Skip to main content
Log in

Sensitive Solid-Phase Detection of Donor-Specific Antibodies as an Aid Highly Relevant to Improving Allograft Outcomes

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Transplant recipients who have had sensitizing events such as pregnancies, blood transfusions and previous transplants often develop antibodies directed against human leukocyte antigen (HLA)-molecules of the donor tissue. These pre-formed donor-specific antibodies (DSA) represent a high risk of organ failure as a consequence of antibody-mediated hyper-acute or acute allograft rejection. As a first assay to detect DSA, the complement-dependent lymphocytotoxicity assay (CDC) was established more than 40 years ago. However, this assay is characterized by several drawbacks such as a low sensitivity and a high susceptibility to various artificial factors generally not leading to valid and reliable outcomes under several circumstances that are reviewed in this article. Furthermore, only those antibodies that exert complement-fixing activity are detected. As a consequence, novel procedures that act independently of the complement system and that do not represent functional assays were generated in the format of solid phase assays (SPAs) (bead- or ELISA-based). In this article, we review the pros and cons of these sensitive SPA in comparison with the detection of DSA through the use of the traditional methods such as CDC and flow cytometric analyses. Potential drawbacks of the alternative methodological approaches comprising high background reactivity, susceptibility to environmental factors and the possible influence of subjective operators’ errors concerning the interpretation of the results are summarized and critically discussed for each method. We provide a forecast on the future role of SPAs reliably excluding highly deleterious DSA, thus leading to an improved graft survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patel R, Terasaki P. Significance of a positive crossmatch test in kidney transplantation. N Engl J Med. 1969;280:735–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ahern AT, Artruc SB, Della Pelle P, Cosimi AB, Russel PS, Colvin RB, Fuller TC. Hyperacute rejection of HLA-AB-identical renal allografts associated with B lymphocyte and endothelial reactive antibodies. Transplantation. 1982;33:103–6.

    Google Scholar 

  3. Chapman JR, Taylor C, Ting A, Morris PJ. Hyperacute rejection of a renal allograft in the presence of anti-HLA-Cw antibody. Transplantation. 1986;42:91–3.

    Article  CAS  PubMed  Google Scholar 

  4. Gebel HM, Bray RA. Sensitization and sensitivity: defining the unsensitized patient. Transplantation. 2000;69:1370–4.

    Article  CAS  PubMed  Google Scholar 

  5. Karpinski M, Rush D, Jeffery J, Exner M, Regele H, Dancea S, et al. Flow cytometric crossmatching in primary renal transplant recipients with a negative anti-human globulin enhanced cytoxicity crossmatch. J Am Soc Nephrol. 2001;12:2807–14.

    CAS  PubMed  Google Scholar 

  6. Garovoy MR, Rheinschmidt MA, Bigos M, Perkins H, Colombe B, Feduska M, Salvatierra N. Flow cytometry analysis: a high technology cross-match technique facilitating transplantation. Transplant Proc. 1983;15:1939–40.

    Google Scholar 

  7. Scornik JC, Bray JA, Pollak MS, Cook DJ, Marrari M, Duquesnoy R, Langley JW. Multicenter evaluation of the flow cytometry T-cell crossmatch: results from the American Society of Histocompatibility and Immunogenetics—College of American Pathologists proficiency testing program. Transplantation. 1997;63:1440–5.

    Article  CAS  PubMed  Google Scholar 

  8. Bittencourt MC, Rebibou JM, Saint-Hillier Y, Chabod J, Dupont I, Chalopin JM, et al. Impaired renal graft survival after positive B-cell flow cytometry crossmatch. Nephrol Dial Transplant. 1998;13:2059–64.

    Article  CAS  PubMed  Google Scholar 

  9. Altermann WW, Seliger B, Sel S, Wendt D, Schlaf G. Comparison of the established complement-dependent cytotoxicity and flow cytometric assays with a novel ELISA-based HLA crossmatch procedure. Histol Histopathol. 2006;21:1115–24.

