Skip to main content
Log in

Factors Influencing AMPK Activation During Cycling Exercise: A Pooled Analysis and Meta-Regression

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

The 5ʹ adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that is activated by increases in the cellular AMP/adenosine diphosphate:adenosine triphosphate (ADP:ATP) ratios and plays a key role in metabolic adaptations to endurance training. The degree of AMPK activation during exercise can be influenced by many factors that impact on cellular energetics, including exercise intensity, exercise duration, muscle glycogen, fitness level, and nutrient availability. However, the relative importance of these factors for inducing AMPK activation remains unclear, and robust relationships between exercise-related variables and indices of AMPK activation have not been established.

Objectives

The purpose of this analysis was to (1) investigate correlations between factors influencing AMPK activation and the magnitude of change in AMPK activity during cycling exercise, (2) investigate correlations between commonly reported measures of AMPK activation (AMPK-α2 activity, phosphorylated (p)-AMPK, and p-acetyl coenzyme A carboxylase (p-ACC), and (3) formulate linear regression models to determine the most important factors for AMPK activation during exercise.

Methods

Data were pooled from 89 studies, including 982 participants (93.8% male, maximal oxygen consumption [\(V{\text{O}}_{2\max }\)] 51.9 ± 7.8 mL kg−1 min−1). Pearson’s correlation analysis was performed to determine relationships between effect sizes for each of the primary outcome markers (AMPK-α2 activity, p-AMPK, p-ACC) and factors purported to influence AMPK signaling (muscle glycogen, carbohydrate ingestion, exercise duration and intensity, fitness level, and muscle metabolites). General linear mixed-effect models were used to examine which factors influenced AMPK activation.

Results

Significant correlations (r = 0.19–0.55, p < .05) with AMPK activity were found between end-exercise muscle glycogen, exercise intensity, and muscle metabolites phosphocreatine, creatine, and free ADP. All markers of AMPK activation were significantly correlated, with the strongest relationship between AMPK-α2 activity and p-AMPK (r = 0.56, p < 0.001). The most important predictors of AMPK activation were the muscle metabolites and exercise intensity.

Conclusion

Muscle glycogen, fitness level, exercise intensity, and exercise duration each influence AMPK activity during exercise when all other factors are held constant. However, disrupting cellular energy charge is the most influential factor for AMPK activation during endurance exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gowans GJ, Hardie DG. AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans. 2014;42(1):71–5. https://doi.org/10.1042/BST20130244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kjobsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmoller C, et al. AMPK in skeletal muscle function and metabolism. FASEB J. 2018;32(4):1741–77. https://doi.org/10.1096/fj.201700442R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89(3):1025–78. https://doi.org/10.1152/physrev.00011.2008.

    Article  CAS  PubMed  Google Scholar 

  4. Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, et al. Exercise induces isoform-specific increase in 5ʹAMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000;273(3):1150–5. https://doi.org/10.1006/bbrc.2000.3073.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Z-P, McConell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab. 2000;279(5):E1202–6.

    Article  CAS  Google Scholar 

  6. Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5ʹ-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000;528(Pt 1):221–6. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00221.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Treebak JT, Birk JB, Rose AJ, Kiens B, Richter EA, Wojtaszewski JF. AS160 phosphorylation is associated with activation of α2β2γ1-but not α2β2γ3-AMPK trimeric complex in skeletal muscle during exercise in humans. Am J Physiol Endocrinol Metab. 2007;292(3):E715–22.

    Article  CAS  Google Scholar 

  8. Janzen NR, Whitfield J, Hoffman NJ. Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19113344.

    Article  PubMed  PubMed Central  Google Scholar 

  9. McConell GK, Wadley GD, Le Plastrier K, Linden KC. Skeletal muscle Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ∼ 65% in endurance trained men. J Physiol. 2020;598(18):3859–70.

    Article  CAS  Google Scholar 

  10. Bartlett JD, Hawley JA, Morton JP. Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci. 2015;15(1):3–12. https://doi.org/10.1080/17461391.2014.920926.

    Article  PubMed  Google Scholar 

  11. Chen ZP, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes. 2003;52(9):2205–12. https://doi.org/10.2337/diabetes.52.9.2205.

    Article  CAS  PubMed  Google Scholar 

  12. Wojtaszewski JF, Mourtzakis M, Hillig T, Saltin B, Pilegaard H. Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun. 2002;298(3):309–16. https://doi.org/10.1016/s0006-291x(02)02465-8.

    Article  CAS  PubMed  Google Scholar 

  13. Musi N, Fujii N, Hirshman MF, Ekberg I, Froberg S, Ljungqvist O, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001;50(5):921–7. https://doi.org/10.2337/diabetes.50.5.921.

    Article  CAS  PubMed  Google Scholar 

  14. Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, et al. Regulation of 5′ AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab. 2003;284(4):E813–22.

    Article  CAS  Google Scholar 

  15. Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JF, et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab. 2005;288(1):E133–42. https://doi.org/10.1152/ajpendo.00379.2004.

    Article  CAS  PubMed  Google Scholar 

  16. Steinberg GR, Watt MJ, McGee SL, Chan S, Hargreaves M, Febbraio MA, et al. Reduced glycogen availability is associated with increased AMPKα2 activity, nuclear AMPKα2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl Physiol Nutr Metab. 2006;31(3):302–12.

