Skip to main content
Log in

Drug Treatment of Heart Failure in Children: Gaps and Opportunities

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Medical therapy for pediatric heart failure is based on a detailed mechanistic understanding of the underlying causes, which are diverse and unlike those encountered in most adult patients. Diuresis and improved perfusion are the immediate goals of care in the child with acute decompensated heart failure. Conversion to maintenance oral therapy for heart failure is based on the results of landmark studies in adults, as well as recent pediatric clinical trials and heart failure guidelines. There will continue to be an important role for newer drugs, some of which are in active trials in adults, and some of which are already approved for use in children. The need to plan for clinical trials in children during drug development for heart failure is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grady KL, Dracup K, Kennedy G, Moser DK, Piano M, Stevenson LW, et al. Team management of patients with heart failure: a statement for healthcare professionals from The Cardiovascular Nursing Council of the American Heart Association. Circulation. 2000;102(19):2443–56. https://doi.org/10.1161/01.cir.102.19.2443.

    Article  CAS  PubMed  Google Scholar 

  2. Stevenson LW, Massie BM, Francis GS. Optimizing therapy for complex or refractory heart failure: a management algorithm. Am Heart J. 1998;135(62):S293-309. https://doi.org/10.1016/s0002-8703(98)70257-1.

    Article  CAS  PubMed  Google Scholar 

  3. Chen S, Dykes JC, McElhinney DB, Gajarski RJ, Shin AY, Hollander SA, et al. Haemodynamic profiles of children with end-stage heart failure. Eur Heart J. 2017;38(38):2900–9. https://doi.org/10.1093/eurheartj/ehx456.

    Article  PubMed  Google Scholar 

  4. Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, diagnosis, and medical management of heart failure in children: Canadian Cardiovascular Society guidelines. Can J Cardiol. 2013;29(12):1535–52. https://doi.org/10.1016/j.cjca.2013.08.008.

    Article  PubMed  Google Scholar 

  5. Price JF, Younan S, Cabrera AG, Denfield SW, Tunuguntla H, Choudhry S, et al. Diuretic responsiveness and its prognostic significance in children with heart failure. J Cardiac Fail. 2019;25(12):941–7. https://doi.org/10.1016/j.cardfail.2019.03.019.

    Article  Google Scholar 

  6. McCammond AN, Axelrod DM, Bailly DK, Ramsey EZ, Costello JM. Pediatric cardiac intensive care society 2014 consensus statement: pharmacotherapies in cardiac critical care fluid management. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2016;17(3 Suppl 1):S35-48. https://doi.org/10.1097/pcc.0000000000000633.

    Article  Google Scholar 

  7. Rossano JW, Cabrera AG, Jefferies JL, Naim MP, Humlicek T. Pediatric cardiac intensive care society 2014 consensus statement: pharmacotherapies in cardiac critical care chronic heart failure. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2016;17(3 Suppl 1):S20-34. https://doi.org/10.1097/pcc.0000000000000624.

    Article  Google Scholar 

  8. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31. https://doi.org/10.1001/jama.297.12.1319.

    Article  CAS  PubMed  Google Scholar 

  9. Luo X, Jin Q, Wu Y. Tolvaptan add-on therapy in patients with acute heart failure: a systematic review and meta-analysis. Pharmacol Res Perspect. 2020;8(3): e00614. https://doi.org/10.1002/prp2.614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Regen RB, Gonzalez A, Zawodniak K, Leonard D, Quigley R, Barnes AP, et al. Tolvaptan increases serum sodium in pediatric patients with heart failure. Pediatr Cardiol. 2013;34(6):1463–8. https://doi.org/10.1007/s00246-013-0671-y.

    Article  PubMed  Google Scholar 

  11. Uhlig K, Efremov L, Tongers J, Frantz S, Mikolajczyk R, Sedding D, et al. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev. 2020;11:669. https://doi.org/10.1002/14651858.CD009669.pub4.

    Article  Google Scholar 

  12. Kirk R, Dipchand AI, Rosenthal DN, Addonizio L, Burch M, Chrisant M, et al. The International Society for heart and lung transplantation guidelines for the management of pediatric heart failure: executive summary [Corrected]. J Heart Lung Transpl Off Publ Int Soc Heart Transpl. 2014;33(9):888–909. https://doi.org/10.1016/j.healun.2014.06.002.

    Article  Google Scholar 

  13. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803. https://doi.org/10.1016/j.jacc.2017.04.025.