    CAS  PubMed  Google Scholar 

  10. Hajeer AH, Saleh S, Sutton P, Shubaili A, Anazi H. Pronase-free B-cell flow cytometry crossmatch. Saudi J Kidney Dis Transpl. 2009;20:662–5.

    CAS  PubMed  Google Scholar 

  11. Book BK, Agarwal A, Milgrom AB, Bearden CM, Sidner RA, Higgins NG, Pescovitz MD. New crossmatch technique eliminates interference by humanized and chimeric monoclonal antibodies. Transplant Proc. 2005;37:640–2.

    Article  CAS  PubMed  Google Scholar 

  12. Yang CW, Oh EJ, Lee SB, Moon IS, Choi BS, Park SC, et al. Detection of donor-specific anti-HLA class I and II antibodies using antibody monitoring system. Transplant Proc. 2006;38:2803–6.

    Article  CAS  PubMed  Google Scholar 

  13. Schlaf G, Mauz-Körholz C, Ott U, Leike S, Altermann WW. General insufficiency of the classical CDC-based crossmatch to detect donor-specific anti-HLA antibodies leading to invalid results under recipients‘ medical treatment or underlying diseases. Histol Histopathol. 2012;27:31–8.

    CAS  PubMed  Google Scholar 

  14. Sel S, Schlaf G, Schurat O, Altermann WW. A novel ELISA-based crossmatch procedure to detect donor-specific anti-HLA antibodies responsible for corneal allograft rejections. J Immunol Methods. 2012;31:23–31.

    Article  Google Scholar 

  15. Schlaf G, Pollok-Kopp B, Schabel E, Altermann WW. Artificially positive crossmatches not leading to the refusal of kidney donations due to the usage of adequate diagnostic tools. Case Rep Transplant. 2013;2013:746395.

  16. Kerman RH, Süsskind B, Buyse I, Pryzbylowski P, Ruth J, Warnell S, et al. Flow cytometry-detected IgG is not a contraindication to renal transplantation: IgM may be beneficial to outcome. Transplantation. 1999;68:1855–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lobashevsky AL, Senkbeil RW, Shoaf J, Mink C, Rowe C, Lobashevsky ES, et al. Specificity of preformed alloantibodies causing B cell positive flow crossmatch in renal transplantation [published erratum appears in Clin. Transplant. 2000;15:28]. Clin Transplant. 2000;14:533–42.

    Article  CAS  PubMed  Google Scholar 

  18. Scornik JC, Brunson ME, Schaub B, Howard RJ, Pfaff WW. The crossmatch in renal transplantation. Evaluation of flow cytometry as a replacement for standard cytotoxicity. Transplantation. 1994;57:621–5.

    Article  CAS  PubMed  Google Scholar 

  19. Scornik JC. Detection of alloantibodies by flow cytometry: relevance to clinical transplantation. Cytometry. 1995;22:259–63.

    Article  CAS  PubMed  Google Scholar 

  20. Delgado JC, Eckels DD. Positive B-cell only flow cytometric crossmatch: implications for renal transplantation. Exp Mol Pathol. 2008;85:59–63.

    Article  CAS  PubMed  Google Scholar 

  21. Vaidya S, Cooper TY, Stewart D, Gigliuzza K, Daller J, Bray RA. Pronase improves detection of HLA antibodies in flow crossmatches. Transplant Proc. 2001;33:473–4.

    Article  CAS  PubMed  Google Scholar 

  22. Lobo PI, Isaacs RB, Spencer CE, Pruett TL, Sanfey HA, Sawyer RG, McCullogh C. Improved specificity and sensitivity when using pronase-digested lymphocytes to perform flow-cytometric crossmatch prior to renal transplantation. Transpl Int. 2002;15:563–9.

    Article  CAS  PubMed  Google Scholar 

  23. Rebibou JM, Chabod J, Bittencourt MC, Thevenin C, Chalopin JM, Herve P, Tiberghien P. Flow-PRA evaluation for antibody screening in patients awaiting kidney transplantation. Transpl Immunol. 2000;8:125–8.

