Skip to main content
Log in

Recommendations on Youth Participation in Ultra-Endurance Running Events: A Consensus Statement

  • Consensus Statement
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Participation in ultra-endurance running (UER) events continues to grow across ages, including youth athletes. The 50- and 100-km are the most popular distances among youth athletes. Most youth athletes are between 16–18 years; however, some runners younger than 12 years have successfully completed UER events. Parents, athletes, coaches, race directors, and medical professionals often seek advice regarding the safety of youth athletes participating in these events, especially with regard to potential short and long-term health consequences. UER may impact key organ systems during growth and development. We propose a decision-making process, based on current knowledge and the experience of the consensus group that addresses age regulations, medical and psychological well-being, training status and race-specific factors (such as distance, elevation change, remoteness, ambient temperatures, level of medical assistance, and type of provisions provided by the race organizers) to use until evidence of long-term consequences of UER in youth athletes is available. These recommendations are aimed at safe participation in UER events for youth athletes with a proper and individualized assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

reproduced from Scheer et al. [6], with permission from Edizioni Minerva Medica)

Fig. 2

Similar content being viewed by others

References

  1. Scheer V, Basset P, Giovanelli N, Vernillo G, Millet GP, Costa RJS. Defining off-road running: a position statement from the Ultra Sports Science Foundation. Int J Sports Med. 2020;41:275–84.

    PubMed  Google Scholar 

  2. Knechtle B, Rüst CA, Rosemann T, Lepers R. Age-related changes in 100-km ultra-marathon running performance. Age (Dordrecht). 2012;34:1033–45.

    Google Scholar 

  3. da Fonseca-Engelhardt K, Knechtle B, Rüst CA, Knechtle P, Lepers R, Rosemann T. Participation and performance trends in ultra-endurance running races under extreme conditions—“Spartathlon” versus “Badwater.” Extrem Physiol Med. 2013;2:15.

    PubMed  PubMed Central  Google Scholar 

  4. Cejka N, Rüst CA, Lepers R, Onywera V, Rosemann T, Knechtle B. Participation and performance trends in 100-km ultra-marathons worldwide. J Sports Sci. 2014;32:354–66.

    PubMed  Google Scholar 

  5. Scheer V. Participation trends of ultra endurance events. Sports Med Arthrosc Rev. 2019;27:3–7.

    PubMed  Google Scholar 

  6. Scheer V, Hoffman MD. Too much too early? An analysis of worldwide childhood ultramarathon participation and attrition in adulthood. J Sports Med Phys Fit. 2019;59:1363–8.

    Google Scholar 

  7. Scheer V, Di Gangi S, Villiger E, Nikolaidis PT, Rosemann T, Knechtle B. Age-related participation and performance trends of children and adolescents in ultramarathon running. Res Sports Med. 2020;23:1–11.

    Google Scholar 

  8. Scheer V, Di Gangi S, Villiger E, Rosemann T, Nikolaidis PT, Knechtle B. Participation and performance analysis in children and adolescents competing in time-limited ultra-endurance running events. Int J Environ Res Public Health. 2020;17:1628.

    PubMed Central  Google Scholar 

  9. Scheer V, Hoffman MD. Should children be running ultramarathons? Curr Sports Med Rep. 2018;17:282.

    PubMed  Google Scholar 

  10. Knoth C, Knechtle B, Rüst CA, Rosemann T, Lepers R. Participation and performance trends in multistage ultramarathons-the “Marathon des Sables” 2003–2012. Extreme Physiol Med. 2012;1:13.

    Google Scholar 

  11. Scheer BV, Murray DA. Ultramarathon running injuries. In: Doral MN, Karlsson J, editors. Sports injuries. Berlin: Springer; 2015.

    Google Scholar 

  12. Scheer V, Sousa CV, Valero D, Knechtle B, Nikolaidis PT, Valero E. A descriptive study on health, training and social aspects of adults that participated in ultra endurance running as youth athletes. J Sports Med Phys Fit. 2020. https://doi.org/10.23736/S0022-4707.20.11198-8.

    Article  Google Scholar 

  13. Roberts WO. Can children and adolescents run marathons? Sports Med. 2007;37:299–301.

    PubMed  Google Scholar 

  14. Roberts WO, Nicholson WG. Youth marathon runners and race day medical risk over 26 years. Clin J Sport Med. 2010;20:318–21.

