Skip to main content
Log in

Toward Exercise Guidelines for Optimizing Fat Oxidation During Exercise in Obesity: A Systematic Review and Meta-Regression

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Exercise training performed at maximal fat oxidation (FATmax) is an efficient non-pharmacological approach for the management of obesity and its related cardio-metabolic disorders.

Objectives

Therefore, this work aimed to provide exercise intensity guidelines and training volume recommendations for maximizing fat oxidation in patients with obesity.

Methods

A systematic review of original articles published in English, Spanish or French languages was carried out in EBSCOhost, PubMed and Scopus by strictly following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Those studies that analyzed maximal fat oxidation (MFO) and FATmax in patients with obesity (body fat > 25% for men; > 35% for women) by calculating substrate oxidation rates through indirect calorimetry during a graded exercise test with short-duration stages (< 10 min) were selected for quantitative analysis. The accuracy of relative oxygen uptake (% peak oxygen uptake [%\(\dot{V}\)O2peak]) and relative heart rate (% peak heart rate [%HRpeak]) for establishing FATmax reference values was investigated by analyzing their intra-individual and inter-study variation. Moreover, cluster analysis and meta-regression were used for determining the influence of biological factors and methodological procedures on MFO and FATmax.

Results

Sixty-four manuscripts were selected from 146 records; 23 studies only recruited men (n = 465), 14 studies only evaluated women (n = 575), and 27 studies included individuals from both sexes (n = 6434). The majority of the evaluated subjects were middle-aged adults (aged 40–60 y; 84%) with a poor cardiorespiratory fitness (≤ 43 mL·kg−1·min−1; 81%), and the reported MFO ranged from 0.27 to 0.33 g·min−1. The relative heart rate at FATmax (coefficient of variation [CV]: 8.8%) showed a lower intra-individual variation compared with relative oxygen uptake (CV: 17.2%). Furthermore, blood lactate levels at FATmax ranged from 1.3 to 2.7 mmol·L−1 while the speed and power output at FATmax fluctuated from 4 to 5.1 km·h−1 and 42.8–60.2 watts, respectively. Age, body mass index, cardiorespiratory fitness, FATmax, the type of ergometer and the stoichiometric equation used to calculate the MFO independently explained MFO values (R2 = 0.85; p < 0.01). The MFO in adolescents was superior in comparison with MFO observed in young and middle-aged adults. On the other hand, the MFO was higher during treadmill walking in comparison with stationary cycling. Body fat and MFO alone determined 29% of the variation in FATmax (p < 0.01), noting that individuals with body fat > 35% showed a heart rate of 61–66% HRpeak while individuals with < 35% body fat showed a heart rate between 57 and 64% HRpeak. Neither biological sex nor the analytical procedure for computing the fat oxidation kinetics were associated with MFO and FATmax.

Conclusion

Relative heart rate rather than relative oxygen uptake should be used for establishing FATmax reference values in patients with obesity. A heart rate of 61–66% HRpeak should be recommended to patients with > 35% body fat while a heart rate of 57–64% HRpeak should be recommended to patients with body fat < 35%. Moreover, training volume must be higher in adults to achieve a similar fat oxidation compared with adolescents whereas exercising on a treadmill requires a lower training volume to achieve significant fat oxidation in comparison with stationary cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goodpaster BH, Sparks LM. Metabolic flexibility in health and disease. Cell Metab. 2017;25(5):1027–36. https://doi.org/10.1016/j.cmet.2017.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020;126(11):1549–64. https://doi.org/10.1161/CIRCRESAHA.119.315896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fava MC, Agius R, Fava S. Obesity and cardio-metabolic health [published correction appears in Br J Hosp Med (Lond). 2019 Oct 2;80(10):619]. Br J Hosp Med (Lond). 2019;80(8):466–71. https://doi.org/10.12968/hmed.2019.80.8.466.

    Article  PubMed  Google Scholar 

  4. Barnes AS. The epidemic of obesity and diabetes: trends and treatments. Tex Heart Inst J. 2011;38(2):142–4.

    PubMed  PubMed Central  Google Scholar 

  5. Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;143(21):e984–1010. https://doi.org/10.1161/CIR.0000000000000973.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25(Suppl 3):1–72. https://doi.org/10.1111/sms.12581.

    Article  PubMed  Google Scholar 

  7. Colberg-Ochs SR, Ehrman JK, Johann J, Kokkinos P, Liguori G, Pack KR. Exercise prescription for individuals with metabolic disease and cardiovascular disease risk factors. In: Diebe D, Ehrman JK, Liguori G, Magal M, editors. ACSM’s guidelines for exercise testing and prescription. 10th ed. Beijing: Wolters Kluwer; 2018. p. 287–91.

    Google Scholar 

  8. World Health Organization. WHO guidelines on physical activity and sedentary behavior. World Health Organization Website. 2020. https://www.who.int/publications/i/item/9789240015128.

  9. Brun JF, Myzia J, Varlet-Marie E, de Mauverger ER, Mercier J. Beyond the calorie paradigm: taking into account in practice the balance of fat and carbohydrate oxidation during exercise? Nutrients. 2022;14(8):1605. https://doi.org/10.3390/nu14081605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swinburn B, Ravussin E. Energy balance or fat balance? Am J Clin Nutr. 1993;57(5 Suppl):766S-771S. https://doi.org/10.1093/ajcn/57.5.766S.

    Article  CAS  PubMed  Google Scholar 

  11. Schutz Y. Macronutrients and energy balance in obesity. Metabolism. 1995;44(9 Suppl 3):7–11. https://doi.org/10.1016/0026-0495(95)90311-9.