    Article  CAS  Google Scholar 

  17. Impey SG, Hammond KM, Shepherd SO, Sharples AP, Stewart C, Limb M, et al. Fuel for the work required: a practical approach to amalgamating train-low paradigms for endurance athletes. Physiol Rep. 2016. https://doi.org/10.14814/phy2.12803.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hearris MA, Hammond KM, Seaborne RA, Stocks B, Shepherd SO, Philp A, et al. Graded reductions in preexercise muscle glycogen impair exercise capacity but do not augment skeletal muscle cell signaling: Implications for CHO periodization. J Appl Physiol. 2019;126(6):1587–97.

    Article  CAS  Google Scholar 

  19. Hearris MA, Owens DJ, Strauss JA, Shepherd SO, Sharples AP, Morton JP, et al. Graded reductions in pre-exercise glycogen concentration do not augment exercise-induced nuclear AMPK and PGC-1α protein content in human muscle. Exp Physiol. 2020;105(11):1882–94. https://doi.org/10.1113/ep088866.

    Article  CAS  PubMed  Google Scholar 

  20. McConell GK, Lee-Young RS, Chen ZP, Stepto NK, Huynh NN, Stephens TJ, et al. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol. 2005;568(Pt 2):665–76. https://doi.org/10.1113/jphysiol.2005.089839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wadley GD, Lee-Young RS, Canny BJ, Wasuntarawat C, Chen ZP, Hargreaves M, et al. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab. 2006;290(4):E694-702. https://doi.org/10.1152/ajpendo.00464.2005.

    Article  CAS  PubMed  Google Scholar 

  22. Coccimiglio IF, Clarke DC. ADP is the dominant controller of AMP-activated protein kinase activity dynamics in skeletal muscle during exercise. PLoS Comput Biol. 2020;16(7): e1008079. https://doi.org/10.1371/journal.pcbi.1008079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee-Young RS, Palmer MJ, Linden KC, LePlastrier K, Canny BJ, Hargreaves M, et al. Carbohydrate ingestion does not alter skeletal muscle AMPK signaling during exercise in humans. Am J Physiol Endocrinol Metab. 2006;291(3):E566–73.

    Article  CAS  Google Scholar 

  24. Stephens TJ, Chen ZP, Canny BJ, Michell BJ, Kemp BE, McConell GK. Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab. 2002;282(3):E688–94. https://doi.org/10.1152/ajpendo.00101.2001.

    Article  CAS  PubMed  Google Scholar 

  25. Willows R, Sanders MJ, Xiao B, Patel BR, Martin SR, Read J, et al. Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Biochem J. 2017;474(17):3059–73.

    Article  CAS  Google Scholar 

  26. Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J. 2000;345(3):437–43.

    Article  CAS  Google Scholar 

  27. Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D. Dissecting the role of 5ʹ-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem. 2006;281(43):32207–16. https://doi.org/10.1074/jbc.M606357200.

    Article  CAS  PubMed  Google Scholar 

  28. Hardie DG. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Proc Nutr Soc. 2011;70(1):92–9. https://doi.org/10.1017/S0029665110003915.

    Article  CAS  PubMed  Google Scholar 

  29. Birk JB, Wojtaszewski JF. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. J Physiol. 2006;577(Pt 3):1021–32. https://doi.org/10.1113/jphysiol.2006.120972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pinkosky SL, Scott JW, Desjardins EM, Smith BK, Day EA, Ford RJ, et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK beta1 isoforms. Nat Metab. 2020;2(9):873–81. https://doi.org/10.1038/s42255-020-0245-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251.

    Article  CAS  Google Scholar 

  32. Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol (1985). 2002;92(6):2475–82. https://doi.org/10.1152/japplphysiol.00071.2002.

    Article  CAS  Google Scholar 

  33. Preobrazenski N, Islam H, Drouin PJ, Bonafiglia JT, Tschakovsky ME, Gurd BJ. A novel gravity-induced blood flow restriction model augments ACC phosphorylation and PGC-1alpha mRNA in human skeletal muscle following aerobic exercise: a randomized crossover study. Appl Physiol Nutr Metab. 2020;45(6):641–9. https://doi.org/10.1139/apnm-2019-0641.

    Article  CAS  PubMed  Google Scholar 

  34. Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1303–10. https://doi.org/10.1152/ajpregu.00538.2010.

    Article  CAS  PubMed  Google Scholar 

  35. Combes A, Dekerle J, Webborn N, Watt P, Bougault V, Daussin FN. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Physiol Rep. 2015. https://doi.org/10.14814/phy2.12462.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013;18(4):556–66. https://doi.org/10.1016/j.cmet.2013.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuentes T, Ponce-Gonzalez JG, Morales-Alamo D, de Torres-Peralta R, Santana A, De Pablos-Velasco P, et al. Isoinertial and isokinetic sprints: muscle signalling. Int J Sports Med. 2013;34(4):285–92. https://doi.org/10.1055/s-0032-1312583.

    Article  CAS  PubMed  Google Scholar 

  38. Fuentes T, Guerra B, Ponce-Gonzalez JG, Morales-Alamo D, Guadalupe-Grau A, Olmedillas H, et al. Skeletal muscle signaling response to sprint exercise in men and women. Eur J Appl Physiol. 2012;112(5):1917–27. https://doi.org/10.1007/s00421-011-2164-0.

