Skip to main content
Log in

Therapeutic Potential of Citrulline as an Arginine Supplement: A Clinical Pharmacology Review

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Supplemental arginine has shown promise as a safe therapeutic option to improve endogenous nitric oxide (NO) regulation in cardiovascular diseases associated with endothelial dysfunction. In clinical studies in adults, l-arginine, an endogenous amino acid, was reported to improve cardiovascular function in hypertension, pulmonary hypertension, preeclampsia, angina, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome. l-citrulline, a natural precursor of l-arginine, is more bioavailable than l-arginine because it avoids hepatic first-pass metabolism and has a longer circulation time. Although not yet well-studied, arginine/citrulline has immense therapeutic potential in some life-threatening diseases in children. However, the optimal clinical development of arginine or citrulline in children requires more information about pharmacokinetics and exposure–response relationships at appropriate ages and under relevant disease states. This article summarizes the preclinical and clinical studies of arginine/citrulline in both adults and children, including currently available pharmacokinetic information. The pharmacology of arginine/citrulline is confounded by several patient-specific factors such as variations in baseline arginine/citrulline due to developmental ages and disease states. Currently available pharmacokinetic studies are insufficient to inform the optimal design of clinical studies, especially in children. Successful bench-to-bedside clinical translation of arginine supplementation awaits information from well-designed pharmacokinetic/pharmacodynamic studies, along with pharmacometric approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Meijer AJ, Lamers WH, Chamuleau RA. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990;70:701–48.

    Article  CAS  PubMed  Google Scholar 

  2. Morris SM Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr. 2002;22:87–105.

    Article  CAS  PubMed  Google Scholar 

  3. Wu G, Meininger CJ, Knabe DA, Bazer FW, Rhoads JM. Arginine nutrition in development, health and disease. Curr Opin Clin Nutr Metab Care. 2000;3:59–66.

    Article  CAS  PubMed  Google Scholar 

  4. Bahri S, Zerrouk N, Aussel C, Moinard C, Crenn P, Curis E, et al. Citrulline: from metabolism to therapeutic use. Nutrition. 2013;29:479–84.

    Article  CAS  PubMed  Google Scholar 

  5. Romero MJ, Platt DH, Caldwell RB, Caldwell RW. Therapeutic use of citrulline in cardiovascular disease. Cardiovasc Drug Rev. 2006;24:275–90.

    Article  CAS  PubMed  Google Scholar 

  6. Egashira K, Hirooka Y, Kuga T, Mohri M, Takeshita A. Effects of l-arginine supplementation on endothelium-dependent coronary vasodilation in patients with angina pectoris and normal coronary arteriograms. Circulation. 1996;94:130–4.

    Article  CAS  PubMed  Google Scholar 

  7. Palloshi A, Fragasso G, Piatti P, Monti LD, Setola E, Valsecchi G, et al. Effect of oral l-arginine on blood pressure and symptoms and endothelial function in patients with systemic hypertension, positive exercise tests, and normal coronary arteries. Am J Cardiol. 2004;93:933–5.

    Article  CAS  PubMed  Google Scholar 

  8. DeMots H, Glasser SP. Intermittent transdermal nitroglycerin therapy in the treatment of chronic stable angina. J Am Coll Cardiol. 1989;13:786–95.

    Article  CAS  PubMed  Google Scholar 

  9. Ferratini M. Risk of rebound phenomenon during nitrate withdrawal. Int J Cardiol. 1994;45:89–96.

    Article  CAS  PubMed  Google Scholar 

  10. Parker JO, Parker JD, Caldwell RW, Farrell B, Kaesemeyer WH. The effect of supplemental l-arginine on tolerance development during continuous transdermal nitroglycerin therapy. J Am Coll Cardiol. 2002;39:1199–203.

    Article  CAS  PubMed  Google Scholar 

  11. Morris NH, Eaton BM, Dekker G. Nitric oxide, the endothelium, pregnancy and pre-eclampsia. Br J Obstet Gynaecol. 1996;103:4–15.