    PubMed  Google Scholar 

  15. Rice SG, Waniewski S. Children and marathoning: how young is too young? Clin J Sport Med. 2003;13:369–73.

    PubMed  Google Scholar 

  16. Roberts WO. Children and running: at what distance safe? Clin J Sport Med. 2005;15:109–10 (author reply 110–111).

    PubMed  Google Scholar 

  17. Krabak BJ, Roberts WO, Tenforde AS, Ackerman KE, Adami P, Baggish A, et al. Youth running consensus statement: minimizing risks of injury and illness in youth runners. Br J Sports Med. 2020. https://doi.org/10.1136/bjsports-2020-102518.

    Article  PubMed  Google Scholar 

  18. Knechtle B, Scheer V, Nikolaidis PT, Sousa CV. Participation and performance trends in the oldest 100-km ultramarathon in the world. Int J Environ Res Public Health. 2020;17:1719.

    PubMed Central  Google Scholar 

  19. UTMB. 2020 Regulations. 2020. https://www.utmbmontblanc.com/en/page/16/Regulations.html. Accessed 15 Jan 2020.

  20. Comrades Marathon. 2018. https://www.comrades.com. Accessed Feb 18 2018.

  21. Ebell MH, Siwek J, Weiss BD, Woolf SH, Susman J, Ewigman B, et al. Strength of recommendation taxonomy (SORT): a patient-centered approach to grading evidence in the medical literature. J Am Board Fam Pract. 2004;17:59–67.

    PubMed  Google Scholar 

  22. Donnelly JE, Hillman CH, Castelli D, Etnier JL, Lee S, Tomporowski P, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med Sci Sports Exerc. 2016;48:1197.

    PubMed  PubMed Central  Google Scholar 

  23. Tiller NB, Stewart GM, Illidi CR, Levine BD. Exercise is medicine? The cardiorespiratory implications of ultra-marathon. Curr Sports Med Rep. 2020;19:290–7.

    PubMed  Google Scholar 

  24. Traiperm N, Gatterer H, Wille M, Burtscher M. Cardiac troponins in young marathon runners. Am J Cardiol. 2012;110:594–8.

    CAS  PubMed  Google Scholar 

  25. Maufrais C, Millet GP, Schuster I, Rupp T, Nottin S. Progressive and biphasic cardiac responses during extreme mountain ultramarathon. Am J Physiol Heart Circ Physiol. 2016;310:H1340–8.

    PubMed  Google Scholar 

  26. McClean G, Riding NR, Ardern CL, Farooq A, Pieles GE, Watt V, et al. Electrical and structural adaptations of the paediatric athlete’s heart: a systematic review with meta-analysis. Br J Sports Med. 2018;52:230.

    PubMed  Google Scholar 

  27. Pieles GE, Stuart AG. The adolescent athlete’s heart; a miniature adult or grown-up child? Clin Cardiol. 2020;43:852–62.

    PubMed  PubMed Central  Google Scholar 

  28. Sharma S, Maron BJ, Whyte G, Firoozi S, Elliott PM, McKenna WJ. Physiologic limits of left ventricular hypertrophy in elite junior athletes. J Am Coll Cardiol. 2002;40:1431–6.

    PubMed  Google Scholar 

  29. Makan J, Sharma S, Firoozi S, Whyte G, Jackson PG, McKenna WJ. Physiological upper limits of ventricular cavity size in highly trained adolescent athletes. Heart. 2005;91:495–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Claessen G, La Gerche A. Exercise-induced cardiac fatigue: the need for speed: perspectives. J Physiol. 2016;594:2781–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wundersitz D, Williamson J, Nadurata V, Nolan K, Lavie C, Kingsley M. The impact of a 21-day ultra-endurance ride on the heart in young, adult and older adult recreational cyclists. Int J Cardiol. 2019;286:137–42.

    CAS  PubMed  Google Scholar 

  32. Andersen K, Farahmand B, Ahlbom A, Held C, Ljunghall S, Michaëlsson K, et al. Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur Heart J. 2013;34:3624–31.

    PubMed  Google Scholar 

  33. Tso J, Kim JH. Master endurance athletes and cardiovascular controversies. Curr Sports Med Rep. 2020;19:113–8.

    PubMed  Google Scholar 

  34. Garnvik LE, Malmo V, Janszky I, Wisløff U, Loennechen JP, Nes BM. Estimated cardiorespiratory fitness and risk of atrial fibrillation: the Nord-Trøndelag Health Study. Med Sci Sports Exerc. 2019;51:2491–7.