    Article  CAS  PubMed  Google Scholar 

  24. Gebel HM, Bray RA, Ruth JA, Zibari GB, Mc Donald JC, Kahan BD, Kerman RH. Flow PRA to detect clinically relevant HLA antibodies. Transplant Proc. 2001;33:477.

    Google Scholar 

  25. Khan N, Robson AJ, Worthington JE, Martin S. The detection and definition of IgM alloantibodies in the presence of IgM autoantibodies using flowPRA beads. Hum Immunol. 2003;64:593–9.

    Article  CAS  PubMed  Google Scholar 

  26. Gould DS, Auchincloss H. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol Today. 1999;20:77–82.

    Article  CAS  PubMed  Google Scholar 

  27. Tambur AR, Gebel HM. Alloantigen processing and presentation. J Heart Lung Transpl. 1995;14:1031–7.

    CAS  Google Scholar 

  28. Monteiro F, Buelow R, Mineiro C, Rodrigues H, Kalil J. Identification of patients at a high risk of graft loss by pre- and posttransplant monitoring of anti-HLA class I IgG antibodies by enzyme-linked immunosorbent assay. Transplantation. 1997;63:542–6.

    Article  CAS  PubMed  Google Scholar 

  29. Worthington JE, Langton A, Liggett H, Robson AJ, Martin S. A novel strategy for the detection and definition of HLA-specific antibodies in patients awaiting renal transplantation. Transpl Int. 1998;11:372–6.

    Article  Google Scholar 

  30. Worthington JE, Thomas AA, Dyer PA, Martin S. Detection of HLA-specific antibodies by PRA-STAT and their association with transplant outcome. Transplantation. 1998;65:121–5.

    Article  CAS  PubMed  Google Scholar 

  31. Lubenko A, Rodi KM. The detection by enzyme-linked immunosorbent assays of non-complement-fixing HLA antibodies in transfusion medicine. Transfusion. 1998;38:41–4.

    Article  CAS  PubMed  Google Scholar 

  32. Worthington JE, Robson AJ, Sheldon S, Langton A, Martin S. A comparison of enzyme-linked immunosorbent assays and flow cytometry techniques for the detection of HLA-specific antibodies. Hum Immunol. 2001;62:1187–84.

    Google Scholar 

  33. Monien S, Salama A, Schönemann C. ELISA methods detect HLA antibodies with variable sensitivity. Int J Immunogenet. 2006;33:163–6.

    Article  CAS  PubMed  Google Scholar 

  34. Kao KJ, Scornik JC, Small SJ. Enzyme-linked immunoassay for anti-HLA antibodies - an alternative to panel studies by lymphocytotoxicity. Transplantation. 1993;55:192–6.

    Article  CAS  PubMed  Google Scholar 

  35. Fuller KE, Worthington JE, Martin S. ELISA screening for HLA-DR and -DQ specific antibodies: the QuikScreen B-Screen. Hum Immunol. 2000;61:98.

    Google Scholar 

  36. Worthington JE, Martin S, Dyer PA, Johnson RWG. An associate between post-transplant antibody production and renal transplant rejection. Transplant Proc. 2001;33:475–6.

    Article  CAS  PubMed  Google Scholar 

  37. Uboldi de Capei M, Pratico L, Curtoni ES. Comparison of different techniques for detection of anti-HLA antibodies in sera from patients awaiting kidney transplantation. Eur J Immunogenet. 2002;29:379–82.

    Google Scholar 

  38. Pierquin A, Masson D, Toupance O, Tabary T, Bougy F, Bensa JC, et al. False-negative results in anti-HLA antibody detection by Sangstat ELISA: complement dependent cytotoxicity is not yet obsolete. Transplantation. 1996;62:1533–4.

    Article  CAS  PubMed  Google Scholar 

  39. Lucas DP, Paparounis ML, Meyers L, Hart JM, Zachary AA. Detection of HLA class I specific antibodies by the QuikScreen Enzyme-linked immunosorbent assay. Clin Diagn Lab Immunol. 1997;4:252–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Moore SP, Ploeger NA, De Goey SR. HLA antibody screening: comparison of a solid phase enzyme-linked immunoassay with antiglobulin-augmented lymphocytotoxicity. Transplantation. 1997;64:1617–20.