    Article  CAS  PubMed  Google Scholar 

  39. Guerra B, Guadalupe-Grau A, Fuentes T, Ponce-Gonzalez JG, Morales-Alamo D, Olmedillas H, et al. SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol. 2010;109(4):731–43. https://doi.org/10.1007/s00421-010-1413-y.

    Article  CAS  PubMed  Google Scholar 

  40. Areta JL, Hopkins WG. Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med. 2018;48(9):2091–102. https://doi.org/10.1007/s40279-018-0941-1.

    Article  PubMed  Google Scholar 

  41. Knechtle B, Muller G, Willmann F, Kotteck K, Eser P, Knecht H. Fat oxidation in men and women endurance athletes in running and cycling. Int J Sports Med. 2004;25(1):38–44. https://doi.org/10.1055/s-2003-45232.

    Article  CAS  PubMed  Google Scholar 

  42. Kaminsky LA, Arena R, Myers J. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: data from the fitness registry and the importance of exercise national database. Mayo Clin Proc. 2015;90(11):1515–23. https://doi.org/10.1016/j.mayocp.2015.07.026.

    Article  PubMed  Google Scholar 

  43. Morales-Alamo D, Ponce-Gonzalez JG, Guadalupe-Grau A, Rodriguez-Garcia L, Santana A, Cusso MR, et al. Increased oxidative stress and anaerobic energy release, but blunted Thr172-AMPKalpha phosphorylation, in response to sprint exercise in severe acute hypoxia in humans. J Appl Physiol (1985). 2012;113(6):917–28. https://doi.org/10.1152/japplphysiol.00415.2012.

    Article  CAS  Google Scholar 

  44. Betteridge S, Bescós R, Martorell M, Pons A, Garnham AP, Stathis CC, et al. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males. J Appl Physiol. 2016;120(4):391–8.

    Article  CAS  Google Scholar 

  45. Morales-Alamo D, Ponce-Gonzalez JG, Guadalupe-Grau A, Rodriguez-Garcia L, Santana A, Cusso R, et al. Critical role for free radicals on sprint exercise-induced CaMKII and AMPKalpha phosphorylation in human skeletal muscle. J Appl Physiol (1985). 2013;114(5):566–77. https://doi.org/10.1152/japplphysiol.01246.2012.

    Article  CAS  Google Scholar 

  46. Linden KC, Wadley GD, Garnham AP, McConell GK. Effect of l-arginine infusion on glucose disposal during exercise in humans. Med Sci Sports Exerc. 2011;43(9):1626–34. https://doi.org/10.1249/MSS.0b013e318212a317.

    Article  CAS  PubMed  Google Scholar 

  47. Bentley DJ, Newell J, Bishop D. Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med. 2007;37(7):575–86. https://doi.org/10.2165/00007256-200737070-00002.

    Article  PubMed  Google Scholar 

  48. Adami A, Sivieri A, Moia C, Perini R, Ferretti G. Effects of step duration in incremental ramp protocols on peak power and maximal oxygen consumption. Eur J Appl Physiol. 2013;113(10):2647–53. https://doi.org/10.1007/s00421-013-2705-9.

    Article  PubMed  Google Scholar 

  49. Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PLoS ONE. 2018;13(7):e0199794.

    Article  Google Scholar 

  50. Hugh MR. Why peak power is higher at the end of steeper ramps: an explanation based on the “critical power” concept. J Sports Sci. 2011;29(3):307–9.

    Article  Google Scholar 

  51. Granata C, Jamnick NA, Bishop DJ. Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Med. 2018;7:1–19.

    Google Scholar 

  52. Hawley JA, Noakes TD. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol. 1992;65(1):79–83. https://doi.org/10.1007/BF01466278.

    Article  CAS  PubMed  Google Scholar 

  53. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  54. Calcagno V, de Mazancourt C. glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw. 2010;34(12):1–29.

    Article  Google Scholar 

  55. Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol. 2011;65(1):23–35.

    Article  Google Scholar 

  56. Sheather S. A modern approach to regression with R. Springer Science & Business Media; 2009.

    Book  Google Scholar 

  57. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.2–1. 2020. https://CRAN.R-project.org/package=emmeans. Accessed 3 Feb 2021.

  58. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133–42.

    Article  Google Scholar 

  59. Kim S. ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods. 2015;22(6):665–74. https://doi.org/10.5351/CSAM.2015.22.6.665.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Apro W, Moberg M, Hamilton DL, Ekblom B, van Hall G, Holmberg HC, et al. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am J Physiol Endocrinol Metab. 2015;308(6):E470–81. https://doi.org/10.1152/ajpendo.00486.2014.

    Article  CAS  PubMed  Google Scholar 

  61. Clark SA, Chen Z-P, Murphy KT, Aughey R, McKenna M, Kemp BE, et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286(5):E737–43.

    Article  CAS  Google Scholar 

  62. Kristensen DE, Albers PH, Prats C, Baba O, Birk JB, Wojtaszewski JF. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J Physiol. 2015;593(8):2053–69. https://doi.org/10.1113/jphysiol.2014.283267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee-Young RS, Koufogiannis G, Canny BJ, McConell GK. Acute exercise does not cause sustained elevations in AMPK signaling or expression. Med Sci Sports Exerc. 2008;40(8):1490–4. https://doi.org/10.1249/MSS.0b013e318173a037.