    PubMed  Google Scholar 

  35. Drca N, Wolk A, Jensen-Urstad M, Larsson SC. Atrial fibrillation is associated with different levels of physical activity levels at different ages in men. Heart. 2014;100:1037–42.

    PubMed  Google Scholar 

  36. Drezner JA, O’Connor FG, Harmon KG, Fields KB, Asplund CA, Asif IM, et al. AMSSM position statement on cardiovascular preparticipation screening in athletes: current evidence, knowledge gaps, recommendations and future directions. Br J Sports Med. 2017;51:153–67.

    PubMed  Google Scholar 

  37. McKinney J, Johri AM, Poirier P, Fournier A, Goodman JM, Moulson N, et al. Canadian cardiovascular society cardiovascular screening of competitive athletes: the utility of the screening electrocardiogram to predict sudden cardiac death. Can J Cardiol. 2019;35:1557–66.

    PubMed  Google Scholar 

  38. Corrado D, Pelliccia A, Bjørnstad HH, Vanhees L, Biffi A, Borjesson M, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Eur Heart J. 2005;26:516–24.

    PubMed  Google Scholar 

  39. Quanjer PH, Stanojevic S, Stocks J, Hall GL, Prasad KVV, Cole TJ, et al. Changes in the FEV1/FVC ratio during childhood and adolescence: an intercontinental study. Eur Respir J. 2010;36:1391–9.

    CAS  PubMed  Google Scholar 

  40. Del Giacco SR, Firinu D, Bjermer L, Carlsen K-H. Exercise and asthma: an overview. European Clin Resp J. 2015;2:27984.

    Google Scholar 

  41. Maat RC, Røksund OD, Halvorsen T, Skadberg BT, Olofsson J, Ellingsen TA, et al. Audiovisual assessment of exercise-induced laryngeal obstruction: reliability and validity of observations. Eur Arch Otorhinolaryngol. 2009;266:1929–36.

    PubMed  Google Scholar 

  42. MacKelvie KJ. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review * Commentary. Br J Sports Med. 2002;36:250–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lloyd RS, Oliver JL, Faigenbaum AD, Myer GD, De Ste Croix MBA. Chronological age vs. biological maturation: implications for exercise programming in youth. J Strength Cond Res. 2014;28:1454–64.

    PubMed  Google Scholar 

  44. Faulkner RA, Davison KS, Bailey DA, Mirwald RL, Baxter-Jones AD. Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence. J Bone Miner Res. 2006;21:1864–70.

    PubMed  Google Scholar 

  45. Brenner JS. Council on sports medicine and fitness. Sports specialization and intensive training in young athletes. Pediatrics. 2016;138:e20162148.

    PubMed  Google Scholar 

  46. Krabak BJ, Tenforde AS, Davis IS, Fredericson M, Harrast MA, d’Hemecourt P, et al. Youth distance running: strategies for training and injury reduction. Curr Sports Med Rep. 2019;18:53–9.

    PubMed  Google Scholar 

  47. Tenforde AS, Sayres LC, McCurdy ML, Collado H, Sainani KL, Fredericson M. Overuse injuries in high school runners: lifetime prevalence and prevention strategies. PMR. 2011;3:125–31.

    Google Scholar 

  48. Barrack MT, Fredericson M, Tenforde AS, Nattiv A. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br J Sports Med. 2017;51:200–5.

    PubMed  Google Scholar 

  49. Barrack MT, Rauh MJ, Nichols JF. Prevalence of and traits associated with low BMD among female adolescent runners. Med Sci Sport Exerc. 2008;40:2015–21.

    Google Scholar 

  50. Tenforde AS, Fredericson M, Sayres LC, Cutti P, Sainani KL. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med. 2015;43:1494–504.

    PubMed  Google Scholar 

  51. Warden SJ, Davis IS, Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J Orthop Sports Phys Ther. 2014;44:749–65.

    PubMed  Google Scholar 

  52. Field AE. Prospective study of physical activity and risk of developing a stress fracture among preadolescent and adolescent girls. Arch Pediatr Adolesc Med. 2011;165:723.

    PubMed  PubMed Central  Google Scholar 

  53. Tenforde AS, Roberts WO, Krabak BJ, Davis IS, Fredericson M, Luke AC, et al. Recommendations to optimize health in youth runners. Strength Conditioning J. 2020;42:76–82.