    Article  Google Scholar 

  14. Hollenberg SM, Warner Stevenson L, Ahmad T, Amin VJ, Bozkurt B, Butler J, et al. 2019 ACC expert consensus decision pathway on risk assessment, management, and clinical trajectory of patients hospitalized with heart failure: a report of the American college of cardiology solution set oversight committee. J Am Coll Cardiol. 2019;74(15):1966–2011. https://doi.org/10.1016/j.jacc.2019.08.001.

    Article  PubMed  Google Scholar 

  15. Ahmad T, Miller PE, McCullough M, Desai NR, Riello R, Psotka M, et al. Why has positive inotropy failed in chronic heart failure? Lessons from prior inotrope trials. Eur J Heart Fail. 2019;21(9):1064–78. https://doi.org/10.1002/ejhf.1557.

    Article  PubMed  Google Scholar 

  16. Mody BP, Khan MH, Zaid S, Ahn C, Lloji A, Aronow WS, et al. Survival with continuous outpatient intravenous inotrope therapy in the modern era. Am J Ther. 2020. https://doi.org/10.1097/mjt.0000000000001260.

    Article  PubMed  Google Scholar 

  17. Bayram M, De Luca L, Massie MB, Gheorghiade M. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol. 2005;96(6a):47g–58g. https://doi.org/10.1016/j.amjcard.2005.07.021.

    Article  CAS  PubMed  Google Scholar 

  18. Cuffe MS, Califf RM, Adams KF Jr, Benza R, Bourge R, Colucci WS, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287(12):1541–7. https://doi.org/10.1001/jama.287.12.1541.

    Article  CAS  PubMed  Google Scholar 

  19. Ørstavik Ø, Manfra O, Andressen KW, Andersen G, Skomedal T, Osnes JB, et al. The inotropic effect of the active metabolite of levosimendan, OR-1896, is mediated through inhibition of PDE3 in rat ventricular myocardium. PLoS ONE. 2015;10(3): e0115547. https://doi.org/10.1371/journal.pone.0115547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nieminen MS, Fonseca C, Brito D, Wikström G. The potential of the inodilator levosimendan in maintaining quality of life in advanced heart failure. Eur Heart J Suppl J Eur Soc Cardiol. 2017;19(Suppl C):C15-c21. https://doi.org/10.1093/eurheartj/sux003.

    Article  Google Scholar 

  21. Takahashi R, Talukder MA, Endoh M. Inotropic effects of OR-1896, an active metabolite of levosimendan, on canine ventricular myocardium. Eur J Pharmacol. 2000;400(1):103–12. https://doi.org/10.1016/s0014-2999(00)00385-x.

    Article  CAS  PubMed  Google Scholar 

  22. Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, et al. Levosimendan efficacy and safety: 20 years of SIMDAX in clinical use. J Cardiovasc Pharmacol. 2020;76(1):4–22. https://doi.org/10.1097/fjc.0000000000000859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abdelbaser I, Mageed NA, Elfayoumy SI, Elgamal MF, Elmorsy MM, Taman HI. The direct comparison of inhaled versus intravenous levosimendan in children with pulmonary hypertension undergoing on-cardiopulmonary bypass cardiac surgery: a randomized, controlled, non-inferiority study. J Clin Anesth. 2021;71: 110231. https://doi.org/10.1016/j.jclinane.2021.110231.

    Article  CAS  PubMed  Google Scholar 

  24. Follath F, Cleland JG, Just H, Papp JG, Scholz H, Peuhkurinen K, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet (Lond, Engl). 2002;360(9328):196–202. https://doi.org/10.1016/s0140-6736(02)09455-2.

    Article  CAS  Google Scholar 

  25. Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA. 2007;297(17):1883–91. https://doi.org/10.1001/jama.297.17.1883.

    Article  CAS  PubMed  Google Scholar 

  26. Packer M, Colucci W, Fisher L, Massie BM, Teerlink JR, Young J, et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail. 2013;1(2):103–11. https://doi.org/10.1016/j.jchf.2012.12.004.

    Article  PubMed  Google Scholar 

  27. Silvetti S, Silvani P, Azzolini ML, Dossi R, Landoni G, Zangrillo A. A systematic review on levosimendan in paediatric patients. Curr Vasc Pharmacol. 2015;13(1):128–33. https://doi.org/10.2174/1570161112666141127163536.