    Article  CAS  PubMed  Google Scholar 

  12. Tremblay A. Differences in fat balance underlying obesity. Int J Obes Relat Metab Disord. 1995;19(Suppl 7):S10–6.

    PubMed  Google Scholar 

  13. Chávez-Guevara IA, Urquidez-Romero R, Pérez-León JA, González-Rodríguez E, Moreno-Brito V, Ramos-Jiménez A. Chronic effect of fatmax training on body weight, fat mass, and cardiorespiratory fitness in obese subjects: a meta-analysis of randomized clinical trials. Int J Environ Res Public Health. 2020;17(21):7888. https://doi.org/10.3390/ijerph17217888.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maunder E, Plews DJ, Kilding AE. Contextualising maximal fat oxidation during exercise: determinants and normative values. Front Physiol. 2018;9:599. https://doi.org/10.3389/fphys.2018.00599.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Riddell MC, Jamnik VK, Iscoe KE, Timmons BW, Gledhill N. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J Appl Physiol (1985). 2008;105(2):742–8. https://doi.org/10.1152/japplphysiol.01256.2007.

    Article  CAS  PubMed  Google Scholar 

  16. Frandsen J, Amaro-Gahete FJ, Landgrebe A, et al. The influence of age, sex and cardiorespiratory fitness on maximal fat oxidation rate. Appl Physiol Nutr Metab. 2021;46(10):1241–7. https://doi.org/10.1139/apnm-2021-0080.

    Article  CAS  PubMed  Google Scholar 

  17. Filipovic M, Munten S, Herzig KH, Gagnon DD. Maximal fat oxidation: comparison between treadmill, elliptical and rowing exercises. J Sports Sci Med. 2021;20(1):170–8. https://doi.org/10.52082/jssm.2021.170.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chávez-Guevara IA, Hernández-Torres RP, Trejo-Trejo M, et al. Exercise fat oxidation is positively associated with body fatness in men with obesity: defying the metabolic flexibility paradigm. Int J Environ Res Public Health. 2021;18(13):6945. https://doi.org/10.3390/ijerph18136945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amaro-Gahete FJ, Sanchez-Delgado G, Ara I, Ruiz J. Cardiorespiratory fitness may influence metabolic inflexibility during exercise in obese persons. J Clin Endocrinol Metab. 2019;104(12):5780–90. https://doi.org/10.1210/jc.2019-01225.

    Article  PubMed  Google Scholar 

  20. Haufe S, Engeli S, Budziarek P, et al. Determinants of exercise-induced fat oxidation in obese women and men. Horm Metab Res. 2010;42(3):215–21. https://doi.org/10.1055/s-0029-1242745.

    Article  CAS  PubMed  Google Scholar 

  21. Peric R, Di Pietro A, Myers J, Nikolovski Z. A systematic comparison of commonly used stoichiometric equations to estimate fat oxidation during exercise in athletes. J Sports Med Phys Fit. 2021;61(10):1354–61. https://doi.org/10.23736/S0022-4707.20.11747-X

  22. Amaro-Gahete FJ, Sanchez-Delgado G, Alcantara JMA, et al. Impact of data analysis methods for maximal fat oxidation estimation during exercise in sedentary adults. Eur J Sport Sci. 2019;19(9):1230–9. https://doi.org/10.1080/17461391.2019.1595160.

    Article  PubMed  Google Scholar 

  23. Tan S, Wang X, Wang J. Effects of supervised exercise training at the intensity of maximal fat oxidation in overweight young women. J Exerc Sci Fit. 2012;10:64–9.

    Article  Google Scholar 

  24. Tan S, Du P, Zhao W, Pang J, Wang J. Exercise training at maximal fat oxidation intensity for older women with type 2 diabetes. Int J Sports Med. 2018;39(5):374–81. https://doi.org/10.1055/a-0573-1509.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang Y, Tan S, Wang Z, Guo Z, Li Q, Wang J. Aerobic exercise training at maximal fat oxidation intensity improves body composition, glycemic control, and physical capacity in older people with type 2 diabetes. J Exerc Sci Fit. 2020;18(1):7–13. https://doi.org/10.1016/j.jesf.2019.08.003.

    Article  PubMed  Google Scholar 

  26. Bircher S, Knechtle B, Müller G, Knecht H. Is the highest fat oxidation rate coincident with the anaerobic threshold in obese women and men? Eur J Sport Sci. 2005;5(2):79–87. https://doi.org/10.1080/17461390500167078.

    Article  Google Scholar 

  27. San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Med. 2018;48(2):467–79. https://doi.org/10.1007/s40279-017-0751-x.

    Article  PubMed  Google Scholar 

  28. Jeukendrup A, Achten J. Fatmax: a new concept to optimize fat oxidation during exercise? Eur J Sport Sci. 2001;1:1–5.

    Article  Google Scholar 

  29. Brun JF, Malatesta D, Sartorio A. Maximal lipid oxidation during exercise: a target for individualizing endurance training in obesity and diabetes? J Endocrinol Invest. 2012;35(7):686–91. https://doi.org/10.3275/8466.

    Article  CAS  PubMed  Google Scholar 

  30. Brun JF, Romain AJ, Mercier J. Maximal lipid oxidation during exercise (Lipoxmax): From physiological measurements to clinical applications. Facts and uncertainties Sci Sports. 2011;26(2):57–71. https://doi.org/10.1016/j.scispo.2011.02.001.

