Skip to main content
Log in

MicroRNA-29: A Crucial Player in Fibrotic Disease

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Fibrosis is a common pathological state characterized by the excessive accumulation of extracellular matrix components, but the pathogenesis of the disease is still not clear. Previous studies have shown that microRNA-29 (miR-29) can play pivotal roles in the regulation of a variety of organ fibrosis, including cardiac fibrosis, hepatic fibrosis, lung fibrosis, systemic sclerosis, and keloid. In this review, we outline the structure, expression, and regulation of miR-29 as well as its role in fibrotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coelho NM, McCulloch CA. Contribution of collagen adhesion receptors to tissue fibrosis. Cell Tissue Res. 2016;365(3):521–38.

    Article  CAS  PubMed  Google Scholar 

  2. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Le AD, Zhang Q, Wu Y, Messadi DV, Akhondzadeh A, Nguyen AL, et al. Elevated vascular endothelial growth factor in keloids: relevance to tissue fibrosis. Cells Tissues Organs. 2004;176(1–3):87–94.

    Article  CAS  PubMed  Google Scholar 

  4. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–38.

    Article  CAS  PubMed  Google Scholar 

  5. Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol. 2013;229(2):274–85.

    Article  CAS  PubMed  Google Scholar 

  6. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    Article  CAS  PubMed  Google Scholar 

  7. Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA. 2007;104(23):9667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.

    CAS  PubMed  Google Scholar 

  9. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.

    Article  CAS  PubMed  Google Scholar 

  10. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38(3):323–32.

    Article  CAS  PubMed  Google Scholar 

  11. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Revi. 2013;113(8):6207–33.

    Article  CAS  Google Scholar 

  12. O’Reilly S. MicroRNAs in fibrosis: opportunities and challenges. Arthritis Res Ther. 2016;18:11.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bian EB, Li J, Zhao B. miR-29, a potential therapeutic target for liver fibrosis. Gene. 2014;544(2):259–60.

    Article  CAS  PubMed  Google Scholar 

  14. Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012;23(2):252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He Y, Huang C, Lin X, Li J. MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie. 2013;95(7):1355–9.

    Article  CAS  PubMed  Google Scholar 

  16. Peng WJ, Tao JH, Mei B, Chen B, Li BZ, Yang GJ, et al. MicroRNA-29: a potential therapeutic target for systemic sclerosis. Expert Opin Ther Targets. 2012;16(9):875–9.

    Article  PubMed  Google Scholar 

  17. Condorelli G. Reply: MicroRNA-29, a mysterious regulator in myocardial fibrosis and circulating miR-29a as a biomarker. J Am Coll Cardiol. 2014;64(20):2181–2.

    Article  PubMed  Google Scholar 

  18. Zhang GY, Wu LC, Liao T, Chen GC, Chen YH, Zhao YX, et al. A novel regulatory function for miR-29a in keloid fibrogenesis. Clin Exp Dermatol. 2016;41(4):341–5.

    Article  PubMed  Google Scholar 

  19. Chung AC, Lan HY. MicroRNAs in renal fibrosis. Front Physiol. 2015;6:50.

    Article  PubMed  PubMed Central  Google Scholar 

  20. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2008;105(35):13027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kamran F, Andrade AC, Nella AA, Clokie SJ, Rezvani G, Nilsson O, et al. Evidence that up-regulation of microRNA-29 contributes to postnatal body growth deceleration. Mol Endocrinol. 2015;29(6):921–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287–94.

    Article  CAS  PubMed  Google Scholar 

  23. Hysolli E, Tanaka Y, Su J, Kim KY, Zhong T, Janknecht R, et al. Regulation of the DNA methylation landscape in human somatic cell reprogramming by the miR-29 Family. Stem Cell Rep. 2016;7(1):43–54.

    Article  CAS  Google Scholar 

  24. Cui Y, Li T, Yang D, Li S, Le W. miR-29 regulates Tet1 expression and contributes to early differentiation of mouse ESCs. Oncotarget. doi:10.18632/oncotarget.10751.

  25. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  26. Feldman AL, Dogan A, Smith DI, Law ME, Ansell SM, Johnson SH, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3):915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14(5):369–81.

    Article  CAS  PubMed  Google Scholar 

  28. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  29. Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem. 2010;110(5):1155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–43.