    Article  CAS  PubMed  Google Scholar 

  64. McGee SL, Fairlie E, Garnham AP, Hargreaves M. Exercise-induced histone modifications in human skeletal muscle. J Physiol. 2009;587(Pt 24):5951–8. https://doi.org/10.1113/jphysiol.2009.181065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mortensen B, Hingst JR, Frederiksen N, Hansen RW, Christiansen CS, Iversen N, et al. Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab. 2013;304(12):E1379–90. https://doi.org/10.1152/ajpendo.00295.2012.

    Article  CAS  PubMed  Google Scholar 

  66. Nielsen JN, Wojtaszewski JF, Haller RG, Hardie DG, Kemp BE, Richter EA, et al. Role of 5ʹAMP-activated protein kinase in glycogen synthase activity and glucose utilization: insights from patients with McArdle’s disease. J Physiol. 2002;541(Pt 3):979–89. https://doi.org/10.1113/jphysiol.2002.018044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nielsen JN, Mustard KJ, Graham DA, Yu H, MacDonald CS, Pilegaard H, et al. 5ʹ-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol (1985). 2003;94(2):631–41. https://doi.org/10.1152/japplphysiol.00642.2002.

    Article  CAS  Google Scholar 

  68. Roepstorff C, Thiele M, Hillig T, Pilegaard H, Richter EA, Wojtaszewski JF, et al. Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol. 2006;574(1):125–38.

    Article  CAS  Google Scholar 

  69. Yeo WK, Lessard SJ, Chen Z-P, Garnham AP, Burke LM, Rivas DA, et al. Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J Appl Physiol. 2008;105(5):1519–26.

    Article  CAS  Google Scholar 

  70. Yu M, Stepto NK, Chibalin AV, Fryer LG, Carling D, Krook A, et al. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J Physiol. 2003;546(Pt 2):327–35. https://doi.org/10.1113/jphysiol.2002.034223.

    Article  CAS  PubMed  Google Scholar 

  71. Kjobsted R, Pedersen AJ, Hingst JR, Sabaratnam R, Birk JB, Kristensen JM, et al. Intact regulation of the AMPK signaling network in response to exercise and insulin in skeletal muscle of male patients with type 2 diabetes: illumination of AMPK activation in recovery from exercise. Diabetes. 2016;65(5):1219–30. https://doi.org/10.2337/db15-1034.

    Article  CAS  PubMed  Google Scholar 

  72. van Loon LJ, Thomason-Hughes M, Constantin-Teodosiu D, Koopman R, Greenhaff PL, Hardie DG, et al. Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans. Am J Physiol Endocrinol Metab. 2005;289(3):E482–93. https://doi.org/10.1152/ajpendo.00092.2005.

    Article  CAS  PubMed  Google Scholar 

  73. Puype J, Ramaekers M, Van Thienen R, Deldicque L, Hespel P. No effect of dietary nitrate supplementation on endurance training in hypoxia. Scand J Med Sci Sports. 2015;25(2):234–41.

    Article  CAS  Google Scholar 

  74. Allan R, Sharples AP, Close GL, Drust B, Shepherd SO, Dutton J, et al. Postexercise cold water immersion modulates skeletal muscle PGC-1alpha mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation. J Appl Physiol (1985). 2017;123(2):451–9. https://doi.org/10.1152/japplphysiol.00096.2017.

    Article  CAS  Google Scholar 

  75. Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295(6):E1427–38. https://doi.org/10.1152/ajpendo.90428.2008.

    Article  CAS  PubMed  Google Scholar 

  76. Brandt N, Gunnarsson TP, Hostrup M, Tybirk J, Nybo L, Pilegaard H, et al. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1alpha mRNA response in human skeletal muscle. Physiol Rep. 2016. https://doi.org/10.14814/phy2.12844.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Camera DM, Edge J, Short MJ, Hawley JA, Coffey VG. Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc. 2010;42(10):1843–52. https://doi.org/10.1249/MSS.0b013e3181d964e4.

    Article  CAS  PubMed  Google Scholar 

  78. Cochran AJ, Little JP, Tarnopolsky MA, Gibala MJ. Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. J Appl Physiol (1985). 2010;108(3):628–36. https://doi.org/10.1152/japplphysiol.00659.2009.

    Article  CAS  Google Scholar 

  79. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20(1):190–2. https://doi.org/10.1096/fj.05-4809fje.

    Article  CAS  PubMed  Google Scholar 

  80. Dahl MA, Areta JL, Jeppesen PB, Birk JB, Johansen EI, Ingemann-Hansen T, et al. Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation. J Appl Physiol (1985). 2020;129(2):297–310. https://doi.org/10.1152/japplphysiol.00817.2019.

    Article  CAS  Google Scholar 

  81. De Bock K, Richter EA, Russell A, Eijnde BO, Derave W, Ramaekers M, et al. Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. J Physiol. 2005;564(2):649–60.

    Article  Google Scholar 

  82. De Groote E, Britto FA, Balan E, Warnier G, Thissen JP, Nielens H, et al. Effect of hypoxic exercise on glucose tolerance in healthy and pre-diabetic adults. Am J Physiol Endocrinol Metab. 2020. https://doi.org/10.1152/ajpendo.00263.2020.