    Article  CAS  PubMed  Google Scholar 

  41. Papassavas AC, Iniotaki-Theodoraki A, Stathakopoulou A, Ioannou S, Kostakis A, Stavropoulos-Giokas C. Evaluation of HLA-class I alloantibodies using PRA-STAT and complement-dependent cytotoxicity techniques. Transpl Proc. 1998;30:724–6.

    Article  CAS  Google Scholar 

  42. Zachary AA, Griffin J, Lucas DP, Hart JM, Lefell MS. Evaluation of HLA antibodies with the PRA-STAT test. An Elisa test using soluble HLA class I molecules. Transplantation. 1995;60:1600–6.

    Article  CAS  PubMed  Google Scholar 

  43. Zaer F, Metz S, Scornik JC. Antibody screening by enzyme-linked immunosorbent assay using pooled HLA in renal transplant candidates. Transplantation. 1997;63:48–51.

    Article  CAS  PubMed  Google Scholar 

  44. Zachary AA, Delaney NL, Lucas DP, Leffell MS. Characterization of HLA class I specific antibodies by ELISA using solubilized antigen targets: I. Evaluation of the GTI QuikID assay and analysis of antibody patterns. Hum Immunol. 2001;62:228–35.

    Article  CAS  PubMed  Google Scholar 

  45. Zachary AA, Ratner LE, Graziani JA, Lucas DP, Delaney NL, Leffell MS. Characterization of HLA class I specific antibodies by ELISA using solubilized antigen targets: II Clinical relevance. Hum Immunol. 2001;62:236–46.

    Article  CAS  PubMed  Google Scholar 

  46. Zachary AA, Ratner LE, Leffell MS. Low levels of HLA-specific antibody: relevance, detection and treatment. Transplant Proc. 2001;33:469–70.

    Article  CAS  PubMed  Google Scholar 

  47. Christiaans MH, Overhof-de Roos R, Nieman F, van Hooff JP, van den Berg-Loonen EM. Donor-specific antibodies after transplantation by flow cytometry: relative change in fluorescence ratio most sensitive risk factor for graft survival. Transplantation. 1998;65:427–38.

    Google Scholar 

  48. Schönemann C, Groth J, Leverenz S, May G. HLA class I and class II antibodies: monitoring before and after kidney transplantation and their clinical relevance. Transplantation. 1998;65:1519–23.

    Article  PubMed  Google Scholar 

  49. Itescu S, Tung TC, Burke M. Preformed IgG antibodies against major histocompatibility complex class II antigens are major risk factors for high-grade cellular rejection in recipients of heart transplantation. Circulation. 1998;98:786–93.

    Article  CAS  PubMed  Google Scholar 

  50. Compos EF, Tedesco-Silva H, Machado PG, Franco M, Medina-Pestana JO, Gerbase-DeLima M. Post-transplant anti-HLA class II antibodies as risk factor for late kidney allograft failure. Am J Transpl. 2006;6:2316–20.

    Article  Google Scholar 

  51. Song EY, Lee YJ, Hyun J, Kim YS, Ahn C, Ha J, et al. Clinical relevance of pretransplant HLA class II donor-specific antibodies in renal transplantation patients with negative T-cell cytotoxicity crossmatches. Ann Lab Med. 2012;32:139–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Eng HS, Bennett G, Tsiopelas E, Lake M, Humphreys I, Chang SH, et al. Anti-HLA donor-specific antibodies detected in positive B-cell crossmatches by Luminex predict late graft loss. Am J Transpl. 2008;8:2335–42.

    Article  CAS  Google Scholar 

  53. McKenna RM, Takemoto SK, Terasaki PI. Anti-HLA antibodies after solid organ transplantation. Transplantation. 2000;69:319–26.

    Article  CAS  PubMed  Google Scholar 

  54. Muro M, Llorente S, Gonzales-Soriano MJ, Minguela A, Guineno L, Alavarez-Lopez MR. Pre-formed donor-specific alloantibodies (DSA) detected only by luminex technology using HLA-coated microspheres and causing acute humoral rejection and kidney graft dysfunction. Clin Transpl. 2006;26:379–83.