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa T, Iizuka M, Sekiya Y, Yoshizato K, Ikeda K, Kawada N. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun. 2010;391(1):316–21.

    Article  CAS  PubMed  Google Scholar 

  32. Kwiecinski M, Noetel A, Elfimova N, Trebicka J, Schievenbusch S, Strack I, et al. Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PloS One. 2011;6(9):e24568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Divakaran V, Adrogue J, Ishiyama M, Entman ML, Haudek S, Sivasubramanian N, et al. Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ Heart Fail. 2009;2(6):633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Long J, Wang Y, Wang W, Chang BH, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem. 2011;286(13):11837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Melnik BC. The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA-driven type 2 diabetes mellitus. Curr Diabetes Rev. 2015;11(1):46–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PloS One. 2012;7(3):e33766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li M, Wang N, Zhang J, He HP, Gong HQ, Zhang R, et al. MicroRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes. Gene. 2016;585(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  38. Dawson K, Wakili R, Ordog B, Clauss S, Chen Y, Iwasaki Y, et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation. 2013;127(14):1466–75, 75e1–28.

  39. Zhang Y, Huang XR, Wei LH, Chung AC, Yu CM, Lan HY. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol Ther. 2014;22(5):974–85.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Melo SF, Fernandes T, Baraúna VG, Matos KC, Santos AA, Tucci PJ, et al. Expression of microRNA-29 and collagen in cardiac muscle after swimming training in myocardial-infarcted rats. Cell Physiol Biochem. 2014;33(3):657–69.

  41. Yang F, Li P, Li H, Shi Q, Li S, Zhao L. microRNA-29b mediates the antifibrotic effect of tanshinone IIA in postinfarct cardiac remodeling. J Cardiovasc Pharmacol. 2015;65(5):456–64.

    Article  CAS  PubMed  Google Scholar 

  42. Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2010;87(3):535–44.

    Article  CAS  PubMed  Google Scholar 

  43. Boon RA, Seeger T, Heydt S, Fischer A, Hergenreider E, Horrevoets AJ, et al. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011;109(10):1115–9.

    Article  CAS  PubMed  Google Scholar 

  44. Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, et al. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 2012;122(2):497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones JA, Stroud RE, O’Quinn EC, Black LE, Barth JL, Elefteriades JA, et al. Selective microRNA suppression in human thoracic aneurysms: relationship of miR-29a to aortic size and proteolytic induction. Circ Cardiovasc Genet. 2011;4(6):605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao J, Meng XM, Huang XR, Chung AC, Feng YL, Hui DS, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 2012;20(6):1251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Liu J, Chen J, Feng T, Guo Q. MiR-29 mediates TGFbeta 1-induced extracellular matrix synthesis through activation of Wnt/beta-catenin pathway in human pulmonary fibroblasts. Technol Health Care. 2015;23(Suppl 1):S119–25.

    Article  PubMed  Google Scholar 

  48. Yang T, Liang Y, Lin Q, Liu J, Luo F, Li X, et al. miR-29 mediates TGFbeta1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J Cell Biochem. 2013;114(6):1336–42.

    Article  CAS  PubMed  Google Scholar 

  49. Cushing L, Kuang P, Lu J. The role of miR-29 in pulmonary fibrosis. Biochem Cell Biol. 2015;93(2):109–18.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Ghazwani M, Li J, Sun M, Stolz DB, He F, et al. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase. Biochem Biophys Res Commun. 2014;446(4):940–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sekiya Y, Ogawa T, Yoshizato K, Ikeda K, Kawada N. Suppression of hepatic stellate cell activation by microRNA-29b. Biochem Biophys Res Commun. 2011;412(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  52. Matsumoto Y, Itami S, Kuroda M, Yoshizato K, Kawada N, Murakami Y. MiR-29a assists in preventing the activation of human stellate cells and promotes recovery from liver fibrosis in mice. Mol Ther. 2016;24(10):1848–59.

    Article  CAS  PubMed  Google Scholar 

  53. Liang C, Bu S, Fan X. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-beta1/Smad3. Cell Biochem Funct. 2016;34(5):326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang J, Chu ES, Chen HY, Man K, Go MY, Huang XR, et al. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget. 2015;6(9):7325–38.