    Article  PubMed  Google Scholar 

  83. Edinburgh RM, Hengist A, Smith HA, Travers RL, Koumanov F, Betts JA, et al. Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. Am J Physiol Endocrinol Metab. 2018;315(5):E1062–74. https://doi.org/10.1152/ajpendo.00163.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;588(10):1779–90.

    Article  CAS  Google Scholar 

  85. Fiorenza M, Gunnarsson TP, Hostrup M, Iaia FM, Schena F, Pilegaard H, et al. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol. 2018;596(14):2823–40. https://doi.org/10.1113/JP275972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J Appl Physiol. 2009;106(3):929–34.

    Article  CAS  Google Scholar 

  87. Iversen N, Krustrup P, Rasmussen HN, Rasmussen UF, Saltin B, Pilegaard H. Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly. Exp Gerontol. 2011;46(8):670–8. https://doi.org/10.1016/j.exger.2011.03.004.

    Article  CAS  PubMed  Google Scholar 

  88. Little JP, Safdar A, Cermak N, Tarnopolsky MA, Gibala MJ. Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R912–7. https://doi.org/10.1152/ajpregu.00409.2009.

    Article  CAS  PubMed  Google Scholar 

  89. Merry TL, Wadley GD, Stathis CG, Garnham AP, Rattigan S, Hargreaves M, et al. N-Acetylcysteine infusion does not affect glucose disposal during prolonged moderate-intensity exercise in humans. J Physiol. 2010;588(Pt 9):1623–34. https://doi.org/10.1113/jphysiol.2009.184333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Metcalfe RS, Koumanov F, Ruffino JS, Stokes KA, Holman GD, Thompson D, et al. Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT). Eur J Appl Physiol. 2015;115(11):2321–34. https://doi.org/10.1007/s00421-015-3217-6.

    Article  CAS  PubMed  Google Scholar 

  91. Rose AJ, Bisiani B, Vistisen B, Kiens B, Richter EA. Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R326–33. https://doi.org/10.1152/ajpregu.90806.2008.

    Article  CAS  PubMed  Google Scholar 

  92. Rose AJ, Broholm C, Kiillerich K, Finn SG, Proud CG, Rider MH, et al. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol. 2005;569(Pt 1):223–8. https://doi.org/10.1113/jphysiol.2005.097154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schwalm C, Jamart C, Benoit N, Naslain D, Premont C, Prevet J, et al. Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB J. 2015;29(8):3515–26. https://doi.org/10.1096/fj.14-267187.

    Article  CAS  PubMed  Google Scholar 

  94. Scribbans TD, Edgett BA, Vorobej K, Mitchell AS, Joanisse SD, Matusiak JB, et al. Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. PLoS ONE. 2014;9(6): e98119. https://doi.org/10.1371/journal.pone.0098119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stocks B, Dent JR, Ogden HB, Zemp M, Philp A. Postexercise skeletal muscle signaling responses to moderate- to high-intensity steady-state exercise in the fed or fasted state. Am J Physiol Endocrinol Metab. 2019;316(2):E230–8. https://doi.org/10.1152/ajpendo.00311.2018.

    Article  CAS  PubMed  Google Scholar 

  96. Taylor CW, Ingham SA, Hunt JE, Martin NR, Pringle JS, Ferguson RA. Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1alpha and VEGF mRNA expression in trained individuals. Eur J Appl Physiol. 2016;116(8):1445–54. https://doi.org/10.1007/s00421-016-3402-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Taylor C, Bartlett JD, van de Graaf CS, Louhelainen J, Coyne V, Iqbal Z, et al. Protein ingestion does not impair exercise-induced AMPK signalling when in a glycogen-depleted state: implications for train-low compete-high. Eur J Appl Physiol. 2013;113(6):1457–68.

    Article  CAS  Google Scholar 

  98. Yeo WK, McGee SL, Carey AL, Paton CD, Garnham AP, Hargreaves M, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95(2):351–8. https://doi.org/10.1113/expphysiol.2009.049353.

    Article  CAS  PubMed  Google Scholar 

  99. Brandt N, Gunnarsson TP, Bangsbo J, Pilegaard H. Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiol Rep. 2018;6(7): e13651. https://doi.org/10.14814/phy2.13651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pedersen AJ, Hingst JR, Friedrichsen M, Kristensen JM, Hojlund K, Wojtaszewski JF. Dysregulation of muscle glycogen synthase in recovery from exercise in type 2 diabetes. Diabetologia. 2015;58(7):1569–78. https://doi.org/10.1007/s00125-015-3582-z.

    Article  CAS  PubMed  Google Scholar 

  101. Lane SC, Camera DM, Lassiter DG, Areta JL, Bird SR, Yeo WK, et al. Effects of sleeping with reduced carbohydrate availability on acute training responses. J Appl Physiol (1985). 2015;119(6):643–55. https://doi.org/10.1152/japplphysiol.00857.2014.

    Article  CAS  Google Scholar 

  102. Percival ME, Martin BJ, Gillen JB, Skelly LE, MacInnis MJ, Green AE, et al. Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle. J Appl Physiol. 2015;119(11):1303–12.