    Google Scholar 

  55. Gibney EM, Cagle LR, Freed B, Warnell SE, Chan L, Wiseman AC. Detection of donor-specific antibodies using HLA-coated microspheres: another tool for kidney transplant risk stratification. Nephrol Dial Transpl. 2006;21:2625–9.

    Article  CAS  Google Scholar 

  56. Colombo MB, Haworth SE, Poli F, Nocco A, Puglisi G, Innocente A, et al. Luminex technology for anti-HLA antibody screening: evaluation of performance and of impact on laboratory routine. Cytometry B Clin Cytom. 2007;72:465–71.

    Article  PubMed  Google Scholar 

  57. Tait BD, Hudson F, Cantwell L, Brewin G, Holdsworth R, Bennet G, Jose M. Luminex technology for HLA antibody detection in organ transplantation. Nephrology. 2009;14:247–54.

    Article  CAS  PubMed  Google Scholar 

  58. Smith JD, Hamour IM, Banner NR, Rose ML. C4d fixing, Luminex binding antibodies - a new tool for prediction of graft failure after heart transplantation. Am J Transpl. 2007;7:2809–15.

    Article  CAS  Google Scholar 

  59. Cherikh W, Baker T, Nelson K, Land G, Lefell M, Nakain A. Broader geographic sharing through accurate prediction of cross-match results. Abstract 868. The first Joint International Transplant Meeting, Boston, 2006.

  60. Vaidya S, Partlow D, Susskind B, Gugliuzza K. Prediction of crossmatch outcome of highly sensitized patients based on identification of class 1 and 2 antibodies by single and/or multiple antigen bead luminex assay. Abstract 870. The first Joint International Transplant Meeting, Boston; 2006.

  61. Vaidya S, Partlow D, Susskind B, Noor M, Barnes T, Gugliuzza K. Prediction of crossmatch outcome of highly sensitized patients by single and/or multiple antigen bead luminex assay. Transplantation. 2006;82:1524–8.

    Article  PubMed  Google Scholar 

  62. Schwartz A, Wang L, Early E. Quantitating fluorescence intensity from fluorophores: the definition of MESF assignment. J Res Natl Inst Stand Technol. 2002;107:83–91.

    Article  CAS  Google Scholar 

  63. Mizutani K, Terasaki P, Hamdani E, Esquenazi V, Rosen A, Miller J, Ozawa M. The importance of anti-HLA-specific antibody strength in monitoring kidney transplant patients. Am J Transpl. 2007;7:1027–31.

    Article  CAS  Google Scholar 

  64. Riethmüller S, Ferrari-Lacraz S, Müller MK, Raptis DA, Hadaya K, Rüsi B, et al. Donor-specific antibody levels and three generations of crossmatches to predict antibody-mediated rejection in kidney transplantation. Transplantation. 2010;90:160–7.

    Article  PubMed  Google Scholar 

  65. Singh N, Djamali A, Lorentzen D, Pirsch JD, Leverson G, Neidlinger N, et al. Pretransplant donor-specific antibodies detected by single-antigen bead flow cytometry are associated with inferior kidney transplant outcomes. Transplantation. 2010;90:1079–84.

    Article  CAS  PubMed  Google Scholar 

  66. Lefaucheur C, Loupy A, Hill GS, Andrade J, Nochy D, Antoine C, et al. Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. J Am Soc Nephrol. 2010;21:1398–406.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Caro-Oleas JL, Gonzales-Escribano MF, Gonzales-Roncero FM, Acevedo-Calado MJ, Cabello-Chaves V, Gentil-Govantes MA, Nunez-Roldan A. Clinical relevance of HLA donor-specific antibodies detected by single antigan assay in kidney transplantation. Nephrol Dial Transplant. 2012;27:1231–8.

    Article  CAS  PubMed  Google Scholar 

  68. HiraiT, Kohei N, Omoto K, Ishida H, Tanabe K. Significance of low-level DSA detected by solid-phase assay in association with acute and chronic antibody-mediated rejection. Transpl Int. 2012;25:925–34.