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Luo Q, Li Y, Zhang L, Wu X, Yan F. Effect of Prophylactic levosimendan on all-cause mortality in pediatric patients undergoing cardiac surgery-an updated systematic review and meta-analysis. Front Pediatr. 2020;8:456. https://doi.org/10.3389/fped.2020.00456.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Angadi U, Westrope C, Chowdhry MF. Is levosimendan effective in paediatric heart failure and post-cardiac surgeries? Interact Cardiovasc Thorac Surg. 2013;17(4):710–4. https://doi.org/10.1093/icvts/ivt297.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lechner E, Hofer A, Leitner-Peneder G, Freynschlag R, Mair R, Weinzettel R, et al. Levosimendan versus milrinone in neonates and infants after corrective open-heart surgery: a pilot study. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2012;13(5):542–8. https://doi.org/10.1097/PCC.0b013e3182455571.

    Article  Google Scholar 

  31. Cholley B, Levy B, Fellahi JL, Longrois D, Amour J, Ouattara A, et al. Levosimendan in the light of the results of the recent randomized controlled trials: an expert opinion paper. Crit care (Lond, Engl). 2019;23(1):385. https://doi.org/10.1186/s13054-019-2674-4.

    Article  Google Scholar 

  32. Matsumoto S, Nakazawa G, Ohno Y, Ishihara M, Sakai K, Nakamura N, et al. Efficacy of exogenous atrial natriuretic peptide in patients with heart failure with preserved ejection fraction: deficiency of atrial natriuretic peptide and replacement therapy. ESC Heart Fail. 2020;7(6):4172–81. https://doi.org/10.1002/ehf2.13042.

    Article  PubMed Central  Google Scholar 

  33. Séguéla PE, Mauriat P, Mouton JB, Tafer N, Assy J, Poncelet G, et al. Single-centred experience with levosimendan in paediatric decompensated dilated cardiomyopathy. Arch Cardiovasc Dis. 2015;108(6–7):347–55. https://doi.org/10.1016/j.acvd.2015.01.012.

    Article  PubMed  Google Scholar 

  34. Suominen P, Mattila N, Nyblom O, Rautiainen P, Turanlahti M, Rahkonen O. The hemodynamic effects and safety of repetitive levosimendan infusions on children with dilated cardiomyopathy. World J Pediatr Congenit Heart Surg. 2017;8(1):25–31. https://doi.org/10.1177/2150135116674466.

    Article  PubMed  Google Scholar 

  35. Fruhwald S, Pollesello P, Fruhwald F. Advanced heart failure: an appraisal of the potential of levosimendan in this end-stage scenario and some related ethical considerations. Expert Rev Cardiovasc Ther. 2016;14(12):1335–47. https://doi.org/10.1080/14779072.2016.1247694.

    Article  CAS  PubMed  Google Scholar 

  36. Shah SJ, Blair JE, Filippatos GS, Macarie C, Ruzyllo W, Korewicki J, et al. Effects of istaroxime on diastolic stiffness in acute heart failure syndromes: results from the hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure (HORIZON-HF) trial. Am Heart J. 2009;157(6):1035–41. https://doi.org/10.1016/j.ahj.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  37. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316(23):1429–35. doi:https://doi.org/10.1056/nejm198706043162301.

  38. Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol. 2015;308(10):F1047–55. https://doi.org/10.1152/ajprenal.00164.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Forssmann W-G, Meyer M, Forssmann K. The renal urodilatin system: clinical implications. Cardiovasc Res. 2001;51(3):450–62. https://doi.org/10.1016/s0008-6363(01)00331-5.

    Article  CAS  PubMed  Google Scholar 

  40. Mitrovic V, Seferovic PM, Simeunovic D, Ristic AD, Miric M, Moiseyev VS, et al. Haemodynamic and clinical effects of ularitide in decompensated heart failure. Eur Heart J. 2006;27(23):2823–32. https://doi.org/10.1093/eurheartj/ehl337.

    Article  CAS  PubMed  Google Scholar 

  41. Packer M, O’Connor C, McMurray JJV, Wittes J, Abraham WT, Anker SD, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017;376(20):1956–64. https://doi.org/10.1056/NEJMoa1601895.

    Article  CAS  PubMed  Google Scholar 

  42. Metra M, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol. 2013;61(2):196–206. https://doi.org/10.1016/j.jacc.2012.11.005.

    Article  CAS  PubMed  Google Scholar 

  43. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet (Lond, Engl). 2013;381(9860):29–39. https://doi.org/10.1016/s0140-6736(12)61855-8.

    Article  CAS  Google Scholar 

  44. Metra M, Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, et al. Effects of serelaxin in patients with acute heart failure. N Engl J Med. 2019;381(8):716–26. https://doi.org/10.1056/NEJMoa1801291.

    Article  CAS  PubMed  Google Scholar 

  45. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86(3):747–803. https://doi.org/10.1152/physrev.00036.2005.