    Article  CAS  PubMed  Google Scholar 

  12. Vadillo-Ortega F, Perichart-Perera O, Espino S, Avila-Vergara MA, Ibarra I, Ahued R, et al. Effect of supplementation during pregnancy with l-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: randomised controlled trial. BMJ (Clinical research ed). 2011;342:d2901.

    Article  Google Scholar 

  13. Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, McGoon MD. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest. 2012;142:448–56.

    Article  PubMed  Google Scholar 

  14. Nagaya N, Uematsu M, Oya H, Sato N, Sakamaki F, Kyotani S, et al. Short-term oral administration of l-arginine improves hemodynamics and exercise capacity in patients with precapillary pulmonary hypertension. Am J Respir Crit Care Med. 2001;163:887–91.

    Article  CAS  PubMed  Google Scholar 

  15. Sharif Kashani B, Tahmaseb Pour P, Malekmohammad M, Behzadnia N, Sheybani-Afshar F, Fakhri M, et al. Oral l-citrulline malate in patients with idiopathic pulmonary arterial hypertension and Eisenmenger Syndrome: a clinical trial. J Cardiol. 2014;64:231–5.

    Article  PubMed  Google Scholar 

  16. Morris CR, Morris SM, Hagar W, Warmerdam Jv, Claster S, Kepka-Lenhart D, et al. Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease. Am J Resp Crit Care Med. 2003;168:63–69.

  17. Rashid A, Dunbar Ivy D. Pulmonary hypertension in children. Curr Paediatr. 2006;16:237–47.

    Article  Google Scholar 

  18. Pearson DL, Dawling S, Walsh WF, Haines JL, Christman BW, Bazyk A, et al. Neonatal pulmonary hypertension–urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N Engl J Med. 2001;344:1832–8.

    Article  CAS  PubMed  Google Scholar 

  19. Barr FE, Tirona RG, Taylor MB, Rice G, Arnold J, Cunningham G, et al. Pharmacokinetics and safety of intravenously administered citrulline in children undergoing congenital heart surgery: potential therapy for postoperative pulmonary hypertension. J Thorac Cardiovasc Surg. 2007;134:319–26.

    Article  CAS  PubMed  Google Scholar 

  20. Canter JA, Summar ML, Smith HB, Rice BD, Hall LD, Ritchie MD, et al. Genetic variation in the mitochondrial enzyme carbamyl-phosphate synthetase I predisposes children to increased pulmonary artery pressure following surgical repair of congenital heart difects: a validated genetic association study. Mitochondrion. 2007;7:204–10.

    Article  CAS  PubMed  Google Scholar 

  21. Yang S, So TY. The Use of citrulline for pediatric pulmonary hypertension. Res J Clin Pediatr. 2017;1:1–6.

    CAS  Google Scholar 

  22. Koga Y, Akita Y, Junko N, Yatsuga S, Povalko N, Fukiyama R, et al. Endothelial dysfunction in MELAS improved by l-arginine supplementation. Neurology. 2006;66:1766–9.

    Article  CAS  PubMed  Google Scholar 

  23. El-Hattab AW, Hsu JW, Emrick LT, Wong LJ, Craigen WJ, Jahoor F, et al. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Mol Genet Metab. 2012;105:607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El-Hattab AW, Emrick LT, Hsu JW, Chanprasert S, Almannai M, Craigen WJ, et al. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation. Mol Genet Metab. 2016;117:407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gropman AL, Summar M, Leonard JV. Neurological implications of urea cycle disorders. J Inherit Metab Dis. 2007;30:865–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brusilow SW. Arginine, an indispensable amino acid for patients with inborn errors of urea synthesis. J Clin Invest. 1984;74:2144–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adam S, Almeida MF, Assoun M, Baruteau J, Bernabei SM, Bigot S, et al. Dietary management of urea cycle disorders: European practice. Mol Genet Metab. 2013;110:439–45.