    Article  Google Scholar 

  31. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu F, Rhodes EC. Oxygen uptake kinetics during exercise. Sports Med. 1999;27(5):313–27. https://doi.org/10.2165/00007256-199927050-00003.

    Article  CAS  PubMed  Google Scholar 

  33. Pi-Sunyer FX. Obesity: criteria and classification. Proc Nutr Soc. 2000;59(4):505–9. https://doi.org/10.1017/s0029665100000732.

    Article  CAS  PubMed  Google Scholar 

  34. Peltz G, Aguirre MT, Sanderson M, Fadden MK. The role of fat mass index in determining obesity. Am J Hum Biol. 2010;22(5):639–47. https://doi.org/10.1002/ajhb.21056.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Amaro-Gahete FJ, Jurado-Fasoli L, Triviño AR, et al. Diurnal variation of maximal fat-oxidation rate in trained male athletes. Int J Sports Physiol Perform. 2019;14(8):1140–6. https://doi.org/10.1123/ijspp.2018-0854.

    Article  PubMed  Google Scholar 

  36. Mohebbi H, Azizi M. Maximal fat oxidation at the different exercise intensity in obese and normal weight men in the morning and evening. J Hum Sport Exerc. 2011;6(1):49–58. https://doi.org/10.4100/jhse.2011.61.06.

    Article  Google Scholar 

  37. Dumke CL. Health-related physical fitness testing and interpretation. In: Diebe D, Ehrman JK, Liguori G, Magal M, editors. ACSM’s guidelines for exercise testing and prescription. 10th ed. Beijing: Wolters Kluwer; 2018. p. 67–110.

    Google Scholar 

  38. McManus AM, Armstrong N. Maximal oxygen uptake. In: Cardiopulmonary exercise testing in children and adolescents. Human kinetics. Rowland TW; 2019. p. 79–93. https://doi.org/10.34045/ssem/2019/5.

  39. Dériaz O, Dumont M, Bergeron N, Després JP, Brochu M, Prud’homme D. Skeletal muscle low attenuation area and maximal fat oxidation rate during submaximal exercise in male obese individuals [published correction appears in Int J Obes Relat Metab Disord 2002 Oct; 26(10):1406]. Int J Obes Relat Metab Disord. 2001;25(11):1579–84. https://doi.org/10.1038/sj.ijo.0801809.

    Article  PubMed  Google Scholar 

  40. Dumortier M, Pérez-Martin A, Pierrisnard E, Mercier J, Brun JF. Regular exercise (3x45 min/wk) decreases plasma viscosity in sedentary obese, insulin resistant patients parallel to an improvement in fitness and a shift in substrate oxidation balance. Clin Hemorheol Microcirc. 2002;26(4):219–29.

    CAS  PubMed  Google Scholar 

  41. Dumortier M, Brandou F, Perez-Martin A, Fedou C, Mercier J, Brun JF. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome. Diabetes Metab. 2003;29(5):509–18. https://doi.org/10.1016/s1262-3636(07)70065-4.

    Article  CAS  PubMed  Google Scholar 

  42. Brandou F, Dumortier M, Garandeau P, Mercier J, Brun JF. Effects of a two-month rehabilitation program on substrate utilization during exercise in obese adolescents. Diabetes Metab. 2003;29(1):20–7. https://doi.org/10.1016/s1262-3636(07)70003-4.

    Article  CAS  PubMed  Google Scholar 

  43. Bircher S, Knechtle B. Relationship between fat oxidation and lactate threshold in athletes and obese women and men. J Sports Sci Med. 2004;3(3):174–81.

    PubMed  PubMed Central  Google Scholar 

  44. Brandou F, Savy-Pacaux AM, Marie J, et al. Impact of high- and low-intensity targeted exercise training on the type of substrate utilization in obese boys submitted to a hypocaloric diet. Diabetes Metab. 2005;31(4 Pt 1):327–35. https://doi.org/10.1016/s1262-3636(07)70201-x.

    Article  CAS  PubMed  Google Scholar 

  45. Jean E, Grubka E, Karafiat M, Flavier S, Fédou C, Mercier J. Effets d’un entraînement en endurance ciblé par la calorimétrie à l’effort chez des diabétiques de type 2. Ann Endocrinol. 2006;67:462.

    Article  Google Scholar 

  46. Lazzer S, Busti C, Agosti F, De Col A, Pozzo R, Sartorio A. Optimizing fat oxidation through exercise in severely obese Caucasian adolescents. Clin Endocrinol (Oxf). 2007;67(4):582–8. https://doi.org/10.1111/j.1365-2265.2007.02929.x.

    Article  CAS  PubMed  Google Scholar 

  47. Bordenave S, Metz L, Flavier S, et al. Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity. Effect of endurance training in type 2 diabetes. Diabetes Metab. 2008;34(2):162–8. https://doi.org/10.1016/j.diabet.2007.11.006.

    Article  CAS  PubMed  Google Scholar 

  48. Bogdanis GC, Vangelakoudi A, Maridaki M. Peak fat oxidation rate during walking in sedentary overweight men and women. J Sports Sci Med. 2008;7(4):525–31.

    PubMed  PubMed Central  Google Scholar 

  49. Lazzer S, Molin M, Stramare D, Facchini S, Francescato MP. Effects of an eight-month weight-control program on body composition and lipid oxidation rate during exercise in obese children. J Endocrinol Invest. 2008;31(6):509–14. https://doi.org/10.1007/BF03346399.

