar 

  23. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mrna-specific upregulation. Int J Genomics. 2014;2014:15.

    Article  Google Scholar 

  24. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.

    Article  CAS  PubMed  Google Scholar 

  25. Zeng Y, Cullen BR. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucl Acids Res. 2004;32:4776–85.

  26. Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. BBA Mol Cell Res. 2010;1803:1231–43.

    CAS  Google Scholar 

  27. Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, exportin 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA. 2016;113:E1881–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weber B, Stresemann C, Brueckner B, et al. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle. 2007;6:1001–5.

    Article  CAS  PubMed  Google Scholar 

  29. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis. J Biochem. 2010;148:381–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ozsolak F, Poling LL, Wang Z, Liu H, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008;22:3172–83.

  32. Monteys AM, Spengler RM, Wan J, et al. Structure and activity of putative intronic miRNA promoters. RNA. 2010;16:495–505.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huang J-T, Wang J, Srivastava V. MicroRNA machinery genes as novel biomarkers for cancer. Front Oncol. 2014;4:113.

    PubMed  PubMed Central  Google Scholar 

  34. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433:769–73.

    Article  CAS  PubMed  Google Scholar 

  35. Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucl Acids Res. 2015;43(D1):D146–52.

    Article  CAS  PubMed  Google Scholar 

  36. Gambari R, Brognara E, Spandidos DA, et al. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: new trends in the development of miRNA therapeutic strategies in oncology (review). Int J Oncol. 2016;49:5–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182:509–17. doi:10.1083/jcb.200801079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xiang J, Wu J. Feud or friend? The role of the miR-17-92 cluster in tumorigenesis. Curr Genom. 2010;11:129–35.

    Article  CAS  Google Scholar 

  39. Li Y, Vecchiarelli-Federico LM, Li YJ, Egan SE, Spaner D, Hough MR, Ben-David Y. The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood. 2012;119:4486–98.

    Article  CAS  PubMed  Google Scholar 

  40. Habbe N, Koorstra J-BM, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther. 2009;8:340–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cha YJ, Lee JH, Han HH, et al. MicroRNA alteration and putative target genes in high-grade prostatic intraepithelial neoplasia and prostate cancer: STAT3 and ZEB1 are upregulated during prostate carcinogenesis. Prostate. 2016;76:937–47.

    Article  CAS  PubMed  Google Scholar 

  42. Li C, Nie H, Wang M, et al. microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep. 2012;27:1960–6.

    Article  PubMed  Google Scholar 

  43. Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G. miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med. 2012;12:27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan X, Wang Z-X, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 2010;10(12):1224–32.

    Article  CAS  PubMed  Google Scholar 

  45. Almeida AL, Bernardes MV, Feitosa MR, et al. Serological under expression of microRNA-21, microRNA-34a and microRNA-126 in colorectal cancer. Acta Cir Bras. 2016;31(Suppl 1):13–8.

    Article  PubMed  Google Scholar 

  46. Yang X, Wang X, Shen H, et al. Combination of miR-21 with circulating tumor cells markers improve diagnostic specificity of metastatic breast cancer. Cell Biochem Biophys. 2015;73:87–91.

    Article  CAS  PubMed  Google Scholar 

  47. Dong G, Liang X, Wang D, Gao H, Wang L, et al. High expression of miR-21 in triple-negative breast cancers was correlated with a poor prognosis and promoted tumor cell in vitro proliferation. Med Oncol. 2014;31:1–10.

    Google Scholar 

  48. Yu Y, Nangia-Makker P, Farhana L, et al. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol Cancer. 2015;14:98.

    Article  PubMed  PubMed Central  Google Scholar 

  49. du Rieu MC, Torrisani J, Selves J, et al. MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin Chem. 2010;56:603.

    Article  PubMed  Google Scholar 

  50. Sicard F, Gayral M, Lulka H, et al. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther. 2013;21:986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoruker EE, Terzioglu D, Teksoz S, et al. MicroRNA expression profiles in papillary thyroid carcinoma, benign thyroid nodules and healthy controls. J Cancer. 2016;7:803–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cai G, Qiao S, Chen K. Suppression of miR-221 inhibits glioma cells proliferation and invasion via targeting SEMA3B. Biol Res. 2015;48:37.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goto Y, Kojima S, Nishikawa R, et al. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker. Br J Cancer. 2015;113(7):1055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Felicetti F, Errico MC, Bottero L, et al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 2008;68:2745–54.

    Article  CAS  PubMed  Google Scholar 

  55. Di Leva G, Gasparini P, Piovan C, et al. MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer. 2010;102:706–21.

    Article  Google Scholar 

  56. Stinson S, Lackner MR, Adai AT, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4:ra41.

    Article  PubMed  Google Scholar 

  57. Polyak K. Breast cancer: origins and evolution. J Clin Invest. 2007;117:3155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petrovic N, Mandusic V, Dimitrijevic B, et al. Higher miR-21 expression in invasive breast carcinomas is associated with positive estrogen and progesterone receptor status in patients from Serbia. Med Oncol. 2014;31:977.

    Article  PubMed  Google Scholar 

  59. Medimegh I, Omrane I, Privat M, et al. MicroRNAs expression in triple negative vs non triple negative breast cancer in tunisia: interaction with clinical outcome. PLoS One. 2014;9:e111877.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhong X, Coukos G, Zhang L. miRNAs in human cancer. In: Fan J-B, editor. Next-generation microRNA expression profiling technology: methods and protocols. Totowa: Humana Press; 2012. p. 295–306.

    Chapter  Google Scholar 

  61. Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012;33:1126–33.