    Article  CAS  PubMed  Google Scholar 

  28. Batshaw ML, Brusilow S, Waber L, Blom W, Brubakk AM, Burton BK, et al. Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion. N Engl J Med. 1982;306:1387–92.

    Article  CAS  PubMed  Google Scholar 

  29. Cynober L, Le Boucher J, Vasson M-P. Arginine metabolism in mammals. J Nutr Biochem. 1995;6:402–13.

    Article  CAS  Google Scholar 

  30. Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem. 2006;17:571–88.

    Article  CAS  PubMed  Google Scholar 

  31. Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S, et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation. 2003;108:2000–6.

    Article  CAS  PubMed  Google Scholar 

  32. Boelens PG, van Leeuwen PA, Dejong CH, Deutz NE. Intestinal renal metabolism of l-citrulline and l-arginine following enteral or parenteral infusion of l-alanyl-l-[2, 15N] glutamine or l-[2, 15 N] glutamine in mice. Am J Physiol Gastrointest Liver Physiol. 2005;289:G679–G685.

  33. Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Bénazeth S, et al. Almost all about citrulline in mammals. Amino Acids. 2005;29:177.

    Article  CAS  PubMed  Google Scholar 

  34. Bode-Boger SM, Scalera F, Ignarro LJ. The l-arginine paradox: importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharmacol Ther. 2007;114:295–306.

    Article  PubMed  CAS  Google Scholar 

  35. Boger RH, Bode-Boger SM, Brandes RP, Phivthong-ngam L, Bohme M, Nafe R, et al. Dietary l-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation. 1997;96:1282–90.

    Article  CAS  PubMed  Google Scholar 

  36. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of l-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992;90:1168–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singer AH, Tsao PS, Wang BY, Bloch DA, Cooke JP. Discordant effects of dietary l-arginine on vascular structure and reactivity in hypercholesterolemic rabbits. J Cardiovasc Pharmacol. 1995;25:710–6.

    Article  CAS  PubMed  Google Scholar 

  38. Rossitch E Jr, Alexander E 3rd, Black PM, Cooke JP. l-arginine normalizes endothelial function in cerebral vessels from hypercholesterolemic rabbits. J Clin Invest. 1991;87:1295–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boger RH, Bode-Boger SM, Phivthong-ngam L, Brandes RP, Schwedhelm E, Mugge A, et al. Dietary l-arginine and alpha-tocopherol reduce vascular oxidative stress and preserve endothelial function in hypercholesterolemic rabbits via different mechanisms. Atherosclerosis. 1998;141:31–43.

    Article  CAS  PubMed  Google Scholar 

  40. Boger RH, Bode-Boger SM, Mugge A, Kienke S, Brandes R, Dwenger A, et al. Supplementation of hypercholesterolaemic rabbits with l-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis. 1995;117:273–84.

    Article  CAS  PubMed  Google Scholar 

  41. Ananthakrishnan M, Barr FE, Summar ML, Smith HA, Kaplowitz M, Cunningham G, et al. l-Citrulline ameliorates chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol. 2009;297:L506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Rescue treatment with L-citrulline inhibits hypoxia-induced pulmonary hypertension in newborn pigs. Am J Respir Cell Mol Biol. 2015;53:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin Y, Chen B, Calvert TJ, Chicoine LG, Liu Y, Nelin LD. Chronic hypoxia decreases arterial and venous compliance in isolated perfused rat lungs: an effect that is reversed by exogenous l-arginine. Am J Physiol Heart Circul Physiol. 2013;304:H195–205.

    Article  CAS  Google Scholar 

  44. Mitani Y, Maruyama K, Sakurai M. Prolonged administration of l-arginine ameliorates chronic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation. 1997;96:689–97.

    Article  CAS  PubMed  Google Scholar 

  45. Ou ZJ, Wei W, Huang DD, Luo W, Luo D, Wang ZP, et al. l-arginine restores endothelial nitric oxide synthase-coupled activity and attenuates monocrotaline-induced pulmonary artery hypertension in rats. Am J Physiol Endocrinol Metab. 2010;298:E1131–9.