    Article  CAS  PubMed  Google Scholar 

  50. Venables MC, Jeukendrup AE. Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. Med Sci Sports Exerc. 2008;40(3):495–502. https://doi.org/10.1249/MSS.0b013e31815f256f.

    Article  CAS  PubMed  Google Scholar 

  51. Mogensen M, Vind BF, Højlund K, Beck-Nielsen H, Sahlin K. Maximal lipid oxidation in patients with type 2 diabetes is normal and shows an adequate increase in response to aerobic training. Diabetes Obes Metab. 2009;11(9):874–83. https://doi.org/10.1111/j.1463-1326.2009.01063.x.

    Article  CAS  PubMed  Google Scholar 

  52. Zunquin G, Theunynck D, Sesboue B, Arhan P, Bougle D. Evolution of fat oxidation during exercise in obese pubertal boys: clinical implications. J Sports Sci. 2009;27(4):315–8. https://doi.org/10.1080/02640410802578172.

    Article  PubMed  Google Scholar 

  53. Zunquin G, Theunynck D, Sesboüé B, Arhan P, Bouglé D. Comparison of fat oxidation during exercise in lean and obese pubertal boys: clinical implications. Br J Sports Med. 2009;43(11):869–70. https://doi.org/10.1136/bjsm.2007.044529.

    Article  CAS  PubMed  Google Scholar 

  54. Lazzer S, Lafortuna C, Busti C, et al. Fat oxidation rate during and after a low- or high-intensity exercise in severely obese Caucasian adolescents. Eur J Appl Physiol. 2010;108(2):383–91. https://doi.org/10.1007/s00421-009-1234-z.

    Article  CAS  PubMed  Google Scholar 

  55. Maurie J, Brun JF, Jean E, Romain AJ, Mercier J. Comparaison de deux modalités différentes d’activité physique (SWEET et Lipoxmax) chez des diabétiques de type 2. Sci Sports. 2011;26:92–6. https://doi.org/10.1016/j.scispo.2010.12.002.

    Article  Google Scholar 

  56. Ara I, Larsen S, Stallknecht B, et al. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int J Obes (Lond). 2011;35(1):99–108. https://doi.org/10.1038/ijo.2010.123.

    Article  CAS  PubMed  Google Scholar 

  57. Ben Ounis O, Elloumi M, Amri M, Zbidi A, Tabka Z, Lac G. Impact of diet, exercise and diet combined with exercise programs on plasma lipoprotein and adiponectin levels in obese girls. J Sports Sci Med. 2008;7(4):437–45.

    PubMed  PubMed Central  Google Scholar 

  58. Lazzer S, Lafortuna C, Busti C, Galli R, Agosti F, Sartorio A. Effects of low- and high-intensity exercise training on body composition and substrate metabolism in obese adolescents. J Endocrinol Invest. 2011;34(1):45–52. https://doi.org/10.1007/BF03346694.

    Article  CAS  PubMed  Google Scholar 

  59. Chu L, Riddell MC, Takken T, Timmons BW. Carbohydrate intake reduces fat oxidation during exercise in obese boys. Eur J Appl Physiol. 2011;111(12):3135–41. https://doi.org/10.1007/s00421-011-1940-1.

    Article  CAS  PubMed  Google Scholar 

  60. Crisp NA, Guelfi KJ, Licari MK, Braham R, Fournier PA. Does exercise duration affect Fatmax in overweight boys? Eur J Appl Physiol. 2012;112(7):2557–64. https://doi.org/10.1007/s00421-011-2232-5.

    Article  PubMed  Google Scholar 

  61. Tsujimoto T, Sasai H, Miyashita M, et al. Effect of weight loss on maximal fat oxidation rate in obese men. Obes Res Clin Pract. 2012;6(2):e91–174. https://doi.org/10.1016/j.orcp.2011.06.003.

    Article  PubMed  Google Scholar 

  62. Makni E, Moalla W, Trabelsi Y, et al. Six-minute walking test predicts maximal fat oxidation in obese children. Int J Obes (Lond). 2012;36(7):908–13. https://doi.org/10.1038/ijo.2011.257.

    Article  CAS  PubMed  Google Scholar 

  63. Alkahtani S. Comparing fat oxidation in an exercise test with moderate-intensity interval training. J Sports Sci Med. 2014;13(1):51–8.

    PubMed  PubMed Central  Google Scholar 

  64. Lanzi S, Codecasa F, Cornacchia M, et al. Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PLoS ONE. 2014;9(2): e88707. https://doi.org/10.1371/journal.pone.0088707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lanzi S, Codecasa F, Cornacchia M, et al. Short-term HIIT and Fat max training increase aerobic and metabolic fitness in men with class II and III obesity. Obesity (Silver Spring). 2015;23(10):1987–94. https://doi.org/10.1002/oby.21206.

    Article  CAS  PubMed  Google Scholar 

  66. Suk MH, Moon YJ, Park SW, Park CY, Shin YA. Maximal fat oxidation rate during exercise in Korean women with type 2 diabetes mellitus. Diabetes Metab J. 2015;39(4):328–34. https://doi.org/10.4093/dmj.2015.39.4.328.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Besnier F, Lenclume V, Gérardin P, et al. Individualized exercise training at maximal fat oxidation combined with fruit and vegetable-rich diet in overweight or obese women: the LIPOXmax-réunion randomized controlled trial. PLoS ONE. 2015;10(11): e0139246. https://doi.org/10.1371/journal.pone.0139246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nordby P, Rosenkilde M, Ploug T, et al. Independent effects of endurance training and weight loss on peak fat oxidation in moderately overweight men: a randomized controlled trial. J Appl Physiol (1985). 2015;118(7):803–10. https://doi.org/10.1152/japplphysiol.00715.2014.