    Article  CAS  Google Scholar 

  103. Beelen M, Zorenc A, Pennings B, Senden JM, Kuipers H, van Loon LJ. Impact of protein coingestion on muscle protein synthesis during continuous endurance type exercise. Am J Physiol Endocrinol Metab. 2011;300(6):E945–54. https://doi.org/10.1152/ajpendo.00446.2010.

    Article  CAS  PubMed  Google Scholar 

  104. Gudiksen A, Bertholdt L, Stankiewicz T, Tybirk J, Plomgaard P, Bangsbo J, et al. Effects of training status on PDH regulation in human skeletal muscle during exercise. Pflugers Arch. 2017;469(12):1615–30. https://doi.org/10.1007/s00424-017-2019-6.

    Article  CAS  PubMed  Google Scholar 

  105. Leckey JJ, Hoffman NJ, Parr EB, Devlin BL, Trewin AJ, Stepto NK, et al. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. FASEB J. 2018;32(6):2979–91. https://doi.org/10.1096/fj.201700993R.

    Article  CAS  PubMed  Google Scholar 

  106. Van Proeyen K, De Bock K, Hespel P. Training in the fasted state facilitates re-activation of eEF2 activity during recovery from endurance exercise. Eur J Appl Physiol. 2011;111(7):1297–305. https://doi.org/10.1007/s00421-010-1753-7.

    Article  PubMed  Google Scholar 

  107. Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol (1985). 2011;110(1):236–45.

    Article  Google Scholar 

  108. Van Proeyen K, Szlufcik K, Nielens H, Deldicque L, Van Dyck R, Ramaekers M, et al. High-fat diet overrules the effects of training on fiber-specific intramyocellular lipid utilization during exercise. J Appl Physiol (1985). 2011;111(1):108–16. https://doi.org/10.1152/japplphysiol.01459.2010.

    Article  Google Scholar 

  109. Andrade-Souza VA, Ghiarone T, Sansonio A, Santos Silva KA, Tomazini F, Arcoverde L, et al. Exercise twice-a-day potentiates markers of mitochondrial biogenesis in men. FASEB J. 2020;34(1):1602–19. https://doi.org/10.1096/fj.201901207RR.

    Article  CAS  PubMed  Google Scholar 

  110. Stocks B, Ashcroft SP, Joanisse S, Elhassan YS, Lavery GG, Dansereau LC, et al. Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise. J Physiol. 2021;599(5):1513–31.

    Article  CAS  Google Scholar 

  111. Watt MJ, Holmes AG, Pinnamaneni SK, Garnham AP, Steinberg GR, Kemp BE, et al. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab. 2006;290(3):E500–8. https://doi.org/10.1152/ajpendo.00361.2005.

    Article  CAS  PubMed  Google Scholar 

  112. Nellemann B, Sondergaard E, Jensen J, Pedersen SB, Jessen N, Jorgensen JO, et al. Kinetics and utilization of lipid sources during acute exercise and acipimox. Am J Physiol Endocrinol Metab. 2014;307(2):E199-208. https://doi.org/10.1152/ajpendo.00043.2014.

    Article  CAS  PubMed  Google Scholar 

  113. Kalsen A, Hostrup M, Karlsson S, Hemmersbach P, Bangsbo J, Backer V. Effect of inhaled terbutaline on substrate utilization and 300-kcal time trial performance. J Appl Physiol (1985). 2014;117(10):1180–7. https://doi.org/10.1152/japplphysiol.00635.2014.

    Article  CAS  Google Scholar 

  114. Fell JM, Hearris MA, Ellis DG, Moran JEP, Jevons EFP, Owens DJ, et al. Carbohydrate improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle. J Physiol. 2021. https://doi.org/10.1113/JP281127.

    Article  PubMed  Google Scholar 

  115. Margolis LM, Wilson MA, Whitney CC, Carrigan CT, Murphy NE, Hatch-McChesney A, et al. Initiating aerobic exercise with low glycogen content reduces markers of myogenesis but not mTORC1 signaling. J Int Soc Sports Nutr. 2021;18(1):1–8.

    Article  Google Scholar 

  116. Trewin AJ, Parker L, Shaw CS, Hiam DS, Garnham A, Levinger I, et al. Acute HIIE elicits similar changes in human skeletal muscle mitochondrial H2O2 release, respiration, and cell signaling as endurance exercise even with less work. Am J Physiol Regul Integr Comp Physiol. 2018;315(5):R1003–16. https://doi.org/10.1152/ajpregu.00096.2018.

    Article  CAS  PubMed  Google Scholar 

  117. Hussey SE, McGee SL, Garnham A, McConell GK, Hargreaves M. Exercise increases skeletal muscle GLUT4 gene expression in patients with type 2 diabetes. Diabetes Obes Metab. 2012;14(8):768–71. https://doi.org/10.1111/j.1463-1326.2012.01585.x.

    Article  CAS  PubMed  Google Scholar 

  118. Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, et al. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol. 2014;99(5):782–91.