    Article  CAS  PubMed  Google Scholar 

  46. Wang BY, Singer AH, Tsao PS, Drexler H, Kosek J, Cooke JP. Dietary arginine prevents atherogenesis in the coronary artery of the hypercholesterolemic rabbit. J Am Coll Cardiol. 1994;23:452–8.

    Article  CAS  PubMed  Google Scholar 

  47. Preli RB, Klein KP, Herrington DM. Vascular effects of dietary l-arginine supplementation. Atherosclerosis. 2002;162:1–15.

    Article  CAS  PubMed  Google Scholar 

  48. Aji W, Ravalli S, Szabolcs M, Jiang XC, Sciacca RR, Michler RE, et al. l-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice. Circulation. 1997;95:430–7.

    Article  CAS  PubMed  Google Scholar 

  49. Pineiro V, Ortiz-Moreno A, Mora-Escobedo R, Hernandez-Navarro MD, Ceballos-Reyes G, Chamorro-Cevallos G. Effect of l-arginine oral supplementation on response to myocardial infarction in hypercholesterolemic and hypertensive rats. Plant Foods Hum Nutr. 2010;65:31–7.

    Article  CAS  PubMed  Google Scholar 

  50. Lee CW, Li D, Channon KM, Paterson DJ. l-arginine supplementation reduces cardiac noradrenergic neurotransmission in spontaneously hypertensive rats. J Mol Cell Cardiol. 2009;47:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bursztyn M, Podjarny E, Dahan R, Raz I, Bernheim J. Insulin-induced hypertension, l-arginine, and endothelial nitric oxide synthase in pregnant rats. Hypertens Pregnancy. 2003;22:267–74.

    Article  CAS  PubMed  Google Scholar 

  52. Podjarny E, Bursztyn M, Rashed G, Benchetrit S, Katz B, Green J, et al. Chronic exogenous hyperinsulinaemia-induced hypertension in pregnant rats: effect of chronic treatment with l-arginine. Clin Sci (Lond). 2001;100:667–71.

    Article  CAS  Google Scholar 

  53. Podjarny E, Ben-Chetrit S, Rathaus M, Korzets Z, Green J, Katz B, et al. Pregnancy-induced hypertension in rats with adriamycin nephropathy is associated with an inadequate production of nitric oxide. Hypertension. 1997;29:986–91.

    Article  CAS  PubMed  Google Scholar 

  54. Podjarny EPA, Rathus M, Green J, Gonen O, Shamir R, Bernheim J. Effect of l-arginine treatment in pregnant rats with adriamycin nephropathy. Hypertens Preg. 1993;12:517–524.

  55. Fike CD, Kaplowitz MR, Rehorst-Paea LA, Nelin LD. l-Arginine increases nitric oxide production in isolated lungs of chronically hypoxic newborn pigs. J Appl Physiol. 1985;2000(88):1797–803.

    Google Scholar 

  56. Chen PY, Sanders PW. l-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest. 1991;88:1559–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chien SJ, Lin KM, Kuo HC, Huang CF, Lin YJ, Huang LT, et al. Two different approaches to restore renal nitric oxide and prevent hypertension in young spontaneously hypertensive rats: l-citrulline and nitrate. Transl Res. 2014;163:43–52.

    Article  CAS  PubMed  Google Scholar 

  58. Tsubuku S, Hatayama K, Mawatari K, Smriga M, Kimura T. Thirteen-week oral toxicity study of l-arginine in rats. Int J Toxicol. 2004;23:101–5.

    Article  CAS  PubMed  Google Scholar 

  59. Kui B, Balla Z, Vasas B, Vegh ET, Pallagi P, Kormanyos ES, et al. New insights into the methodology of l-arginine-induced acute pancreatitis. PLoS ONE. 2015;10:e0117588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gerard JM, Luisiri A. A fatal overdose of arginine hydrochloride. J Toxicol Clin Toxicol. 1997;35:621–5.