    Article  CAS  PubMed  Google Scholar 

  69. Mendelson M, Michallet AS, Monneret D, et al. Impact of exercise training without caloric restriction on inflammation, insulin resistance and visceral fat mass in obese adolescents. Pediatr Obes. 2015;10(4):311–9. https://doi.org/10.1111/ijpo.255.

    Article  CAS  PubMed  Google Scholar 

  70. Ipavec-Levasseur S, Croci I, Choquette S, et al. Effect of 1-h moderate-intensity aerobic exercise on intramyocellular lipids in obese men before and after a lifestyle intervention. Appl Physiol Nutr Metab. 2015;40(12):1262–8. https://doi.org/10.1139/apnm-2015-0258.

    Article  CAS  PubMed  Google Scholar 

  71. Tan S, Wang J, Cao L. Exercise training at the intensity of maximal fat oxidation in obese boys. Appl Physiol Nutr Metab. 2016;41(1):49–54. https://doi.org/10.1139/apnm-2015-0174.

    Article  CAS  PubMed  Google Scholar 

  72. Tan S, Wang J, Cao L, Guo Z, Wang Y. Positive effect of exercise training at maximal fat oxidation intensity on body composition and lipid metabolism in overweight middle-aged women. Clin Physiol Funct Imaging. 2016;36(3):225–30. https://doi.org/10.1111/cpf.12217.

    Article  CAS  PubMed  Google Scholar 

  73. Dandanell S, Præst CB, Søndergård SD, et al. Determination of the exercise intensity that elicits maximal fat oxidation in individuals with obesity. Appl Physiol Nutr Metab. 2017;42(4):405–12. https://doi.org/10.1139/apnm-2016-0518.

    Article  CAS  PubMed  Google Scholar 

  74. Dandanell S, Husted K, Amdisen S, et al. Influence of maximal fat oxidation on long-term weight loss maintenance in humans. J Appl Physiol (1985). 2017;123(1):267–74. https://doi.org/10.1152/japplphysiol.00270.2017.

    Article  CAS  PubMed  Google Scholar 

  75. Cancino Ramírez J, Soto Sánchez J, Zbinden Foncea H, Moreno González M, Leyton Dinamarca B, González RL. Cardiorespiratory fitness and fat oxidation during exercise as protective factors for insulin resistance in sedentary women with overweight or obesity. Nutr Hosp. 2018;35(2):312–7. https://doi.org/10.20960/nh.1279.

    Article  PubMed  Google Scholar 

  76. Drapier E, Cherif A, Richou M, Bughin F, Fedou C, Mercier J, Avignon A, Brun JF. Long term (3 years) weight loss after low-intensity endurance training targeted at the level of maximal muscular lipid oxidation. Integr Obes Diabetes. 2018;4:1–6.

    Google Scholar 

  77. Stein E, Silva IM, Dorneles GP, Lira FS, Romão P, Peres A. Reduced fat oxidation during exercise in post-menopausal overweight-obese women with higher lipid accumulation product index. Exp Clin Endocrinol Diabetes. 2020;128(8):556–62. https://doi.org/10.1055/a-0801-8730.

    Article  CAS  PubMed  Google Scholar 

  78. Cao L, Jiang Y, Li Q, Wang J, Tan S. Exercise training at maximal fat oxidation intensity for overweight or obese older women: a randomized study. J Sports Sci Med. 2019;18(3):413–8.

    PubMed  PubMed Central  Google Scholar 

  79. Emerenziani GP, Ferrari D, Marocco C, et al. Relationship between individual ventilatory threshold and maximal fat oxidation (MFO) over different obesity classes in women. PLoS ONE. 2019;14(4): e0215307. https://doi.org/10.1371/journal.pone.0215307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Sanchez-Delgado G, Ruiz JR, Castillo MJ. Metabolic rate in sedentary adults, following different exercise training interventions: the FIT-AGEING randomized controlled trial. Clin Nutr. 2020;39(11):3230–40. https://doi.org/10.1016/j.clnu.2020.02.001.

    Article  PubMed  Google Scholar 

  81. Amaro-Gahete FJ, Acosta FM, Migueles JH, Ponce González JG, Ruiz JR. Association of sedentary and physical activity time with maximal fat oxidation during exercise in sedentary adults. Scand J Med Sci Sports. 2020;30(9):1605–14. https://doi.org/10.1111/sms.13696.

    Article  PubMed  Google Scholar 

  82. Peric R, Nikolovski Z. Can metabolic thresholds be used as exercise markers in adult men with obesity? Comp Exerc Physiol. 2020;16:113–9.

    Article  Google Scholar 

  83. Brun JF, Myzia J, Bui G, de Mauverger ER, Mercier J. The weight-lowering effect of low intensity endurance training targeted on the level of maximal lipid oxidation (LIPOX MAX) persists over more than 6 years and is associated with improvements in body composition and lipid oxidation. Clin Nutr ESPEN. 2020;40:653. https://doi.org/10.1016/j.clnesp.2020.09.746.

    Article  Google Scholar 

  84. Brun JF, Hammoudi L, Gimet F, Noirez P, de Mauverger ER, Mercier J. Oxydation des lipides au cours de l’exercice : influence du sexe, de la corpulence et de l’âge à partir d’une base de données de 5258 calorimetries d’effort. Nutrition Clinique et Métabolisme. 2020;34(1):38. https://doi.org/10.1016/j.nupar.2020.02.239.