  69. Fidler SJ, Irish AB, Lim W, Ferrrari P, Witt CS, Christiansen FT. Pre-transplant donor-specific anti-HLA antibody is associated with antibody-mediated rejection, progressive graft dysfunction and patient death. Transpl Immunol. 2013;28(4):148–53

    Google Scholar 

  70. Gupta A, Iveson V, Varagunam M, Bodger S, Sinnott P, Thuraisingham RC. Pretransplant donor-specific antibodies in cytotoxic negative crossmatch kidney transplants: are they relevant? Transplantation. 2008;85:1200–4.

    Article  CAS  PubMed  Google Scholar 

  71. Amico P, Hönger G, Mayr M, Steiger J, Hopfer H, Schaub S. Clinical relevance of pretransplant donor-specific HLA antibodies detected by single-antigen flow beads. Transplantation. 2009;87:1681–8.

    Article  CAS  PubMed  Google Scholar 

  72. Süsal C, Ovens J, Mahmoud K, Döhler B, Scherer S, Rubenstroh A, et al. No association of kidney graft loss with human leukocyte antigen antibodies detected exclusively by sensitive Luminex single-antigen testing: a Collaborative Transplant Study report. Transplantation. 2011;91:883–7.

    Article  PubMed  Google Scholar 

  73. Zoet YM, Brand-Schaaf SH, Roelen DL, Mulder A, Claas FH, Doxiadis II. Challenging the golden standard in defining donor-specific antibodies: does the solid phase assay meet the expectations? Tissue Antigens. 2011;77:225–8.

    Article  CAS  PubMed  Google Scholar 

  74. Otten HG, Verhaar MC, Borst HPE, van Eck M, van Ginkel WGJ, Hene RJ, van Zuilen AD. The significance of pretransplant donor-specific antibodies reactive with intact or denatured HLA in kidney transplantation. Clin Exp Immunol. 2013;173(3):536–43

    Google Scholar 

  75. Cai J, Terasaki PI, Anderson N, Lachmann N, Schönemann C. Intact HLA not ß2 m-free heavy chain-specific HLA class I antibodies are predictive of graft failure. Transplantation. 2009;88:226–30.

    Article  CAS  PubMed  Google Scholar 

  76. Pereira S, Perkins S, Lee JH, Shumway W, LeFor W, Lopez-Cepero M, et al. Donor-specific antibody against denatured HLA-A1: clinically nonsignificant? Hum Immunol. 2011;72:492–8.

    Article  CAS  PubMed  Google Scholar 

  77. Poli F, Benazzi E, Innocente A, Nocco A, Cagni N, Gianatti A, et al. Heart transplantation with donor-specific antibodies directed toward denatured HLA-A*02:01: a case report. Hum Immunol. 2011;72:1045–8.

    Article  CAS  PubMed  Google Scholar 

  78. Morales-Buenrostro LE, Terasaki PI, Marino-Vazquez LA, Lee JH, El-Awar N, Alberu J. “Natural” human leukocyte antigen antibodies found in nonalloimmunized healthy males. Transplantation. 2008;86:1111–5.

    Article  CAS  PubMed  Google Scholar 

  79. El-Awar NR, Terasaki PI, Hajeer A, Nikaein A, Averly M, Hopfield J, Nguyen A. A novel HLA class I single antigen bead preparation eliminates false positive reactions attributed to natural antibodies in the sera of normal males and pre-transplant patients. In: 36th annual meeting of the American Society for Histocompatibility and Immunogenetics. 2010.

  80. Doxiadis II, Roelen D, Claas FH. Mature wines are better: CDC as the leading method to define highly sensitized patients. Curr Opin Org Transplant. 2010;15:716–9.

    Article  Google Scholar 

  81. Gombos P, Opelz G, Scherer S, Zeier M, Schemmer P, Süsal C. Comparable evaluation of ELISA crossmatch and B-cell CDC crossmatch. In: 20th Annual Meeting of the German Society for Immunogenetics. 2012.