    Article  CAS  PubMed  Google Scholar 

  46. Flynn JT. Not ready for prime time: aliskiren for treatment of hypertension or proteinuria in children. Pediatr Nephrol (Berl, Ger). 2011;26(3):491–2. https://doi.org/10.1007/s00467-010-1726-4.

    Article  Google Scholar 

  47. Long term follow up of survivors of childhood cancer: Guideline No. 76. Scottish Collegiate Guidelines Network (SIGN). http://www.sign.ac.uk/pdf/sign76.pdf. Accessed 1 May 2007.

  48. Yusuf S, Pitt B, Davis CE, Hood WB Jr, Cohn JN. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327(10):685–91. https://doi.org/10.1056/nejm199209033271003.

    Article  CAS  PubMed  Google Scholar 

  49. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325(5):293–302. https://doi.org/10.1056/nejm199108013250501.

    Article  PubMed  Google Scholar 

  50. Packer M, Poole-Wilson PA, Armstrong PW, Cleland JG, Horowitz JD, Massie BM, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure ATLAS Study Group. Circulation. 1999;100(23):2312–8. https://doi.org/10.1161/01.cir.100.23.2312.

    Article  CAS  PubMed  Google Scholar 

  51. Lewis AB, Chabot M. Outcome of infants and children with dilated cardiomyopathy. Am J Cardiol. 1991;68(4):365–9. https://doi.org/10.1016/0002-9149(91)90833-7.

    Article  CAS  PubMed  Google Scholar 

  52. Frenneaux M, Stewart RA, Newman CM, Hallidie-Smith KA. Enalapril for severe heart failure in infancy. Arch Dis Child. 1989;64(2):219–23. https://doi.org/10.1136/adc.64.2.219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leversha AM, Wilson NJ, Clarkson PM, Calder AL, Ramage MC, Neutze JM. Efficacy and dosage of enalapril in congenital and acquired heart disease. Arch Dis Child. 1994;70(1):35–9. https://doi.org/10.1136/adc.70.1.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mori Y, Nakazawa M, Tomimatsu H, Momma K. Long-term effect of angiotensin-converting enzyme inhibitor in volume overloaded heart during growth: a controlled pilot study. J Am Coll Cardiol. 2000;36(1):270–5. https://doi.org/10.1016/s0735-1097(00)00673-2.

    Article  CAS  PubMed  Google Scholar 

  55. Stern H, Weil J, Genz T, Vogt W, Bühlmeyer K. Captopril in children with dilated cardiomyopathy: acute and long-term effects in a prospective study of hemodynamic and hormonal effects. Pediatr Cardiol. 1990;11(1):22–8. https://doi.org/10.1007/bf02239543.

    Article  CAS  PubMed  Google Scholar 

  56. Staessen J, Lijnen P, Fagard R, Verschueren LJ, Amery A. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol. 1981;91(3):457–65. https://doi.org/10.1677/joe.0.0910457.

    Article  CAS  PubMed  Google Scholar 

  57. Borghi C, Boschi S, Ambrosioni E, Melandri G, Branzi A, Magnani B. Evidence of a partial escape of renin-angiotensin-aldosterone blockade in patients with acute myocardial infarction treated with ACE inhibitors. J Clin Pharmacol. 1993;33(1):40–5. https://doi.org/10.1002/j.1552-4604.1993.tb03901.x.

    Article  CAS  PubMed  Google Scholar 

  58. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341(10):709–17. https://doi.org/10.1056/nejm199909023411001.

    Article  CAS  PubMed  Google Scholar 

  59. Raman SV, Hor KN, Mazur W, Halnon NJ, Kissel JT, He X, et al. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(2):153–61. https://doi.org/10.1016/s1474-4422(14)70318-7.

    Article  CAS  PubMed  Google Scholar 

  60. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21. https://doi.org/10.1056/NEJMoa1009492.

    Article  CAS  PubMed  Google Scholar 

  61. Gottlieb SS, Dickstein K, Fleck E, Kostis J, Levine TB, LeJemtel T, et al. Hemodynamic and neurohormonal effects of the angiotensin II antagonist losartan in patients with congestive heart failure. Circulation. 1993;88(4 Pt 1):1602–9. https://doi.org/10.1161/01.cir.88.4.1602.

    Article  CAS  PubMed  Google Scholar 

  62. Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial–the Losartan Heart Failure Survival Study ELITE II. Lancet (Lond, Engl). 2000;355(9215):1582–7. https://doi.org/10.1016/s0140-6736(00)02213-3.