    Article  CAS  Google Scholar 

  119. Diman A, Boros J, Poulain F, Rodriguez J, Purnelle M, Episkopou H, et al. Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Sci Adv. 2016;2(7): e1600031. https://doi.org/10.1126/sciadv.1600031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Granata C, Oliveira RSF, Little JP, Bishop DJ. Forty high-intensity interval training sessions blunt exercise-induced changes in the nuclear protein content of PGC-1alpha and p53 in human skeletal muscle. Am J Physiol Endocrinol Metab. 2020;318(2):E224–36. https://doi.org/10.1152/ajpendo.00233.2019.

    Article  CAS  PubMed  Google Scholar 

  121. Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. Sprint-interval but not continuous exercise increases PGC-1alpha protein content and p53 phosphorylation in nuclear fractions of human skeletal muscle. Sci Rep. 2017;7:44227. https://doi.org/10.1038/srep44227.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Skelly LE, Gillen JB, Frankish BP, MacInnis MJ, Godkin FE, Tarnopolsky MA, et al. Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: acute and training-induced changes. J Appl Physiol (1985). 2021;130(4):1001–14. https://doi.org/10.1152/japplphysiol.00862.2020.

    Article  CAS  Google Scholar 

  123. Rothschild J. AMPK predictor app. 2021. https://rothschild.shinyapps.io/AMPK_dashboard/. Accessed 9 Nov 2021.

  124. Hoffman NJ, Whitfield J, Janzen NR, Belhaj MR, Galic S, Murray-Segal L, et al. Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism. Mol Metab. 2020;41:101048.

    Article  CAS  Google Scholar 

  125. Rothschild JA, Kilding AE, Plews DJ. Pre-exercise nutrition habits and beliefs of endurance athletes vary by sex, competitive level, and diet. J Am Coll Nutr. 2021;40(6):517–28.

    Article  CAS  Google Scholar 

  126. Rothschild JA, Kilding AE, Plews DJ. Prevalence and determinants of fasted training in endurance athletes: a survey analysis. Int J Sport Nutr Exerc Metab. 2020;30(5):345–56.

    Article  Google Scholar 

  127. Marmy-Conus N, Fabris S, Proietto J, Hargreaves M. Preexercise glucose ingestion and glucose kinetics during exercise. J Appl Physiol (1985). 1996;81(2):853–7. https://doi.org/10.1152/jappl.1996.81.2.853.

    Article  CAS  Google Scholar 

  128. Valentine RJ, Coughlan KA, Ruderman NB, Saha AK. Insulin inhibits AMPK activity and phosphorylates AMPK Ser(4)(8)(5)/(4)(9)(1) through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys. 2014;562:62–9. https://doi.org/10.1016/j.abb.2014.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Devlin JT, Calles-Escandon J, Horton ES. Effects of preexercise snack feeding on endurance cycle exercise. J Appl Physiol (1985). 1986;60(3):980–5. https://doi.org/10.1152/jappl.1986.60.3.980.

    Article  CAS  Google Scholar 

  130. Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol (1985). 1987;62(3):983–8. https://doi.org/10.1152/jappl.1987.62.3.983.

    Article  CAS  Google Scholar 

  131. Febbraio MA, Stewart KL. CHO feeding before prolonged exercise: effect of glycemic index on muscle glycogenolysis and exercise performance. J Appl Physiol. 1996;81(3):1115–20.

    Article  CAS  Google Scholar 

  132. Edinburgh RM, Bradley HE, Abdullah N-F, Robinson SL, Chrzanowski-Smith OJ, Walhin J-P, et al. Lipid metabolism links nutrient-exercise timing to insulin sensitivity in men classified as overweight or obese. J Clin Endocrinol Metab. 2019. https://doi.org/10.1210/clinem/dgz104.

    Article  PubMed Central  Google Scholar 

  133. Hargreaves M, Costill DL, Fink WJ, King DS, Fielding RA. Effect of pre-exercise carbohydrate feedings on endurance cycling performance. Med Sci Sports Exerc. 1987;19(1):33–6.

    Article  CAS  Google Scholar 

  134. Hargreaves M, Costill DL, Katz A, Fink WJ. Effect of fructose ingestion on muscle glycogen usage during exercise. Med Sci Sports Exerc. 1985;17(3):360–3.

    Article  CAS  Google Scholar 

  135. Chryssanthopoulos C, Williams C, Nowitz A, Bogdanis G. Skeletal muscle glycogen concentration and metabolic responses following a high glycaemic carbohydrate breakfast. J Sports Sci. 2004;22(11–12):1065–71. https://doi.org/10.1080/02640410410001730007.

    Article  PubMed  Google Scholar 

  136. Rothschild J, Kilding AE, Plews DJ. What should I eat before exercise? Pre-exercise nutrition and the response to endurance exercise: current prospective and future directions. Nutrients. 2020;12(11):3473. https://doi.org/10.3390/nu12113473.

    Article  CAS  PubMed Central  Google Scholar 

  137. Akerstrom TC, Birk JB, Klein DK, Erikstrup C, Plomgaard P, Pedersen BK, et al. Oral glucose ingestion attenuates exercise-induced activation of 5ʹ-AMP-activated protein kinase in human skeletal muscle. Biochem Biophys Res Commun. 2006;342(3):949–55. https://doi.org/10.1016/j.bbrc.2006.02.057.

    Article  CAS  PubMed  Google Scholar 

  138. Spencer MK, Yan Z, Katz A. Carbohydrate supplementation attenuates IMP accumulation in human muscle during prolonged exercise. Am J Physiol. 1991;261(1 Pt 1):C71–6. https://doi.org/10.1152/ajpcell.1991.261.1.C71.