  82. Ozturk G, Terasaki PI. Cytotoxic antibodies against surface immunoglobulin. Transplantation. 1980;29:140–2.

    Article  CAS  PubMed  Google Scholar 

  83. Sumitran-Holgersson S. HLA-specific alloantibodies and renal graft outcome. Nephrol Dial Transplant. 2001;16:897–904.

    Article  CAS  PubMed  Google Scholar 

  84. Tellis VA, Matas AJ, Senitzer D, Louis P, Glicklich D, Soberman R, Veith FJ. Success transplantation after conversion of a positive crossmatch to negative by dissociation of IgM antibody. Transplantation. 1989;47:127–9.

    Article  CAS  PubMed  Google Scholar 

  85. Barger B, Shroyer TW, Hudson SL, Deierhoi MH, Barber WH, Curtis JJ, et al. Successful renal allografts in recipients with crossmatch-positive, dithioerythritol-treated negative sera. Race, transplant history, and HLA-DR1 phenotype. Transplantation. 1989;47:240–5.

    Article  CAS  PubMed  Google Scholar 

  86. Vaidya S, Ruth J. Contributions and clinical significance of IgM and autoantibodies in highly sensitized renal allograft recipients. Transplantation. 1989;47:956–8.

    Article  CAS  PubMed  Google Scholar 

  87. Barocci S, Valente U, Gusmano R, Perfumo F, Cantarella S, Leorini A, et al. Autoreactive lymphocytotoxic IgM antibodies in highly sensitized dialysis patients waiting for a kidney transplant: identification and clinical relevance. Clin Nephrol. 1991;36:12–20.

    CAS  PubMed  Google Scholar 

  88. Stastny P, Ring S, Lu C, Arenas J, Han M, Lavingia B. Role of immunoglobulin (Ig)-G and IgM antibodies against donor human leukocyte antigens in organ transplant recipients. Hum Immunol. 2009;70:600–4.

    Article  CAS  PubMed  Google Scholar 

  89. Vieira CA, Agarwal A, Book BK, Sidner RA, Bearden CM, Gebel HM, et al. Rituximab for reduction of anti-HLA antibodies in patients awaiting renal transplantation: 1. Safety, pharmacodynamics, and pharmaco-kinetics. Transplantation. 2004;77:542–8.

    Article  CAS  PubMed  Google Scholar 

  90. Jordan SC, Glotz D. Is Rituximab safe to use in kidney transplant patients? Am J Transpl. 2010;10:8–9.

    Article  CAS  Google Scholar 

  91. Colletti LM, Johnson KJ, Kunkel RG, Nerion RM. Mechanisms of hyperacute rejection in porcine liver transplantation. Antibody-mediated endothelial injury. Transplantation. 1994;57:1357–63.

    Article  CAS  PubMed  Google Scholar 

  92. Fredrich R, Toyoda M, Czer LS, Galfayan K, Galera O, Trento A, et al. The clinical significance of antibodies to human vascular endothelial cells after cardiac transplantation. Transplantation. 1999;67:386–91.

    Article  Google Scholar 

  93. Valujskikh A, Heeger PS. Emerging roles of endothelial cells in transplant rejection. Curr Opin Immunol. 2003;15:493–8.

    Article  CAS  PubMed  Google Scholar 

  94. Lautenschläger I, Hockerstedt A, Meri S. Complement membrane attack complex and protectin (CD59) in liver allografts during acute rejection. J Hepatol. 1999;31:537–41.

    Article  PubMed  Google Scholar 

  95. Sacks SH, Chowdhury P, Zhou W. The complement system in rejection. Curr Opin Immunol. 2003;15:487–92.

    Article  CAS  PubMed  Google Scholar 

  96. Wasowska BA. Mechanisms involved in antibody- and complement-mediated allograft rejection. Immunol Res. 2010;47:24–44.

    Article  Google Scholar 

  97. Regele H, Böhmig GA, Habicht A, Gollowitzer D, Schillinger M, Rockenschaub S, et al. Capillary deposition of complement split product C4d in renal allografts is associated with basement membrane injury in peritubular and glomerular capillaries: a contribution of humoral immunity to chronic allograft rejection. J Am Soc Nephrol. 2002;13:2371–80.