    Article  Google Scholar 

  85. Hammoudi L, Brun JF, Noirez P, Bui G, Chevalier C, Gimet F, Mercier J, de Mauverger RE. Effects of 2 years endurance training targeted at the level of maximal lipid oxidation on body composition. Sci Sport. 2020;35:350–7. https://doi.org/10.1016/j.scispo.2019.11.003.

    Article  Google Scholar 

  86. Kantorowicz M, Szymura J, Szygula Z, Kusmierczyk J, Maciejczyk M, Wiecek M. Nordic walking at maximal fat oxidation intensity decreases circulating asprosin and visceral obesity in women with metabolic disorders. Front Physiol. 2021;12: 726783. https://doi.org/10.3389/fphys.2021.726783.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Valdebenito GE. Maximal fat oxidation rate in women with sedentary behaviour and at-risk body fat percentage. Rev Chil Nutr. 2021;48:726–31. https://doi.org/10.4067/S0717-75182021000500726.

    Article  Google Scholar 

  88. Guedjati MR, Silini S. The effects of training in LIPOXmax zone on body composition in middle-age obese women. Sci Sport. 2021;36:193–201. https://doi.org/10.1016/j.scispo.2020.05.003.

    Article  Google Scholar 

  89. Cao J, Lei S, Zhao T, et al. Changes in fat oxidation and body composition after combined exercise intervention in sedentary obese Chinese adults. J Clin Med. 2022;11(4):1086. https://doi.org/10.3390/jcm11041086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Blasco-Lafarga C, Monferrer-Marín J, Roldán A, Monteagudo P, Chulvi-Medrano I. Metabolic flexibility and mechanical efficiency in women over-60. Front Physiol. 2022;13: 869534. https://doi.org/10.3389/fphys.2022.869534.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Picó-Sirvent I, Manresa-Rocamora A, Aracil-Marco A, Moya-Ramón M. A combination of aerobic exercise at Fatmax and low resistance training increases fat oxidation and maintains muscle mass, in women waiting for bariatric surgery. Obes Surg. 2022;32(4):1130–40. https://doi.org/10.1007/s11695-022-05897-1.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brun JF, Myzia J, Varlet-Marie E, Mercier J, de Mauverger ER. The weight-lowering effect of low-intensity endurance training targeted at the level of maximal lipid oxidation (LIPOX max) lasts for more than 8 years, and is associated with improvements in body composition and blood pressure. Sci Sports. 2022;37:603–9.

    Article  Google Scholar 

  93. Iannetta D, Inglis EC, Mattu AT, et al. A critical evaluation of current methods for exercise prescription in women and men. Med Sci Sports Exerc. 2020;52(2):466–73. https://doi.org/10.1249/MSS.0000000000002147.

    Article  PubMed  Google Scholar 

  94. Chávez-Guevara IA, Hernández-Torres RP, Trejo-Trejo M, Moreno-Brito V, González-Rodríguez E, Ramos-Jiménez A. Association among different aerobic threshold markers and FATmax in men with obesity. Res Q Exerc Sport. 2022. https://doi.org/10.1080/02701367.2022.2065235.

    Article  PubMed  Google Scholar 

  95. Macfarlane DJ. Automated metabolic gas analysis systems: a review. Sports Med. 2001;31(12):841–61. https://doi.org/10.2165/00007256-200131120-00002.

    Article  CAS  PubMed  Google Scholar 

  96. Mann T, Lamberts RP, Lambert MI. Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 2013;43(7):613–25. https://doi.org/10.1007/s40279-013-0045-x.

    Article  PubMed  Google Scholar 

  97. Bonaventura JM, Sharpe K, Knight E, Fuller KL, Tanner RK, Gore CJ. Reliability and accuracy of six hand-held blood lactate analysers. J Sports Sci Med. 2015;14(1):203–14.

    PubMed  PubMed Central  Google Scholar 

  98. Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35: 101454. https://doi.org/10.1016/j.redox.2020.101454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. San-Millán I. The key role of mitochondrial function in health and disease. Nutrients. 2023;12:782. https://doi.org/10.3390/antiox12040782.

    Article  CAS  Google Scholar 

  100. Brandou F, Savy-Pacaux AM, Marie J, Brun JF, Mercier J. Comparison of the type of substrate oxidation during exercise between pre and post pubertal markedly obese boys. Int J Sports Med. 2006;27(5):407–14. https://doi.org/10.1055/s-2005-865751.

    Article  CAS  PubMed  Google Scholar 

  101. Armstrong N, Barker AR. New insights in paediatric exercise metabolism. J Sport Health Sci. 2012;1(1):18–26. https://doi.org/10.1016/j.jshs.2011.12.001.

    Article  Google Scholar 

  102. Hackney AC, Viru M, VanBruggen M, Janson T, Karelson K, Viru A. Comparison of the hormonal responses to exhaustive incremental exercise in adolescent and young adult males. Arq Bras Endocrinol Metabol. 2011;55(3):213–8. https://doi.org/10.1590/s0004-27302011000300006.

    Article  PubMed  Google Scholar 

  103. Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol (1985). 2005;98(1):160–7. https://doi.org/10.1152/japplphysiol.00662.2003.

    Article  PubMed  Google Scholar 

  104. Cano A, Ventura L, Martinez G, et al. Analysis of sex-based differences in energy substrate utilization during moderate-intensity aerobic exercise. Eur J Appl Physiol. 2022;122(1):29–70. https://doi.org/10.1007/s00421-021-04802-5.