    Google Scholar 

  54. Costa RJS, Snipe R, Camões-Costa V, Scheer V, Murray A. The impact of gastrointestinal symptoms and dermatological injuries on nutritional intake and hydration status during ultramarathon events. Sports Med Open. 2016;2:16.

    PubMed  PubMed Central  Google Scholar 

  55. Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment Pharmacol Ther. 2017;46:246–65.

    CAS  PubMed  Google Scholar 

  56. Costa RJS, Gaskell SK, McCubbin AJ, Snipe RMJ. Exertional-heat stress-associated gastrointestinal perturbations during Olympic sports: Management strategies for athletes preparing and competing in the 2020 Tokyo Olympic Games. Temperature. 2020;7:58–88.

    Google Scholar 

  57. Gill SK, Teixeira A, Rama L, Prestes J, Rosado F, Hankey J, et al. Circulatory endotoxin concentration and cytokine profile in response to exertional-heat stress during a multi-stage ultra-marathon competition. Exerc Immunol Rev. 2015;21:114–28.

    PubMed  Google Scholar 

  58. Costa RJS, Hoffman MD, Stellingwerff T. Considerations for ultra-endurance activities: part 1—nutrition. Res Sports Med. 2019;27:166–81.

    PubMed  Google Scholar 

  59. Costa RJS, Knechtle B, Tarnopolsky M, Hoffman MD. Nutrition for ultramarathon running: trail, track, and road. Int J Sport Nutr Exerc Metab. 2019;2:130–40.

    Google Scholar 

  60. Costa RJS, Oliver SJ, Laing SJ, Walters R, Bilzon JLJ, Walsh NP. Influence of timing of postexercise carbohydrate-protein ingestion on selected immune indices. Int J Sport Nutr Exerc Metab. 2009;19:366–84.

    CAS  PubMed  Google Scholar 

  61. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  62. Robson-Ansley P, Howatson G, Tallent J, Mitcheson K, Walshe I, Toms C, et al. Prevalence of allergy and upper respiratory tract symptoms in runners of the London marathon. Med Sci Sports Exerc. 2012;44:999–1004.

    PubMed  Google Scholar 

  63. Walsh NP, Gleeson M, Pyne DB, Nieman DC, Dhabhar FS, Shephard RJ, et al. Position statement. Part two: maintaining immune health. Exerc Immunol Rev. 2011;17:64–103.

    PubMed  Google Scholar 

  64. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017;122:1077–87.

    CAS  PubMed  Google Scholar 

  65. Desbrow B, McCormack J, Burke LM, Cox GR, Fallon K, Hislop M, et al. Sports Dietitians Australia position statement: sports nutrition for the adolescent athlete. Int J Sport Nutr Exerc Metab. 2014;24:570–84.

    PubMed  Google Scholar 

  66. Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48:543–68.

    CAS  PubMed  Google Scholar 

  67. Rauh MJ, Margherita AJ, Rice SG, Koepsell TD, Rivara FP. High school cross country running injuries: a longitudinal study. Clin J Sport Med. 2000;10:110–6.

    CAS  PubMed  Google Scholar 

  68. Tirabassi J, Brou L, Khodaee M, Lefort R, Fields SK, Comstock RD. Epidemiology of high school sports-related injuries resulting in medical disqualification: 2005–2006 through 2013–2014 academic years. Am J Sports Med. 2016;44:2925–32.

    PubMed  Google Scholar 

  69. Beachy G, Rauh M. Middle school injuries: a 20-year (1988–2008) multisport evaluation. J Athl Train. 2014;49:493–506.

    PubMed  PubMed Central  Google Scholar 

  70. Changstrom B, Brill J, Hecht S. Severe exercise-associated hyponatremia in a collegiate American football player. Curr Sports Med Rep. 2017;16:343–5.

    PubMed  Google Scholar 

  71. Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the VO2 max test predicts running performance. J Sports Sci. 1990;8:35–45.

    CAS  PubMed  Google Scholar 

  72. Fornasiero A, Savoldelli A, Fruet D, Boccia G, Pellegrini B, Schena F. Physiological intensity profile, exercise load and performance predictors of a 65-km mountain ultra-marathon. J Sports Sci. 2017;36(11):1287–95. https://doi.org/10.1080/02640414.2017.1374707.

    Article  PubMed  Google Scholar 

  73. Rowland TW. Developmental aspects of physiological function relating to aerobic exercise in children. Sports Med. 1990;10:255–66.