    Article  CAS  PubMed  Google Scholar 

  139. Holloszy JO, Booth FW. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol. 1976;38:273–91. https://doi.org/10.1146/annurev.ph.38.030176.001421.

    Article  CAS  PubMed  Google Scholar 

  140. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 1998;17(6):1688–99. https://doi.org/10.1093/emboj/17.6.1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Putman CT, Jones NL, Hultman E, Hollidge-Horvat MG, Bonen A, McConachie DR, et al. Effects of short-term submaximal training in humans on muscle metabolism in exercise. Am J Physiol. 1998;275(1):E132–9. https://doi.org/10.1152/ajpendo.1998.275.1.E132.

    Article  CAS  PubMed  Google Scholar 

  142. Wojtaszewski JF, Jorgensen SB, Hellsten Y, Hardie DG, Richter EA. Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes. 2002;51(2):284–92. https://doi.org/10.2337/diabetes.51.2.284.

    Article  CAS  PubMed  Google Scholar 

  143. Wojtaszewski JF, Birk JB, Frosig C, Holten M, Pilegaard H, Dela F. 5ʹAMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol. 2005;564(Pt 2):563–73. https://doi.org/10.1113/jphysiol.2005.082669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Frosig C, Jørgensen SB, Hardie DG, Richter EA, Wojtaszewski JF. 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286(3):E411–7.

    Article  CAS  Google Scholar 

  145. Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, Humphrey SJ, et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 2015;22(5):922–35. https://doi.org/10.1016/j.cmet.2015.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48(11):2320–34. https://doi.org/10.1249/MSS.0000000000000939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Clark IE, Vanhatalo A, Bailey SJ, Wylie LJ, Kirby BS, Wilkins BW, et al. Effects of two hours of heavy-intensity exercise on the power-duration relationship. Med Sci Sports Exerc. 2018;50(8):1658–68. https://doi.org/10.1249/MSS.0000000000001601.

    Article  PubMed  Google Scholar 

  148. Clark IE, Vanhatalo A, Thompson C, Wylie LJ, Bailey SJ, Kirby BS, et al. Changes in the power-duration relationship following prolonged exercise: estimation using conventional and all-out protocols and relationship with muscle glycogen. Am J Physiol Regul Integr Comp Physiol. 2019;317(1):R59–67. https://doi.org/10.1152/ajpregu.00031.2019.

    Article  CAS  PubMed  Google Scholar 

  149. Tobias IS, Lazauskas KK, Siu J, Costa PB, Coburn JW, Galpin AJ. Sex and fiber type independently influence AMPK, TBC1D1, and TBC1D4 at rest and during recovery from high-intensity exercise in humans. J Appl Physiol (1985). 2020;128(2):350–61. https://doi.org/10.1152/japplphysiol.00704.2019.

    Article  CAS  Google Scholar 

  150. Sriwijitkamol A, Coletta DK, Wajcberg E, Balbontin GB, Reyna SM, Barrientes J, et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes. 2007;56(3):836–48. https://doi.org/10.2337/db06-1119.

    Article  CAS  PubMed  Google Scholar 

  151. Vissing K, McGee SL, Roepstorff C, Schjerling P, Hargreaves M, Kiens B. Effect of sex differences on human MEF2 regulation during endurance exercise. Am J Physiol Endocrinol Metab. 2008;294(2):E408–15. https://doi.org/10.1152/ajpendo.00403.2007.

    Article  CAS  PubMed  Google Scholar 

  152. Lee-Young RS, Canny BJ, Myers DE, McConell GK. AMPK activation is fiber type specific in human skeletal muscle: effects of exercise and short-term exercise training. J Appl Physiol. 2009;107(1):283–9.

    Article  CAS  Google Scholar 

  153. Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, et al. An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports. 2017;27(1):4–25. https://doi.org/10.1111/sms.12702.

    Article  CAS  PubMed  Google Scholar 

  154. Gassmann M, Grenacher B, Rohde B, Vogel J. Quantifying Western blots: pitfalls of densitometry. Electrophoresis. 2009;30(11):1845–55. https://doi.org/10.1002/elps.200800720.

    Article  CAS  PubMed  Google Scholar 

  155. Civitarese AE, Hesselink MK, Russell AP, Ravussin E, Schrauwen P. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab. 2005;289(6):E1023–9. https://doi.org/10.1152/ajpendo.00193.2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Rothschild.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of Interest

Jeffrey A. Rothschild, Hashim Islam, David J. Bishop, Andrew E. Kilding, Tom Stewart, and Daniel J. Plews have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent

Not applicable.

Availability of data and material

Data can be made available upon request to the lead author. Correlations and model data can be explored using an online app: https://rothschild.shinyapps.io/AMPK_dashboard/

Author contributions

JAR conceptualized and performed the analyses and wrote the first draft of the manuscript. All authors edited and revised the manuscript and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothschild, J.A., Islam, H., Bishop, D.J. et al. Factors Influencing AMPK Activation During Cycling Exercise: A Pooled Analysis and Meta-Regression. Sports Med 52, 1273–1294 (2022). https://doi.org/10.1007/s40279-021-01610-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01610-x

Navigation