Skip to main content
Log in

Evaluating the Role of Hormone Therapy in Postmenopausal Women with Alzheimer’s Disease

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Hormone therapy (HT) is prescribed during or after menopausal transition to replace the decline in estrogen and progesterone levels. While some studies indicate that estrogen and progesterone depletion in postmenopausal women might carry a significant risk for developing sporadic Alzheimer’s disease (sAD), which may be reduced by HT, recent clinical trials oppose this beneficial effect. This review points to possible reasons for these mixed data by considering the issues of both preclinical and clinical trials, in particular, the representativeness of animal models, timing of HT initiation, type of HT (different types of estrogen compounds, estrogen monotherapy vs. estrogen-progesterone combined therapy), mode of drug delivery (subcutaneous, transdermal, oral, or intramuscular), and hormone dosage used, as well as the heterogeneity of the postmenopausal population in clinical trials (particularly considering their sAD stage, anti-AD therapy, and hysterectomy status). Careful planning of future preclinical and clinical HT interventional studies might help to elucidate the effect of HT on cognitive status in postmenopausal women with sAD, which will eventually contribute to more effective sAD prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yazdkhasti M, Simbar M, Abdi F. Empowerment and coping strategies in menopause women: a review. Iran Red Crescent Med J. 2015;17:e18944.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Correia SC, Santos RX, Cardoso S, et al. Effects of estrogen in the brain: is it a neuroprotective agent in Alzheimer’s disease? Curr Aging Sci. 2010;3:113–26.

    Article  PubMed  Google Scholar 

  3. Paganini-Hill A, Henderson VW. Estrogen replacement therapy and risk of Alzheimer disease. Arch Intern Med. 1996;156:2213–7.

    Article  CAS  PubMed  Google Scholar 

  4. Rosario ER, Chang L, Head EH, et al. Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol Aging. 2011;32:604–13.

    Article  CAS  PubMed  Google Scholar 

  5. Hampson E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cognition. 1990;14:26–43.

    Article  CAS  PubMed  Google Scholar 

  6. Tang MX, Jacobs D, Stern Y, et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet. 1996;348:429–32.

    Article  CAS  PubMed  Google Scholar 

  7. Kawas C, Resnick S, Morrison A, et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: the Baltimore longitudinal study of aging. Neurology. 1997;48:1517–21.

    Article  CAS  PubMed  Google Scholar 

  8. Xu W, Tan L, Wang HF, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2015;86:1299–306.

    PubMed  Google Scholar 

  9. Sherwin BB. Estrogen and cognitive functioning in women. Endocr Rev. 2003;24:133–51.

    Article  CAS  PubMed  Google Scholar 

  10. Mortel KF, Meyer JS. Lack of postmenopausal estrogen replacement therapy and the risk of dementia. J Neuropsychiatry Clin Neurosci. 1995;7:334–7.

    Article  CAS  PubMed  Google Scholar 

  11. Espeland MA, Rapp SR, Shumaker SA, et al. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA. 2004;291:2959–68.

    Article  CAS  PubMed  Google Scholar 

  12. Espeland MA, Brunner RL, Hogan PE, et al. Women’s Health Initiative Study of Cognitive Aging Study Group. Long-term effects of conjugated equine estrogen therapies on domain-specific cognitive function: results from the Women’s Health Initiative study of cognitive aging extension. J Am Geriatr Soc. 2010;58:1263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gleason CE, Dowling NM, Wharton W, et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the Randomized, Controlled KEEPS-Cognitive and Affective Study. PLoS Med. 2015;12:e1001833. doi:10.1371.

  14. Engler-Chiurazzi EB, Singh M, Simpkins JW. Reprint of: from the 90s to now: a brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res. 2016;1645:79–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shumaker SA, Legault C, Rapp SR, WHIMS Investigators, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA. 2003;289:2651–62.

    Article  CAS  PubMed  Google Scholar 

  16. Rapp S, Espeland MA, Shumaker SA, WHIMS Investigators, et al. Effect of estrogen plus progestin on global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA. 2003;289:2663–72.

    Article  CAS  PubMed  Google Scholar 

  17. Foster TC. Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus. 2012;22:656–69.

    Article  CAS  PubMed  Google Scholar 

  18. Brinton RD, Thompson RF, Foy MR, et al. Progesterone receptors: form and function in brain. Front Neuroendocrinol. 2008;29:313–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bean LA, Ianov L, Foster TC. Estrogen receptors, the hippocampus, and memory. Neuroscientist. 2014;20:534–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Conneely OM, Lydon JP. Progesterone receptors in reproduction: functional impact of the A and B isoforms. Steroids. 2000;65:571–7.