    CAS  PubMed  Google Scholar 

  74. Kemper HCG, Verschuur R. Longitudinal study of maximal aerobic power in teenagers. Ann Hum Biol. 1987;14:435–44.

    CAS  PubMed  Google Scholar 

  75. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of Vo2max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999;87:1003–8.

    CAS  PubMed  Google Scholar 

  76. Larsen HB, Nolan T, Borch C, Sondergaard H. Training response of adolescent Kenyan town and village boys to endurance running. Scand J Med Sci Sports. 2005;15:48–57.

    PubMed  Google Scholar 

  77. Mccann DJ, Adams WC. The size-independent oxygen cost of running. Med Sci Sports Exerc. 2003;35:1049–56.

    PubMed  Google Scholar 

  78. Daniels J, Oldridge N, Nagle F, White B. Differences and changes in VO2 among young runners 10 to 18 years of age. Med Sci Sports. 1978;10:200–3.

    CAS  PubMed  Google Scholar 

  79. Krahenbuhl G, Morgan D, Pangrazi R. Longitudinal changes in distance-running performance of young males. Int J Sports Med. 1989;10:92–6.

    CAS  PubMed  Google Scholar 

  80. Tan PL, Tan FH, Bosch AN. Assessment of differences in the anthropometric, physiological and training characteristics of finishers and non-finishers in a tropical 161-km ultra-marathon. Int J Exerc Sci. 2017;10:465–78.

    PubMed  PubMed Central  Google Scholar 

  81. Krouse RZ, Ransdell LB, Lucas SM, Pritchard ME. Motivation, goal orientation, coaching, and training habits of women ultrarunners. J Strength Conditioning Res. 2011;25:2835–42.

    Google Scholar 

  82. O’Loughlin E, Nikolaidis PT, Rosemann T, Knechtle B. Different predictor variables for women and men in ultra-marathon running—the Wellington Urban Ultramarathon 2018. Int J Environ Res Public Health. 2019;16(10):1844. https://doi.org/10.3390/ijerph16101844.

    Article  PubMed Central  Google Scholar 

  83. Kłapcińska B, Waśkiewicz Z, Chrapusta SJ, Sadowska-Krępa E, Czuba M, Langfort J. Metabolic responses to a 48-h ultra-marathon run in middle-aged male amateur runners. Eur J Appl Physiol. 2013;113:2781–93.

    PubMed  PubMed Central  Google Scholar 

  84. Huxley DJ, O’Connor D, Healey PA. An examination of the training profiles and injuries in elite youth track and field athletes. Eur J Sport Sci. 2014;14:185–92.

    PubMed  Google Scholar 

  85. Sawyer SM, Afifi RA, Bearinger LH, Blakemore S-J, Dick B, Ezeh AC, et al. Adolescence: a foundation for future health. Lancet. 2012;379:1630–40.

    PubMed  Google Scholar 

  86. Loucks AB. Low energy availability in the marathon and other endurance sports. Sports Med. 2007;37:348–52.

    PubMed  Google Scholar 

  87. Lewis NA, Collins D, Pedlar CR, Rogers JP. Can clinicians and scientists explain and prevent unexplained underperformance syndrome in elite athletes: an interdisciplinary perspective and 2016 update. BMJ Open Sport Exerc Med. 2015;1:e000063.

    PubMed  PubMed Central  Google Scholar 

  88. Mountjoy M, Sundgot-Borgen JK, Burke LM, Ackerman KE, Blauwet C, Constantini N, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52:687–97.

    PubMed  Google Scholar 

  89. Soligard T, Schwellnus M, Alonso J-M, Bahr R, Clarsen B, Dijkstra HP, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50:1030–41.

    PubMed  Google Scholar 

  90. Schwellnus M, Soligard T, Alonso J-M, Bahr R, Clarsen B, Dijkstra HP, et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med. 2016;50:1043–52.

    PubMed  PubMed Central  Google Scholar 

  91. Drinkwater BL, Kupprat IC, Denton JE, Crist JL, Horvath SM. Response of prepubertal girls and college women to work in the heat. J Appl Physiol. 1977;43:1046–53.

    CAS  PubMed  Google Scholar 

  92. Shibasaki M, Inoue Y, Kondo N, Iwata A. Thermoregulatory responses of prepubertal boys and young men during moderate exercise. Eur J Appl Physiol. 1997;75:212–8.