    Article  CAS  PubMed  Google Scholar 

  61. Tedesco TA, Benford SA, Foster RC, Barness LA. Free amino acids in Citrullus vulgaris (watermelon). Pediatrics. 1984;73:879.

    CAS  PubMed  Google Scholar 

  62. Akashi K, Mifune Y, Morita K, Ishitsuka S, Tsujimoto H, Ishihara T. Spatial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. J Sci Food Agric. 2017;97:479–87.

    Article  CAS  PubMed  Google Scholar 

  63. Figueroa A, Wong A, Jaime SJ, Gonzales JU. Influence of L-citrulline and watermelon supplementation on vascular function and exercise performance. Curr Opin Clin Nutr Metab Care. 2017;20:92–8.

    Article  CAS  PubMed  Google Scholar 

  64. Martinez-Sanchez A, Ramos-Campo DJ, Fernandez-Lobato B, Rubio-Arias JA, Alacid F, Aguayo E. Biochemical, physiological, and performance response of a functional watermelon juice enriched in L-citrulline during a half-marathon race. Food Nutr Res. 2017;61:1330098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ellis AC, Dudenbostel T, Locher JL, Crowe-White K. Modulating oxidative stress and inflammation in elders: the MOXIE study. J Nutr Gerontol Geriatr. 2016;35:219–42.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Martinez-Sanchez A, Alacid F, Rubio-Arias JA, Fernandez-Lobato B, Ramos-Campo DJ, Aguayo E. Consumption of watermelon juice enriched in l-citrulline and pomegranate ellagitannins enhanced metabolism during physical exercise. J Agric Food Chem. 2017;65:4395–404.

    Article  CAS  PubMed  Google Scholar 

  67. Takahara K, Akashi K, Yokota A. Purification and characterization of glutamate N-acetyltransferase involved in citrulline accumulation in wild watermelon. FEBS J. 2005;272:5353–64.

    Article  CAS  PubMed  Google Scholar 

  68. Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, et al. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr. 2007;137:2680–5.

    Article  CAS  PubMed  Google Scholar 

  69. Figueroa A, Sanchez-Gonzalez MA, Perkins-Veazie PM, Arjmandi BH. Effects of watermelon supplementation on aortic blood pressure and wave reflection in individuals with prehypertension: a pilot study. Am J Hypertens. 2011;24:40–4.

    Article  CAS  PubMed  Google Scholar 

  70. Figueroa A, Sanchez-Gonzalez MA, Wong A, Arjmandi BH. Watermelon extract supplementation reduces ankle blood pressure and carotid augmentation index in obese adults with prehypertension or hypertension. Am J Hypertens. 2012;25:640–3.

    Article  CAS  PubMed  Google Scholar 

  71. Figueroa A, Wong A, Hooshmand S, Sanchez-Gonzalez MA. Effects of watermelon supplementation on arterial stiffness and wave reflection amplitude in postmenopausal women. Menopause. 2013;20:573–7.

    PubMed  Google Scholar 

  72. Tarazona-Diaz MP, Alacid F, Carrasco M, Martinez I, Aguayo E. Watermelon juice: potential functional drink for sore muscle relief in athletes. J Agric Food Chem. 2013;61:7522–8.

    Article  CAS  PubMed  Google Scholar 

  73. Figueroa A, Wong A, Kalfon R. Effects of watermelon supplementation on aortic hemodynamic responses to the cold pressor test in obese hypertensive adults. Am J Hypertens. 2014;27:899–906.

    Article  CAS  PubMed  Google Scholar 

  74. Soteriou GA, Kyriacou MC, Siomos AS, Gerasopoulos D. Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem. 2014;165:282–9.

    Article  CAS  PubMed  Google Scholar 

  75. Cutrufello PT, Gadomski SJ, Zavorsky GS. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J Sports Sci. 2015;33:1459–66.