    Article  CAS  Google Scholar 

  63. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345(23):1667–75. https://doi.org/10.1056/NEJMoa010713.

    Article  CAS  PubMed  Google Scholar 

  64. Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med. 1996;334(21):1349–55. https://doi.org/10.1056/NEJM199605233342101.

    Article  CAS  PubMed  Google Scholar 

  65. Effect of metoprolol CR/XL in chronic heart failure. Metoprolol CR/XL Randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353(9169):2001–7.

    Article  Google Scholar 

  66. Hjalmarson A, Goldstein S, Fagerberg B, Wedel H, Waagstein F, Kjekshus J, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF) MERIT-HF Study Group. JAMA. 2000;283(10):1295–302. https://doi.org/10.1001/jama.283.10.1295.

    Article  CAS  PubMed  Google Scholar 

  67. Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106(17):2194–9. https://doi.org/10.1161/01.cir.0000035653.72855.bf.

    Article  PubMed  Google Scholar 

  68. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the heart failure society of America. Circulation. 2017;136(6):e137–61. https://doi.org/10.1161/cir.0000000000000509.

    Article  PubMed  Google Scholar 

  69. Shaddy RE, Olsen SL, Bristow MR, Taylor DO, Bullock EA, Tani LY, et al. Efficacy and safety of metoprolol in the treatment of doxorubicin-induced cardiomyopathy in pediatric patients. Am Heart J. 1995;129(1):197–9. https://doi.org/10.1016/0002-8703(95)90061-6.

    Article  CAS  PubMed  Google Scholar 

  70. Shaddy RE. Beta-blocker therapy in young children with congestive heart failure under consideration for heart transplantation. Am Heart J. 1998;136(1):19–21. https://doi.org/10.1016/s0002-8703(98)70176-0.

    Article  CAS  PubMed  Google Scholar 

  71. Shaddy RE, Tani LY, Gidding SS, Pahl E, Orsmond GS, Gilbert EM, et al. Beta-blocker treatment of dilated cardiomyopathy with congestive heart failure in children: a multi-institutional experience. J Heart Lung Transplant. 1999;18(3):269–74. https://doi.org/10.1016/s1053-2498(98)00030-8.

    Article  CAS  PubMed  Google Scholar 

  72. Buchhorn R, Hulpke-Wette M, Hilgers R, Bartmus D, Wessel A, Bürsch J. Propranolol treatment of congestive heart failure in infants with congenital heart disease: The CHF-PRO-INFANT. Trial Congestive heart failure in infants treated with propanol. Int J Cardiol. 2001;79(23):167–73. https://doi.org/10.1016/s0167-5273(01)00413-2.

    Article  CAS  PubMed  Google Scholar 

  73. Bruns LA, Chrisant MK, Lamour JM, Shaddy RE, Pahl E, Blume ED, et al. Carvedilol as therapy in pediatric heart failure: an initial multicenter experience. J Pediatr. 2001;138(4):505–11. https://doi.org/10.1067/mpd.2001.113045.

    Article  CAS  PubMed  Google Scholar 

  74. Rusconi P, Gómez-Marín O, Rossique-González M, Redha E, Marín JR, Lon-Young M, et al. Carvedilol in children with cardiomyopathy: 3-year experience at a single institution. J Heart Lung Transplant. 2004;23(7):832–8. https://doi.org/10.1016/j.healun.2003.07.025.

    Article  PubMed  Google Scholar 

  75. Azeka E, Franchini Ramires JA, Valler C, Alcides BE. Delisting of infants and children from the heart transplantation waiting list after carvedilol treatment. J Am Coll Cardiol. 2002;40(11):2034–8.

    Article  CAS  Google Scholar 

  76. Laer S, Mir TS, Behn F, Eiselt M, Scholz H, Venzke A, et al. Carvedilol therapy in pediatric patients with congestive heart failure: a study investigating clinical and pharmacokinetic parameters. Am Heart J. 2002;143(5):916–22.

    Article  Google Scholar 

  77. Shaddy RE, Boucek MM, Hsu DT, Boucek RJ, Canter CE, Mahony L, et al. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA. 2007;298(10):1171–9. https://doi.org/10.1001/jama.298.10.1171.

    Article  PubMed  Google Scholar 

  78. Alabed S, Sabouni A, Al Dakhoul S, Bdaiwi Y. Beta-blockers for congestive heart failure in children. Cochrane Database Syst Rev. 2020;7:CD007037. https://doi.org/10.1002/14651858.CD007037.pub4.