    Article  CAS  PubMed  Google Scholar 

  105. Achten J, Venables MC, Jeukendrup AE. Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metabolism. 2003;52(6):747–52. https://doi.org/10.1016/s0026-0495(03)00068-4.

    Article  CAS  PubMed  Google Scholar 

  106. Zakrzewski JK, Tolfrey K. Comparison of fat oxidation over a range of intensities during treadmill and cycling exercise in children. Eur J Appl Physiol. 2012;112(1):163–71. https://doi.org/10.1007/s00421-011-1965-5.

    Article  CAS  PubMed  Google Scholar 

  107. Baillot A, Chenail S, Barros Polita N, Simoneau M, Libourel M, Nazon E, Riesco E, Bond DS, Romain AJ. Physical activity motives, barriers, and preferences in people with obesity: a systematic review. PLoS ONE. 2021;16: 6 e0253114. https://doi.org/10.1371/journal.pone.0253114.

    Article  CAS  PubMed  Google Scholar 

  108. Davies CT, Few J, Foster KG, Sargeant AJ. Plasma catecholamine concentration during dynamic exercise involving different muscle groups. Eur J Appl Physiol Occup Physiol. 1974;32(3):195–206. https://doi.org/10.1007/BF00423215.

    Article  CAS  PubMed  Google Scholar 

  109. Chávez-Guevara IA, Hernández-Torres RP, González-Rodríguez E, Ramos-Jiménez A, Amaro-Gahete FJ. Biomarkers and genetic polymorphisms associated with maximal fat oxidation during physical exercise: implications for metabolic health and sports performance. Eur J Appl Physiol. 2022;122(8):1773–95. https://doi.org/10.1007/s00421-022-04936-0.

    Article  CAS  PubMed  Google Scholar 

  110. Bijker KE, de Groot G, Hollander AP. Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol. 2002;87(6):556–61. https://doi.org/10.1007/s00421-002-0663-8.

    Article  CAS  PubMed  Google Scholar 

  111. Edgerton VR, Smith JL, Simpson DR. Muscle fibre type populations of human leg muscles. Histochem J. 1975;7(3):259–66. https://doi.org/10.1007/BF01003594.

    Article  CAS  PubMed  Google Scholar 

  112. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(Suppl 1):S28–37. https://doi.org/10.1055/s-2004-830512.

    Article  CAS  PubMed  Google Scholar 

  113. Chenevière X, Malatesta D, Peters EM, Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc. 2009;41(8):1615–25. https://doi.org/10.1249/MSS.0b013e31819e2f91.

    Article  CAS  PubMed  Google Scholar 

  114. Demashkieh M, Dalan R, Burns SF. Cardiorespiratory fitness and fat oxidation during exercise in Chinese, Indian, and Malay men with elevated body mass index. Appl Physiol Nutr Metab. 2022;47(8):888–92. https://doi.org/10.1139/apnm-2022-0106.

    Article  CAS  PubMed  Google Scholar 

  115. Özgünen KT, Özdemir Ç, Korkmaz-Eryılmaz S, Kılcı A, Günaştı Ö, Kurdak SS. A comparison of the maximal fat oxidation rates of three different time periods in the Fatmax stage. J Sports Sci Med. 2019;18(1):44–51.

    PubMed  PubMed Central  Google Scholar 

  116. Bordenave S, Flavier S, Fédou C, Brun JF, Mercier J. Exercise calorimetry in sedentary patients: procedures based on short 3 min steps underestimate carbohydrate oxidation and overestimate lipid oxidation. Diabetes Metab. 2007;33(5):379–84. https://doi.org/10.1016/j.diabet.2007.04.003.

    Article  CAS  PubMed  Google Scholar 

  117. Rothschild JA, Kilding AE, Stewart T, Plews DJ. Factors influencing substrate oxidation during submaximal cycling: a modelling analysis. Sports Med. 2022;52(11):2775–95. https://doi.org/10.1007/s40279-022-01727-7.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fletcher G, Eves FF, Glover EI, et al. Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. Am J Clin Nutr. 2017;105(4):864–72. https://doi.org/10.3945/ajcn.116.133520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jurado-Fasoli L, Amaro-Gahete FJ, Merchan-Ramirez E, Labayen I, Ruiz JR. Relationships between diet and basal fat oxidation and maximal fat oxidation during exercise in sedentary adults. Nutr Metab Cardiovasc Dis. 2021;31(4):1087–101. https://doi.org/10.1016/j.numecd.2020.11.021.

    Article  CAS  PubMed  Google Scholar 

  120. McSwiney FT, Fusco B, McCabe L, et al. Changes in body composition and substrate utilization after a short-term ketogenic diet in endurance-trained males. Biol Sport. 2021;38(1):145–52. https://doi.org/10.5114/biolsport.2020.98448.

    Article  PubMed  Google Scholar 

  121. Prins P, Noakes T, Buxton J, Welton G, Raabe A, Scott K, Atwell A, Haley S, Esbenshade N, Abraham J. High fat diet improves metabolic flexibility during progressive exercise to exhaustion (VO2 max testing) and during 5km running time trials. Biol Sport. 2023. https://doi.org/10.5114/biolsport.2023.116452.

    Article  PubMed  Google Scholar 

  122. Gmada N, Marzouki H, Haj Sassi R, Tabka Z, Shephard R, Brun JF, Bouhlel E. Relative and absolute reliability of the crossover and maximum fat oxidation points and their relationship to ventilatory threshold. Sci Sports. 2013;28(4):e99–105. https://doi.org/10.1016/j.scispo.2012.04.007.