    Article  PubMed  Google Scholar 

  76. Bailey SJ, Blackwell JR, Williams E, Vanhatalo A, Wylie LJ, Winyard PG, et al. Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. Nitric Oxide. 2016;59:10–20.

    Article  CAS  PubMed  Google Scholar 

  77. Massa NM, Silva AS, de Oliveira CV, Costa MJ, Persuhn DC, Barbosa CV, et al. Supplementation with watermelon extract reduces total cholesterol and LDL cholesterol in adults with dyslipidemia under the influence of the MTHFR C677T polymorphism. J Am Coll Nutr. 2016;35:514–20.

    Article  CAS  PubMed  Google Scholar 

  78. Massa NM, Silva AS, Toscano LT, Silva JD, Persuhn DC, Goncalves Mda C. Watermelon extract reduces blood pressure but does not change sympathovagal balance in prehypertensive and hypertensive subjects. Blood Press. 2016;25:244–8.

    Article  PubMed  Google Scholar 

  79. Shanely RA, Nieman DC, Perkins-Veazie P, Henson DA, Meaney MP, Knab AM, et al. Comparison of watermelon and carbohydrate beverage on exercise-induced alterations in systemic inflammation, immune dysfunction, and plasma antioxidant capacity. Nutrients. 2016;8:518.

    Article  PubMed Central  CAS  Google Scholar 

  80. Brown MB, Kempf A, Collins CM, Long GM, Owens M, Gupta S, Hellman Y, et al. A prescribed walking regimen plus arginine supplementation improves function and quality of life for patients with pulmonary arterial hypertension: a pilot study. Pulm Circ. 2018;8:2045893217743966.

    Article  PubMed  Google Scholar 

  81. Mahboobi S, Tsang C, Rezaei S, Jafarnejad S. Effect of L-citrulline supplementation on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Hum Hypertens. 2019;33:10–21.

    Article  CAS  PubMed  Google Scholar 

  82. Shiraishi Y, Lee JR, Laks H, Waters PF, Meneshian A, Blitz A, et al. l-arginine administration during reperfusion improves pulmonary function. Ann Thorac Surg. 1996;62:1580–1586 (discussion 1586–1587).

  83. Mehta S, Stewart DJ, Langleben D, Levy RD. Short-term pulmonary vasodilation with l-arginine in pulmonary hypertension. Circulation. 1995;92:1539–45.

    Article  CAS  PubMed  Google Scholar 

  84. Surdacki A, Zmudka K, Bieron K, Kostka-Trabka E, Dubiel JS, Gryglewski RJ. Lack of beneficial effects of l-arginine infusion in primary pulmonary hypertension. Wien Klin Wochenschr. 1994;106:521–6.

    CAS  PubMed  Google Scholar 

  85. Boger RH, Mugge A, Bode-Boger SM, Heinzel D, Hoper MM, Frolich JC. Differential systemic and pulmonary hemodynamic effects of l-arginine in patients with coronary artery disease or primary pulmonary hypertension. Int J Clin Pharmacol Ther. 1996;34:323–8.

    CAS  PubMed  Google Scholar 

  86. Papadia C, Osowska S, Cynober L, Forbes A. Citrulline in health and disease. Clin Nutr: Review on human studies; 2017.

    Google Scholar 

  87. El Hattab AW, Hsu JW, Emrick LT, Wong L-JC, Craigen WJ, Jahoor F, et al. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Mol Genet Metab. 2012;105:607–614.

  88. Grasemann H, Kurtz F, Ratjen F. Inhaled l-arginine improves exhaled nitric oxide and pulmonary function in patients with cystic fibrosis. Am J Respir Crit Care Med. 2006;174:208–12.

    Article  CAS  PubMed  Google Scholar 

  89. Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S, et al. l-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006;295:58–64.

    Article  CAS  PubMed  Google Scholar 

  90. Ralph AP, Waramori G, Pontororing GJ, Kenangalem E, Wiguna A, Tjitra E, et al. l-arginine and vitamin D adjunctive therapies in pulmonary tuberculosis: a randomised, double-blind, placebo-controlled trial. PLoS One. 2013;8:e70032.