    Article  PubMed  Google Scholar 

  79. Miyamoto SD, Stauffer BL, Nakano S, Sobus R, Nunley K, Nelson P, et al. Beta-adrenergic adaptation in paediatric idiopathic dilated cardiomyopathy. Eur Heart J. 2014;35(1):33–41. https://doi.org/10.1093/eurheartj/ehs229.

    Article  CAS  PubMed  Google Scholar 

  80. Bayes-Genis A, Barallat J, Richards AM. A test in context: neprilysin: function, inhibition, and biomarker. J Am Coll Cardiol. 2016;68(6):639–53. https://doi.org/10.1016/j.jacc.2016.04.060.

    Article  CAS  PubMed  Google Scholar 

  81. Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau JL, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002;106(8):920–6. https://doi.org/10.1161/01.cir.0000029801.86489.50.

    Article  CAS  PubMed  Google Scholar 

  82. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  83. Balmforth C, Simpson J, Shen L, Jhund PS, Lefkowitz M, Rizkala AR, et al. Outcomes and effect of treatment according to etiology in HFrEF: an analysis of PARADIGM-HF. JACC Heart Fail. 2019;7(6):457–65. https://doi.org/10.1016/j.jchf.2019.02.015.

    Article  PubMed  Google Scholar 

  84. Docherty KF, Vaduganathan M, Solomon SD, McMurray JJV. Sacubitril/valsartan: neprilysin inhibition 5 years after PARADIGM-HF. JACC Heart Fail. 2020;8(10):800–10. https://doi.org/10.1016/j.jchf.2020.06.020.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Velazquez EJ, Morrow DA, DeVore AD, Duffy CI, Ambrosy AP, McCague K, et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019;380(6):539–48. https://doi.org/10.1056/NEJMoa1812851.

    Article  CAS  PubMed  Google Scholar 

  86. Shaddy R, Canter C, Halnon N, Kochilas L, Rossano J, Bonnet D, et al. Design for the sacubitril/valsartan (LCZ696) compared with enalapril study of pediatric patients with heart failure due to systemic left ventricle systolic dysfunction (PANORAMA-HF study). Am Heart J. 2017;193:23–34. https://doi.org/10.1016/j.ahj.2017.07.006.

    Article  PubMed  Google Scholar 

  87. Greene SJ, Fonarow GC, DeVore AD, Sharma PP, Vaduganathan M, Albert NM, et al. Titration of medical therapy for heart failure with reduced ejection fraction. J Am Coll Cardiol. 2019;73(19):2365–83. https://doi.org/10.1016/j.jacc.2019.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Singh RK, Canter CE, Shi L, Colan SD, Dodd DA, Everitt MD, et al. Survival without cardiac transplantation among children with dilated cardiomyopathy. J Am Coll Cardiol. 2017;70(21):2663–73. https://doi.org/10.1016/j.jacc.2017.09.1089.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Martyn T, Faulkenberg KD, Yaranov DM, Albert CL, Hutchinson C, Menon V, et al. Initiation of angiotensin receptor-neprilysin inhibitor in heart failure with low cardiac output. J Am Coll Cardiol. 2019;74(18):2326–7. https://doi.org/10.1016/j.jacc.2019.09.006.

    Article  PubMed  Google Scholar 

  90. Fox K, Komajda M, Ford I, Robertson M, Böhm M, Borer JS, et al. Effect of ivabradine in patients with left-ventricular systolic dysfunction: a pooled analysis of individual patient data from the BEAUTIFUL and SHIFT trials. Eur Heart J. 2013;34(29):2263–70. https://doi.org/10.1093/eurheartj/eht101.

    Article  CAS  PubMed  Google Scholar 

  91. Bonnet D, Berger F, Jokinen E, Kantor PF, Daubeney PEF. Ivabradine in children with dilated cardiomyopathy and symptomatic chronic heart failure. J Am Coll Cardiol. 2017;70(10):1262–72. https://doi.org/10.1016/j.jacc.2017.07.725.

    Article  CAS  PubMed  Google Scholar 

  92. Adorisio R, Calvieri C, Cantarutti N, D’Amico A, Catteruccia M, Bertini E, et al. Heart rate reduction strategy using ivabradine in end-stage Duchenne cardiomyopathy. Int J Cardiol. 2019;280:99–103. https://doi.org/10.1016/j.ijcard.2019.01.052.