    Article  CAS  PubMed  Google Scholar 

  21. Escande A, Pillon A, Servant N, et al. Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochem Pharmacol. 2006;71:1459–69.

    Article  CAS  PubMed  Google Scholar 

  22. Walf AA, Frye CA. Rapid and estrogen receptor beta mediated actions in the hippocampus mediate some functional effects of estrogen. Steroids. 2008;73:997–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao L, Mao Z, Chen S, et al. Early intervention with an estrogen receptor β-selective phytoestrogenic formulation prolongs survival, improves spatial recognition memory, and slows progression of amyloid pathology in a female mouse model of Alzheimer’s disease. J Alzheimers Dis. 2013;37:403–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Han X, Aenlle KK, Bean LA, et al. Role of estrogen receptor α and β in preserving hippocampal function during aging. J Neurosci. 2013;33:2671–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fugger HN, Foster TC, Gustafsson J, Rissman EF. Novel effects of estradiol and estrogen receptor α and β on cognitive function. Brain Res. 2000;883:258–64.

    Article  CAS  PubMed  Google Scholar 

  26. Lan YL, Zhao J, Li S. Update on the neuroprotective effect of estrogen receptor alpha against Alzheimer’s disease. J Alzheimers Dis. 2015;43:1137–48.

    CAS  PubMed  Google Scholar 

  27. Sohrabji F, Miranda RC, Toran-Allerand CD. Estrogen differentially regulates estrogen and nerve growth factor receptor mRNAs in adult sensory neurons. J Neurosci. 1994;14:459–71.

    CAS  PubMed  Google Scholar 

  28. Weiland NG, Orikasa C, Hayashi S, McEwen BS. Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. J Comp Neurol. 1997;388:603–12.

    Article  CAS  PubMed  Google Scholar 

  29. Gazzaley AH, Weiland NG, McEwen BS, Morrison JH. Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci. 1996;16:6830–8.

    CAS  PubMed  Google Scholar 

  30. Gibbs RB, Wu D, Hersh LB, Pfaff DW. Effects of estrogen replacement on the relative levels of choline acetyltransferase, trkA, and nerve growth factor messenger RNAs in the basal forebrain and hippocampal formation of adult rats. Exp Neurol. 1994;129:70–80.

    Article  CAS  PubMed  Google Scholar 

  31. Jayaraman A, Carroll JC, Morgan TE, et al. 17β-estradiol and progesterone regulate expression of β-amyloid clearance factors in primary neuron cultures and female rat brain. Endocrinology. 2012;153:5467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stanczyk FZ, Hapgood JP, Winer S, Mishell DR Jr. Progestogens used in postmenopausal hormone therapy: differences in their pharmacological properties, intracellular actions, and clinical effects. Endocr Rev. 2013;34:171–208.

    Article  CAS  PubMed  Google Scholar 

  33. Nilsen J, Brinton RD. Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate. Endocrinology. 2002;143:205–12.

    Article  CAS  PubMed  Google Scholar 

  34. Pettus EH, Wright DW, Stein DG, Hoffman SW. Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res. 2005;1049:112–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hazell GG, Yao ST, Roper JA, et al. Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol. 2009;202:223–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petersen SL, Intlekofer KA, Moura-Conlon PJ, et al. Novel progesterone receptors: neural localization and possible functions. Front Neurosci. 2013;7:164.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Asp Med. 2006;27:299–402.

    Article  CAS  Google Scholar 

  38. Singh M. Ovarian hormones elicit phosphorylation of Akt and extracellular-signal regulated kinase in explants of the cerebral cortex. Endocrine. 2001;14:407–15.

    Article  CAS  PubMed  Google Scholar 

  39. Briz V, Baudry M. Estrogen regulates protein synthesis and actin polymerization in hippocampal neurons through different molecular mechanisms. Front Endocrinol (Lausanne). 2014;5:22.

    PubMed  PubMed Central  Google Scholar 

  40. Bell-Horner CL, Dohi A, Nguyen Q, et al. ERK/MAPK pathway regulates GABAA receptors. J Neurobiol. 2006;66:1467–74.

    Article  CAS  PubMed  Google Scholar 

  41. Izquierdo I, Medina JH, Bianchin M, et al. Memory processing by the limbic system: role of specific neurotransmitter systems. Behav Brain Res. 1993;58:91–8.