    Article  Google Scholar 

  123. Croci I, Borrani F, Byrne NM, et al. Reproducibility of Fatmax and fat oxidation rates during exercise in recreationally trained males. PLoS ONE. 2014;9(6): e97930. https://doi.org/10.1371/journal.pone.0097930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brun JF, Romain AJ, Guiraudou M, Fédou Ch, Mercier J. Stability over time of the level of maximal lipid oxidation during exercise. Sci Sports. 2014;29(3):168–71. https://doi.org/10.1016/j.scispo.2013.11.001.

    Article  Google Scholar 

  125. De Souza SR, Carlsohn A, Langen G, Mayer F, Scharhag-Rosenberger F. Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry. J Int Soc Sports Nutr. 2016;13:4. https://doi.org/10.1186/s12970-016-0115-1.

    Article  Google Scholar 

  126. Chrzanowski-Smith OJ, Edinburgh RM, Thomas MP, et al. The day-to-day reliability of peak fat oxidation and FATMAX. Eur J Appl Physiol. 2020;120(8):1745–59. https://doi.org/10.1007/s00421-020-04397-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Robles-González L, Gutiérrez-Hellín J, Aguilar-Navarro M, et al. Inter-day reliability of resting metabolic rate and maximal fat oxidation during exercise in healthy men using the Ergostik gas analyzer. Nutrients. 2021;13(12):4308. https://doi.org/10.3390/nu13124308.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Saéz-Olivares S, Pino-Zuñiga J, Gálvez-Olivares M, Cancino-López J. maximal fat oxidation by heart rate variability in physically active subjects. Apunt Educ Fis y Deported. 2019;35:11–122. https://doi.org/10.5672/apunts.2014-0983.es.(2019/4).138.09.

    Article  Google Scholar 

  129. Peric R, Nikolovski Z, Meucci M, Tadger P, Ferri Marini C, Amaro-Gahete FJ. A systematic review and meta-analysis on the association and differences between aerobic threshold and point of optimal fat oxidation. Int J Environ Res Public Health. 2022;19(11):6479. https://doi.org/10.3390/ijerph19116479.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Grotle AK, Macefield VG, Farquhar WB, O’Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci. 2020;228: 102698. https://doi.org/10.1016/j.autneu.2020.102698.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ferri Marini C, Tadger P, Chávez-Guevara IA, et al. Factors determining the agreement between aerobic threshold and point of maximal fat oxidation: follow-up on a systematic review and meta-analysis on association. Int J Environ Res Public Health. 2022;20(1):453. https://doi.org/10.3390/ijerph20010453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Beaver WL, Wasserman K, Whipp BJ. Improved detection of lactate threshold during exercise using a log-log transformation. J Appl Physiol (1985). 1985;59(6):1936–40. https://doi.org/10.1152/jappl.1985.59.6.1936.

    Article  CAS  PubMed  Google Scholar 

  133. Thorogood A, Mottillo S, Shimony A, et al. Isolated aerobic exercise and weight loss: a systematic review and meta-analysis of randomized controlled trials. Am J Med. 2011;124(8):747–55. https://doi.org/10.1016/j.amjmed.2011.02.037.

    Article  PubMed  Google Scholar 

  134. Brun JF, Romain AJ, Sferlazza A, Fédou C, de Mauverger ER, Mercier J. Which individuals become fatter when they practice exercise? Sci Sports. 2016;31:214–8. https://doi.org/10.1016/j.scispo.2016.06.001.

    Article  Google Scholar 

  135. Myzia J, Brun JF, Varlet-Marie E, Bui G, de Mauverger ER, Mercier J. Endurance training minimizing carbohydrate oxidation by targeting the optimal level of fat/carbohydrate oxidation ratio (OLORFOX). Sci Sports. 2022;37:624–8. https://doi.org/10.1016/j.scispo.2022.03.003.

    Article  Google Scholar 

  136. Türk Y, Theel W, Kasteleyn MJ, et al. High intensity training in obesity: a Meta-analysis. Obes Sci Pract. 2017;3(3):258–71. https://doi.org/10.1002/osp4.109.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Atakan MM, Guzel Y, Shrestha N, et al. Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: a systematic review and meta-analysis. Br J Sports Med. 2022. https://doi.org/10.1136/bjsports-2021-105181.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Florent Besnier, Dr Ratko Peric, Dr Shaea Alkahtani and Professor Jordi Monferrer who kindly provided supplementary data regarding some of their studies and gave their consent for publication in this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isaac A. Chávez-Guevara or Jean Frederic Brun.

Ethics declarations

Funding

IACG was supported by a Ph.D scholarship (859438) from the Consejo Nacional de Ciencia y Tecnología (CONACyT). However, the institution did not participate in the manuscript preparation. No other sources of funding were used to assist in the preparation of this article.

Conflict of interest

The authors declare that they have no conflicts of interests relevant to the content of this review.

Availability of data and material

The dataset supporting the findings reported in this review are available upon reasonable request from the lead author.

Author contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by ARJ, IACG and JFB. The first draft of the manuscript was written by IACG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Guevara, I.A., Amaro-Gahete, F.J., Ramos-Jiménez, A. et al. Toward Exercise Guidelines for Optimizing Fat Oxidation During Exercise in Obesity: A Systematic Review and Meta-Regression. Sports Med 53, 2399–2416 (2023). https://doi.org/10.1007/s40279-023-01897-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-023-01897-y

Navigation