  91. Waugh WH, Daeschner CW 3rd, Files BA, McConnell ME, Strandjord SE. Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results. J Natl Med Assoc. 2001;93:363–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith HA, Canter JA, Christian KG, Drinkwater DC, Scholl FG, Christman BW, et al. Nitric oxide precursors and congenital heart surgery: a randomized controlled trial of oral citrulline. J Thorac Cardiovasc Surg. 2006;132:58–65.

    Article  CAS  PubMed  Google Scholar 

  93. Stepanova YI, Kolpakov IY, Zygalo VM, Vdovenko VY, Kondrashova VH, Leonovich OS, et al. Experience of correcting endothelial dysfunction in children-residents of radioactively contaminated areas by nitric oxide potential donator citrulline. Probl Radiac Med Radiobiol. 2017;22:463–75.

    Article  PubMed  Google Scholar 

  94. Wu G, Bazer FW, Cudd TA, Jobgen WS, Kim SW, Lassala A, et al. Pharmacokinetics and safety of arginine supplementation in animals. J Nutr. 2007;137:1673s–80s.

    Article  CAS  PubMed  Google Scholar 

  95. Schwedhelm E, Maas R, Freese R, Jung D, Lukacs Z, Jambrecina A, et al. Pharmacokinetic and pharmacodynamic properties of oral l-citrulline and l-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 2008;65:51–9.

    Article  CAS  PubMed  Google Scholar 

  96. Escudero A, Petzold G, Moreno J, Gonzalez M, Junod J, Aguayo C, et al. Supplementation with apple enriched with l-arginine may improve metabolic control and survival rate in alloxan-induced diabetic rats. BioFactors (Oxford, England). 2013;39:564–74.

    Article  CAS  Google Scholar 

  97. Heinzen EL, Pollack GM. Pharmacokinetics and pharmacodynamics of l-arginine in rats: a model of stimulated neuronal nitric oxide synthesis. Brain Res. 2003;989:67–75.

    Article  CAS  PubMed  Google Scholar 

  98. Morita M, Hayashi T, Ochiai M, Maeda M, Yamaguchi T, Ina K, et al. Oral supplementation with a combination of L-citrulline and l-arginine rapidly increases plasma l-arginine concentration and enhances NO bioavailability. Biochem Biophys Res Commun. 2014;454:53–7.

    Article  CAS  PubMed  Google Scholar 

  99. Elwafi F, Curis E, Zerrouk N, Neveux N, Chaumeil JC, Arnaud P, et al. Endotoxemia affects citrulline, arginine and glutamine bioavailability. Eur J Clin Invest. 2012;42:282–9.

    Article  CAS  PubMed  Google Scholar 

  100. Tangphao O, Grossmann M, Chalon S, Hoffman BB, Blaschke TF. Pharmacokinetics of intravenous and oral l-arginine in normal volunteers. Br J Clin Pharmacol. 1999;47:261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moinard C, Nicolis I, Neveux N, Darquy S, Benazeth S, Cynober L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic study. Br J Nutr. 2008;99:855–62.

    Article  CAS  PubMed  Google Scholar 

  102. Rouge C, Des Robert C, Robins A, Le Bacquer O, Volteau C, De La Cochetiere MF, et al. Manipulation of citrulline availability in humans. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1061–7.

    Article  CAS  PubMed  Google Scholar 

  103. Mandel H, Levy N, Izkovitch S, Korman SH. Elevated plasma citrulline and arginine due to consumption of Citrullus vulgaris (watermelon). J Inherit Metab Dis. 2005;28:467–72.

    Article  CAS  PubMed  Google Scholar 

  104. Collins JK, Wu G, Perkins-Veazie P, Spears K, Claypool PL, Baker RA, et al. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition. 2007;23:261–6.