    Article  PubMed  Google Scholar 

  98. Nickeleit V, Zeiler M, Gudat F, Thiel G, Mihatsch MJ. Detection of the complement degradation product C4d in renal allografts: diagnostic and therapeutic implications. J Am Soc Nephrol. 2002;13:242–51.

    CAS  PubMed  Google Scholar 

  99. Mauiyyedi S, Crespo M, Collins AB, Schneeberger EE, Pascual MA, Saidman SL, et al. Acute humoral rejection in kidney transplantation: II. Morphology, immunopathology, and pathologic classification. J Am Soc Nephrol. 2002:779–87.

  100. Kuypers DR, Lerut E, Evenepoel P, Maes B, Vanrenterghem Y, van Damme B. C3d deposition in peritubular capillaries indicates a variant of acute renal allograft rejection characterized by a worse clinical outcome. Transplantation. 2003;76:102–8.

    Article  PubMed  Google Scholar 

  101. Nickeleit V, Mihatsch MJ. Kidney transplants, antibodies and rejection: is C4d a magic marker? Nephrol Dial Transplant. 2002;18:2232–9.

    Article  Google Scholar 

  102. Feucht HE. Complement C4d in graft capillaries—the missing link in the recognition of humoral alloreactivity. Am J Transpl. 2003;3:646–52.

    Article  CAS  Google Scholar 

  103. Herman J, Lerut E, van Damme-Lombaerts R, Emonds MP, van Damme P. Capillary deposition of complement C4d and C3d in pediatric renal allograft biopsies. Transplantation. 2005;79:1435–40.

    Article  CAS  PubMed  Google Scholar 

  104. Descamps B, Gagnon R, van der Gaag R, Feuillet MN, Crosnier J. Antibody dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) in 229 sera from human renal allograft recipients. J Clin Lab Immunol. 1997;2:5697–704.

    Google Scholar 

  105. Rahimi S, Qian Z, Layton J, Fox-Talbot K, Baldwin WM, Wasowska BA. Non-complement and complement activating antibodies synergize to cause rejection of cardiac allografts. Am J Transpl. 2004;4:326–34.

    Article  CAS  Google Scholar 

  106. Cai J, Terasaki PI. Human leukocyte antigen antibodies for monitoring transplant patients. Surg Today. 2005;35:605–12.

    Article  CAS  PubMed  Google Scholar 

  107. Harris PE, Bian H, Reed EF. Induction of high affinity fibroblast growth factor receptor expression and proliferation in human endothelial cells by anti-HLA antibodies: a possible mechanism for transplant atherosclerosis. J Immunol. 1997;159:5697–704.

    CAS  PubMed  Google Scholar 

  108. Heinemann FM, Roth I, Rebmann V, Arnold ML, Witzke O, Wilde B, et al. Immunoglobulin isotype-specific characterization of anti-human leucocyte antigen antibodies eluted from explanted renal allografts. Hum Immunol. 2007;68:500–6.

    Article  CAS  PubMed  Google Scholar 

  109. Terasaki PI, McClelland JD. Microdroplet assay of human serum cytotoxins. Nature. 1964;204:998–1000.

    Article  CAS  PubMed  Google Scholar 

  110. Terasaki PI, Marchioro TL, Starzl TE. Sero-typing of human lymphocyte antigens: preliminary trials on long-term kidney homograft survivors. Histocompat Test. 1965:83–96.

  111. Kissmeyer-Nielsen F, Kjerbye KE. Lymphocytotoxic micro-technique. Purification of lymphocytes by flotation. Histocompat Test. 1967:381–9.

Download references

Acknowledgments and Disclosures

No external sources of funding were used to prepare this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Schlaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlaf, G., Pollok-Kopp, B. & Altermann, W.W. Sensitive Solid-Phase Detection of Donor-Specific Antibodies as an Aid Highly Relevant to Improving Allograft Outcomes. Mol Diagn Ther 18, 185–201 (2014). https://doi.org/10.1007/s40291-013-0063-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-013-0063-2

Keywords

Navigation