    Article  PubMed  Google Scholar 

  93. Lindgren M, Robertson J, Adiels M, Schaufelberger M, Åberg M, Torén K, et al. Elevated resting heart rate in adolescent men and risk of heart failure and cardiomyopathy. ESC Heart Fail. 2020;7(3):1178–85. https://doi.org/10.1002/ehf2.12726.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Morgan BP, Muci A, Lu PP, Qian X, Tochimoto T, Smith WW, et al. Discovery of omecamtiv mecarbil the first, selective, small molecule activator of cardiac Myosin. ACS Med Chem Lett. 2010;1(9):472–7. https://doi.org/10.1021/ml100138q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD, et al. Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction: rationale and design of GALACTIC-HF. JACC Heart Fail. 2020;8(4):329–40. https://doi.org/10.1016/j.jchf.2019.12.001.

    Article  PubMed  Google Scholar 

  96. Psotka MA, Gottlieb SS, Francis GS, Allen LA, Teerlink JR, Adams KF Jr, et al. Cardiac calcitropes, myotropes, and mitotropes: JACC review topic of the week. J Am Coll Cardiol. 2019;73(18):2345–53. https://doi.org/10.1016/j.jacc.2019.02.051.

    Article  PubMed  Google Scholar 

  97. Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD, et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med. 2021;384(2):105–16. https://doi.org/10.1056/NEJMoa2025797.

    Article  CAS  PubMed  Google Scholar 

  98. Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD, et al. Effect of ejection fraction on clinical outcomes in patients treated with omecamtiv mecarbil in GALACTIC-HF. J Am Coll Cardiol. 2021. https://doi.org/10.1016/j.jacc.2021.04.065.

    Article  PubMed  Google Scholar 

  99. Teerlink JR, Felker GM, McMurray JJ, Solomon SD, Adams KF Jr, Cleland JG, et al. Chronic oral study of myosin activation to increase contractility in heart failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet (Lond, Engl). 2016;388(10062):2895–903. https://doi.org/10.1016/s0140-6736(16)32049-9.

    Article  CAS  Google Scholar 

  100. Teerlink JR, Felker GM, McMurray JJV, Ponikowski P, Metra M, Filippatos GS, et al. Acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure: the ATOMIC-AHF study. J Am Coll Cardiol. 2016;67(12):1444–55. https://doi.org/10.1016/j.jacc.2016.01.031.

    Article  CAS  PubMed  Google Scholar 

  101. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303.

    Article  CAS  Google Scholar 

  102. Januzzi JL Jr, Ibrahim NE. Understanding the mechanistic benefit of heart failure drugs matters. J Am Coll Cardiol. 2020;76(23):2752–4. https://doi.org/10.1016/j.jacc.2020.10.026.

    Article  CAS  PubMed  Google Scholar 

  103. Omar M, Jensen J, Frederiksen PH, Kistorp C, Videbæk L, Poulsen MK, et al. Effect of empagliflozin on hemodynamics in patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2020;76(23):2740–51. https://doi.org/10.1016/j.jacc.2020.10.005.

    Article  CAS  PubMed  Google Scholar 

  104. Iborra-Egea O, Santiago-Vacas E, Yurista SR, Lupón J, Packer M, Heymans S, et al. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC Basic Transl Sci. 2019;4(7):831–40. https://doi.org/10.1016/j.jacbts.2019.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Armstrong PW, Roessig L, Patel MJ, Anstrom KJ, Butler J, Voors AA, et al. A multicenter, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral soluble guanylate cyclase stimulator: the VICTORIA trial. JACC Heart Fail. 2018;6(2):96–104. https://doi.org/10.1016/j.jchf.2017.08.013.

    Article  PubMed  Google Scholar 

  106. Follmann M, Ackerstaff J, Redlich G, Wunder F, Lang D, Kern A, et al. Discovery of the soluble guanylate cyclase stimulator vericiguat (BAY 1021189) for the treatment of chronic heart failure. J Med Chem. 2017;60(12):5146–61. https://doi.org/10.1021/acs.jmedchem.7b00449.

    Article  CAS  PubMed  Google Scholar 

  107. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382(20):1883–93. https://doi.org/10.1056/NEJMoa1915928.

    Article  CAS  PubMed  Google Scholar 

  108. Tini G, Cannatà A, Canepa M, Masci PG, Pardini M, Giacca M, et al. Is heart failure with preserved ejection fraction a “dementia” of the heart? Heart Fail Rev. 2021. https://doi.org/10.1007/s10741-021-10114-9.

    Article  PubMed  Google Scholar 

  109. Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. The control of diastolic calcium in the heart: basic mechanisms and functional implications. Circ Res. 2020;126(3):395–412. https://doi.org/10.1161/circresaha.119.315891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Przewlocka-Kosmala M, Marwick TH, Dabrowski A, Kosmala W. Contribution of cardiovascular reserve to prognostic categories of heart failure with preserved ejection fraction: a classification based on machine learning. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2019;32(5):604-15.e6. https://doi.org/10.1016/j.echo.2018.12.002.