    CAS  Google Scholar 

  93. Hew-Butler T, Rosner MH, Fowkes-Godek S, Dugas JP, Hoffman MD, Lewis DP, et al. Statement of the 3rd International exercise-associated hyponatremia consensus development conference, Carlsbad, California, 2015. Br J Sports Med. 2015;49:1432–46.

    PubMed  Google Scholar 

  94. Hoffman MD, Stellingwerff T, Costa RJS. Considerations for ultra-endurance activities: part 2—hydration. Res Sports Med. 2019;27:182–94.

    PubMed  Google Scholar 

  95. Rowland T. Fluid replacement requirements for child athletes. Sports Med. 2011;41:279–88.

    PubMed  Google Scholar 

  96. Hoffman MD, Snipe RMJ, Costa RJS. Ad libitum drinking adequately supports hydration during 2 h of running in different ambient temperatures. Eur J Appl Physiol. 2018;118:2687–97.

    CAS  PubMed  Google Scholar 

  97. McCubbin AJ, Allanson BA, Caldwell Odgers JN, Cort MM, Costa RJS, Cox GR, et al. Sports dietitians Australia position statement: nutrition for exercise in hot environments. Int J Sport Nutr Exerc Metab. 2020;30:83–98.

    CAS  PubMed  Google Scholar 

  98. O’Connor FG. Sports medicine: exertional heat illness. FP Essent. 2019;482:15–9.

    PubMed  Google Scholar 

  99. Stevens CJ, Taylor L, Dascombe BJ. Cooling during exercise: an overlooked strategy for enhancing endurance performance in the heat. Sports Med. 2017;47:829–41.

    PubMed  Google Scholar 

  100. Rodenberg RE, Gustafson S. Iron as an ergogenic aid: ironclad evidence? Curr Sports Med Rep. 2007;6:258–64.

    PubMed  Google Scholar 

  101. Dempster S, Britton R, Murray A, Costa RJS. Case study: nutrition and hydration status during 4,254 km of running over 78 consecutive days. Int J Sport Nutr Exerc Metab. 2013;23:533–41.

    PubMed  Google Scholar 

  102. Gropper SS, Blessing D, Dunham K, Barksdale JM. Iron status of female collegiate athletes involved in different sports. Biol Trace Elem Res. 2006;109:001–14.

    CAS  Google Scholar 

  103. Erikson E, Erikson JM. The life cycle completed: extended version. New York: Norton, WW; 1998.

    Google Scholar 

  104. Allen E, Marotz L. Development profiles pre-birth through twelve. 4th ed. Albany: Thomas Delmar Learning; 2003.

    Google Scholar 

  105. Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol. 2000;55:68–78.

    CAS  PubMed  Google Scholar 

  106. Hoffman MD, Pasternak A, Rogers IR, Khodaee M, Hill JC, Townes DA, et al. Medical services at ultra-endurance foot races in remote environments: medical issues and consensus guidelines. Sports Med. 2014;44:1055–69.

    PubMed  Google Scholar 

  107. International Trail Running Association. Medical and saftey guidline. 2020. https://itra.run/documents/security_guidelines/Security_Guidelines_ITRA_EN.pdf. Accessed 15 Jan 2020.

  108. Scheer BV, Valero-Burgos E, Costa R. Myasthenia gravis and endurance exercise. Am J Phys Med Rehabil. 2012;91:725–7.

    PubMed  Google Scholar 

  109. Hein IM, De Vries MC, Troost PW, Meynen G, Van Goudoever JB, Lindauer RJL. Informed consent instead of assent is appropriate in children from the age of twelve: policy implications of new findings on children’s competence to consent to clinical research. BMC Med Ethics. 2015;16:76.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Scheer.

Ethics declarations

Funding

No financial support was received for the conduct of this study, or for the preparation or publication of this manuscript.

Conflict of interests

The authors declare that there are no conflict of interests.

Availability of data and material

Not applicable.

Authors’ contribution

VS—conception and design of study, organization of consensus group, manuscript writing and editing. RC—manuscript writing and editing. SD—manuscript writing and editing. BK—manuscript writing and editing. PTN—manuscript writing and editing. WOR—manuscript writing and editing. OS—manuscript writing and editing. AT—manuscript writing and editing. BK—conception and design of study, organization of consensus group, manuscript writing and editing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheer, V., Costa, R.J.S., Doutreleau, S. et al. Recommendations on Youth Participation in Ultra-Endurance Running Events: A Consensus Statement. Sports Med 51, 1123–1135 (2021). https://doi.org/10.1007/s40279-021-01441-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01441-w

Navigation