  62. Bhayani MK, Calin GA, Lai SY. Functional relevance of miRNA* sequences in human disease. Mut Res. 2012;731:14–9.

    Article  CAS  Google Scholar 

  63. Lee SJ, Seo JW, Chae YS, et al. Genetic polymorphism of miR-196a as a prognostic biomarker for early breast cancer. Anticancer Res. 2014;34:2943–9.

    CAS  PubMed  Google Scholar 

  64. Xia L, Ren Y, Fang X, et al. Prognostic role of common microRNA polymorphisms in cancers: evidence from a meta-analysis. PLoS One. 2014;9:e106799.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xu Q, Dong Q, He C, et al. A new polymorphism biomarker rs629367 associated with increased risk and poor survival of gastric cancer in chinese by up-regulated miRNA-let-7a expression. PLoS One. 2014;9:e95249.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xu Y, Liu L, Liu J, et al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int J Cancer. 2011;128:412–7.

    Article  PubMed  Google Scholar 

  67. Lee A-R, Park J, Jung KJ, et al. genetic variation rs7930 in the mir-4273-5p target site is associated with a risk of colorectal cancer. Oncol Targets Ther. 2016;9:6885.

    Article  Google Scholar 

  68. Liu Z, Wei S, Ma H, et al. A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck. Carcinogenesis. 2011;32:1668–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu H, Gao F, Dahlstrom KR, et al. A variant at a potentially functional microRNA-binding site in BRIP1 was associated with risk of squamous cell carcinoma of the head and neck. Tumor Biol 2016;37:1–10.

  70. Gao F, Xiong X, Pan W, et al. A regulatory MDM4 genetic variant locating in the binding sequence of multiple microRNAs contributes to susceptibility of small cell lung cancer. PLoS One. 2015;10:e0135647.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cho SH, Ko JJ, Kim JO, et al. 3′-UTR Polymorphisms in the MiRNA machinery genes DROSHA, DICER1, RAN, and XPO5 are associated with colorectal cancer risk in a Korean population. PLoS One. 2015;10:e0131125.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bruhn O, Drerup K, Kaehler M, et al. Length variants of the ABCB1 3′-UTR and loss of miRNA binding sites: possible consequences in regulation and pharmacotherapy resistance. Pharmacogenomics. 2016;17:327–40.

    Article  CAS  PubMed  Google Scholar 

  73. Mayr C, Bartel DP. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lembo A, Di Cunto F, Provero P. Shortening of 3′UTRs correlates with poor prognosis in breast and lung cancer. PLoS One. 2012;7:e31129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He X, Yang J, Zhang Q, et al. Shortening of the 3′untranslated region: an important mechanism leading to overexpression of HMGA2 in serous ovarian cancer. Chin Med J. 2013;127:494–9.

    Google Scholar 

  76. Akman HB, Oyken M, Tuncer T, et al. 3′UTR Shortening and EGF signaling: implications for breast cancer. Hum Mol Genet. 2015;24:6910–20.

  77. Chang J-W, Zhang W, Yeh H-S, et al. mRNA 3 [prime]-UTR shortening is a molecular signature of mTORC1 activation. Nat Commun. 2015;6:7218.

    Article  CAS  PubMed  Google Scholar 

  78. Gruber AR, Martin G, Müller P, et al. Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells. Nat Commun. 2014;5:5465.

    Article  CAS  PubMed  Google Scholar 

  79. Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    Article  CAS  PubMed  Google Scholar 

  80. He J, Wu J, Xu N, et al. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes. Nucl Acids Res. 2012;41:498–508.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Hu C, Cheng J, Chen B, Ke Q, Lv Z, et al. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem Biophys Res Commun. 2014;446:1255–60.

    Article  CAS  PubMed  Google Scholar 

  82. Su X, Xing J, Wang Z, et al. microRNAs and ceRNAs: RNA networks in pathogenesis of cancer. Chin J Cancer Res. 2013;25:235–9.

    PubMed  PubMed Central  Google Scholar 

  83. Giza DE, Vasilescu C, Calin GA. MicroRNAs and ceRNAs: therapeutic implications of RNA networks. Expert Opin Biol Ther. 2014;14:1285–93.

    Article  CAS  PubMed  Google Scholar 

  84. Yang J, Li T, Gao C, et al. FOXO1 3′UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity. Febs Lett. 2014;588:3218–24.

    Article  CAS  PubMed  Google Scholar 

  85. Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li L, Zhang J, Diao W, et al. MicroRNA-155 and microRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J Immunol. 2014;192:1034–43.

    Article  CAS  PubMed  Google Scholar 

  87. Kan X, Sun Y, Lu J, et al. Coinhibition of miRNA21 and miRNA221 induces apoptosis by enhancing the p53 mediated expression of proapoptotic miRNAs in laryngeal squamous cell carcinoma. Mol Med Rep. 2016;13:4315–20.

    Article  CAS  PubMed  Google Scholar 

  88. Stahlhut C, Slack FJ. Combinatorial action of microRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation. Cell Cycle. 2015;14:2171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer. 2011;10:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garcia AI, Buisson M, Bertrand P, et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3:279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chang S, Wang R-H, Akagi K, et al. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med. 2011;17:1275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. Febs Lett. 2009;583:3966–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Petrovic.

Ethics declarations

Conflict of interest

Nina Petrovic, Sercan Ergün, and Esma R. Isenovic declare having no conflict of interest.

Funding

This work was supported by the Ministry of Education and Science, Republic of Serbia, Grants OI173049 (B.D.), OI173044 (E.R.I), and Ordu University, Scientific Research Projects Coordination Unit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovic, N., Ergün, S. & Isenovic, E.R. Levels of MicroRNA Heterogeneity in Cancer Biology. Mol Diagn Ther 21, 511–523 (2017). https://doi.org/10.1007/s40291-017-0285-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0285-9

Navigation