    Article  Google Scholar 

  111. Masutani S, Saiki H, Kurishima C, Ishido H, Tamura M, Senzaki H. Heart failure with preserved ejection fraction in children: hormonal imbalance between aldosterone and brain natriuretic peptide. Circ J. 2013;77(9):2375–82. https://doi.org/10.1253/circj.cj-12-1271.

    Article  PubMed  Google Scholar 

  112. Lombardi KC, Northrup V, McNamara RL, Sugeng L, Weismann CG. Aortic stiffness and left ventricular diastolic function in children following early repair of aortic coarctation. Am J Cardiol. 2013;112(11):1828–33. https://doi.org/10.1016/j.amjcard.2013.07.052.

    Article  PubMed  Google Scholar 

  113. Webber SA, Lipshultz SE, Sleeper LA, Lu M, Wilkinson JD, Addonizio LJ, et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation. 2012;126(10):1237–44. https://doi.org/10.1161/circulationaha.112.104638.

    Article  PubMed  Google Scholar 

  114. Kleinfeldt T, Nienaber CA, Kische S, Akin I, Turan RG, Körber T, et al. Cardiac manifestation of the hypereosinophilic syndrome: new insights. Clin Res Cardiol Off J German Card Soc. 2010;99(7):419–27. https://doi.org/10.1007/s00392-010-0144-8.

    Article  CAS  Google Scholar 

  115. Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Srivastava D, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol. 2015;65(23):2511–22. https://doi.org/10.1016/j.jacc.2015.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bhatti K, Bandlamudi M, Lopez-Mattei J. Endomyocardial Fibrosis. StatPearls. Treasure Island (FL): StatPearls Publishing opyright © 2021, StatPearls Publishing LLC.; 2021.

  117. Felker GM, Butler J, Januzzi JL Jr, Desai AS, McMurray JJV, Solomon SD. Probabilistic readjudication of heart failure hospitalization events in the PARAGON-HF study. Circulation. 2021;143(23):2316–8. https://doi.org/10.1161/circulationaha.121.054496.

    Article  PubMed  Google Scholar 

  118. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20. https://doi.org/10.1056/NEJMoa1908655.

    Article  CAS  PubMed  Google Scholar 

  119. Cunningham JW, Claggett BL, O’Meara E, Prescott MF, Pfeffer MA, Shah SJ, et al. Effect of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients With HFpEF. J Am Coll Cardiol. 2020;76(5):503–14. https://doi.org/10.1016/j.jacc.2020.05.072.

    Article  CAS  PubMed  Google Scholar 

  120. Bayes-Genis A, Núñez J, Lupón J. Sacubitril/valsartan as antifibrotic drug: rejuvenating the fibrosed HFpEF heart. J Am Coll Cardiol. 2020;76(5):515–7. https://doi.org/10.1016/j.jacc.2020.06.016.

    Article  CAS  PubMed  Google Scholar 

  121. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021. https://doi.org/10.1056/NEJMoa2107038.

    Article  PubMed  Google Scholar 

  122. Solomon SD, de Boer RA, DeMets D, Hernandez AF, Inzucchi SE, Kosiborod MN, et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial. Eur J Heart Fail. 2021;23(7):1217–25. https://doi.org/10.1002/ejhf.2249.

    Article  CAS  PubMed  Google Scholar 

  123. Lewis GA, Dodd S, Clayton D, Bedson E, Eccleson H, Schelbert EB, et al. Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat Med. 2021;27(8):1477–82. https://doi.org/10.1038/s41591-021-01452-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Kantor.

Ethics declarations

Funding

No external funds were used in the preparation of this manuscript.

Conflict of interest

Robert Shaddy and Paul Kantor have served as Consultants to Novartis. Molly Weisert, Jennifer Su, and Jondavid Menteer declare no potential conflicts of interest that might be relevant to this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

Not applicable.

Code availability

Not applicable.

Authorship

All authors contributed to the study conception, design, drafting, and editing of the manuscript. The revised final draft of the manuscript was modified by Paul F. Kantor. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisert, M., Su, J.A., Menteer, J. et al. Drug Treatment of Heart Failure in Children: Gaps and Opportunities. Pediatr Drugs 24, 121–136 (2022). https://doi.org/10.1007/s40272-021-00485-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-021-00485-9

Navigation