    Article  CAS  PubMed  Google Scholar 

  105. Tangphao O, Chalon S, Moreno H Jr, Hoffman BB, Blaschke TF. Pharmacokinetics of l-arginine during chronic administration to patients with hypercholesterolaemia. Clin Sci (Lond). 1999;96:199–207.

    Article  CAS  Google Scholar 

  106. Jeremy RW, McCarron H, Sullivan D. Effects of dietaryl-arginine on atherosclerosis and endothelium-dependent vasodilatationin the hypercholesterolemic rabbit. Response Accord Treat Durat Anatom Site Sex. 1996;94:498–506.

    CAS  Google Scholar 

  107. Yeo TW, Rooslamiati I, Gitawati R, Tjitra E, Lampah DA, Kenangalem E, et al. Pharmacokinetics of l-arginine in adults with moderately severe malaria. Antimicrob Agents Chemother. 2008;52:4381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yeo TW, Lampah DA, Rooslamiati I, Gitawati R, Tjitra E, Kenangalem E, et al. A randomized pilot study of l-arginine infusion in severe falciparum malaria: preliminary safety, efficacy and pharmacokinetics. PLoS ONE. 2013;8:e69587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Majumdar S, Tirona R, Mashegu H, Desai J, Shannon NT, Summar M, et al. A phase 1 dose-finding study of intravenous L-citrulline in sickle cell disease: a potential novel therapy for sickle cell pain crises. Br J Haemotol. 2019;184:634–96.

    Article  Google Scholar 

  110. Wang J, Zheng H, Wang K, Wang Z, Ding Y. Population pharmacokinetics of arginine glutamate in healthy Chinese volunteers. Xenobiotica. 2017;1–9.

  111. Argaman Z, Young VR, Noviski N, Castillo-Rosas L, Lu XM, Zurakowski D, et al. Arginine and nitric oxide metabolism in critically ill septic pediatric patients. Crit Care Med. 2003;31:591–7.

    Article  CAS  PubMed  Google Scholar 

  112. Villalpando S, Gopal J, Balasubramanyam A, Bandi VP, Guntupalli K, Jahoor F. In vivo arginine production and intravascular nitric oxide synthesis in hypotensive sepsis. Am J Clin Nutr. 2006;84:197–203.

    Article  CAS  PubMed  Google Scholar 

  113. Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, McNeil YR, et al. Impaired nitric oxide bioavailability and l-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med. 2007;204:2693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bode-Boger SM, Boger RH, Kienke S, Junker W, Frolich JC. Elevated L-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits. Biochem Biophys Res Commun. 1996;219:598–603.

    Article  CAS  PubMed  Google Scholar 

  115. Moinard C, Nicolis I, Neveux N, Darquy S, Benazeth S, Cynober L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic study. Br J Nutrition. 2009;99:855–62.

    Article  CAS  Google Scholar 

  116. Schwedhelm S, Maas R, Freese R, Jung D, Lukacs Z, Jambrecina A, et al. Pharmacokinetic and pharmacodynamic properties of oral l-citrulline and l-arginine: impact on nitric oxide metabolism. Br J Clin Pharmac. 2007;65:51–9.

    Article  CAS  Google Scholar 

  117. Smith HAB, Canter JA, Christian KG, Drinkwater DC, Scholl FG, Christman BW, et al. Nitric oxide precursors and congenital heart surgery: a randomized controlled trial of oral citrulline. J Thorac Cardiovasc Surg. 2006;132:58–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. T. Sherwin.

Ethics declarations

Conflicts of interest

JR, SSK, KMJ, XL, CDF, and CMS have no conflicts of interest that are directly relevant to the content of this review.

Funding

This article was funded by NIH/NHLBI (Grant no. R34HL142995).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, J., Kumar, S.S., Job, K.M. et al. Therapeutic Potential of Citrulline as an Arginine Supplement: A Clinical Pharmacology Review. Pediatr Drugs 22, 279–293 (2020). https://doi.org/10.1007/s40272-020-00384-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-020-00384-5

Navigation