    Article  PubMed  Google Scholar 

  55. Kumar V, Mondal G, Dutta R, Mahato RI. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials. 2016;76:144–56.

    Article  CAS  PubMed  Google Scholar 

  56. Huang YH, Tiao MM, Huang LT, Chuang JH, Kuo KC, Yang YL, et al. Activation of Mir-29a in activated hepatic stellate cells modulates its profibrogenic phenotype through inhibition of histone deacetylases 4. PloS One. 2015;10(8):e0136453.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li SC, Wang FS, Yang YL, Tiao MM, Chuang JH, Huang YH. Microarray study of pathway analysis expression profile associated with MicroRNA-29a with regard to murine cholestatic liver injuries. Int J Mol Sci. 2016;17(3):324.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kwiecinski M, Elfimova N, Noetel A, Tox U, Steffen HM, Hacker U, et al. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Lab Invest. 2012;92(7):978–87.

    Article  CAS  PubMed  Google Scholar 

  59. Li J, Zhang Y, Kuruba R, Gao X, Gandhi CR, Xie W, et al. Roles of microRNA-29a in the antifibrotic effect of farnesoid X receptor in hepatic stellate cells. Mol Pharmacol. 2011;80(1):191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen HY, Zhong X, Huang XR, Meng XM, You Y, Chung AC, et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther. 2014;22(4):842–53.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fang Y, Yu X, Liu Y, Kriegel AJ, Heng Y, Xu X, et al. miR-29c is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-alpha activation. Am J Physiol Renal Physiol. 2013;304(10):F1274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8):1462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu GX, Li YQ, Huang XR, Wei L, Chen HY, Shi YJ, et al. Disruption of Smad7 promotes ANG II-mediated renal inflammation and fibrosis via Sp1-TGF-beta/Smad3-NF.kappaB-dependent mechanisms in mice. PloS One. 2013;8(1):e53573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, et al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 2012;32(3):514–22.

    Article  CAS  PubMed  Google Scholar 

  65. Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-beta activated kinase 1 binding protein 1, implications for systemic sclerosis. PloS One. 2014;9(12):e115596.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, et al. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity. 2015;48(6):369–78.

    Article  PubMed  Google Scholar 

  67. Sole C, Cortes-Hernandez J, Felip ML, Vidal M, Ordi-Ros J. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dialysis Transplant. 2015;30(9):1488–96.

    Article  Google Scholar 

  68. Dai Y, Dai D, Mehta JL. MicroRNA-29, a mysterious regulator in myocardial fibrosis and circulating miR-29a as a biomarker. J Am Coll Cardiol. 2014;64(20):2181.

    Article  CAS  PubMed  Google Scholar 

  69. Takeuchi-Yorimoto A, Yamaura Y, Kanki M, Ide T, Nakata A, Noto T, et al. MicroRNA-21 is associated with fibrosis in a rat model of nonalcoholic steatohepatitis and serves as a plasma biomarker for fibrotic liver disease. Toxicol Lett. 2016;258:159–67.

    Article  CAS  PubMed  Google Scholar 

  70. Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res. 2016;17(1):110.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li P, Zhao GQ, Chen TF, Chang JX, Wang HQ, Chen SS, et al. Serum miR-21 and miR-155 expression in idiopathic pulmonary fibrosis. J Asthma. 2013;50(9):960–4.

    Article  CAS  PubMed  Google Scholar 

  72. Christmann RB, Wooten A, Sampaio-Barros P, Borges CL, Carvalho CR, Kairalla RA, et al. miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res Ther. 2016;18(1):155.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lechun Lu or Li He.

Ethics declarations

Conflict of interest

Z. Deng, Y. He, X. Yang, H. Shi, A. Shi, L. Lu and L. He have no conflicts of interest that are directly relevant to the content of this article.

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC; Grant Number 81560502), the National Natural Science Foundation of Yunnan Province (Grant Numbers 2013FB044 and 2014FB008), and the Education Department Fund of Yunnan Province (Grant Numbers 2014Y165, 2015Z082), and by a Doctoral Graduate Academic Newcomer Award of Yunnan Province (2014).

Additional information

Z. Deng, Y. He, X. Yang and H. Shi contributed equally to this work and should be considered joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., He, Y., Yang, X. et al. MicroRNA-29: A Crucial Player in Fibrotic Disease. Mol Diagn Ther 21, 285–294 (2017). https://doi.org/10.1007/s40291-016-0253-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0253-9

Keywords

Navigation