    Article  CAS  PubMed  Google Scholar 

  42. Johansson IM, Birzniece V, Lindblad C, et al. Allopregnanolone inhibits learning in the Morris water maze. Brain Res. 2002;934:125–31.

    Article  CAS  PubMed  Google Scholar 

  43. Kask K, Bäckström T, Nilsson LG, Sundström-Poromaa I. Allopregnanolone impairs episodic memory in healthy women. Psychopharmacology. 2008;199:161–8.

    Article  CAS  PubMed  Google Scholar 

  44. Hoffman GE, Moore N, Fiskum G, Murphy AZ. Ovarian steroid modulation of seizure severity and hippocampal cell death after kainic acid treatment. Exp Neurol. 2003;182:124–34.

    Article  CAS  PubMed  Google Scholar 

  45. Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. 2015;9:37.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Acosta JI, Mayer LP, Braden BB, et al. The cognitive effects of conjugated equine estrogens depend on whether menopause etiology is transitional or surgical. Endocrinology. 2010;151:3795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Engler-Chiurazzi EB, Talboom JS, Braden BB, et al. Continuous estrone treatment impairs spatial memory and does not impact number of basal forebrain cholinergic neurons in the surgically menopausal middle-aged rat. Horm Behav. 2012;62:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frick KM, Fernandez SM, Bulinski SC. Estrogen replacement improves spatial reference memory and increases hippocampal synaptophysin in aged female mice. Neuroscience. 2002;115:547–58.

    Article  CAS  PubMed  Google Scholar 

  49. Bimonte-Nelson HA, Francis KR, Umphlet CD, Granholm AC. Progesterone reverses the spatial memory enhancements initiated by tonic and cyclic oestrogen therapy in middle-aged ovariectomized female rats. Eur J Neurosci. 2006;24:229–42.

    Article  PubMed  Google Scholar 

  50. Fernandez SM, Frick KM. Chronic oral estrogen affects memory and neurochemistry in middle-aged female mice. Behav Neurosci. 2004;118:1340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hogervorst E, Williams J, Budge M, et al. The nature of the effect of female gonadal hormone replacement therapy on cognitive function in post-menopausal women: a meta-analysis. Neuroscience. 2000;101:485–512.

    Article  CAS  PubMed  Google Scholar 

  52. Carroll JC, Rosario ER, Villamagna A, Pike CJ. Continuous and cyclic progesterone differentially interact with estradiol in the regulation of Alzheimer-like pathology in female 3× Transgenic-Alzheimer’s disease mice. Endocrinology. 2010;151:2713–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heikkinen T, Kalesnykas G, Rissanen A, et al. Estrogen treatment improves spatial learning in APP PS1 mice but does not affect beta amyloid accumulation and plaque formation. Exp Neurol. 2004;187:105–17.

    Article  CAS  PubMed  Google Scholar 

  54. de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis. 2005;7:45–61.

    PubMed  Google Scholar 

  55. Salkovic-Petrisic M, Osmanovic J, Grünblatt E, et al. Modeling sporadic Alzheimer’s disease: the insulin resistant brain state generates multiple long-term morphobiological abnormalities including hyperphosphorylated tau protein and amyloid-beta. J Alzheimers Dis. 2009;18:729–50.

    CAS  PubMed  Google Scholar 

  56. Lecanu L, Papadopoulos V. Modeling Alzheimer’s disease with non-transgenic rat models. Alzheimers Res Ther. 2013;5:17.

    PubMed  PubMed Central  Google Scholar 

  57. Knezovic A, Osmanovic-Barilar J, Curlin M, et al. Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. J Neural Transm (Vienna). 2015;122:577–92.

    Article  CAS  PubMed  Google Scholar 

  58. Barilar JO, Knezovic A, Grünblatt E, et al. Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. J Neural Transm. 2015;122:565–76.

    Article  PubMed  CAS  Google Scholar 

  59. Talbot K, Wang HY, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122:1316–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Craft S. Alzheimer disease: insulin resistance and AD: extending the translational path. Nat Rev Neurol. 2012;8:360–2.

    Article  CAS  PubMed  Google Scholar 

  61. de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol. 2014;88:548–59.

    Article  PubMed  CAS  Google Scholar 

  62. Lannert H, Wirtz P, Schuhmann V, Galmbacher R. Effects of estradiol (-17beta) on learning, memory and cerebral energy metabolism in male rats after intracerebroventricular administration of streptozotocin. J Neural Transm. 1998;105:1045–63.

    Article  CAS  PubMed  Google Scholar 

  63. Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9:702–16.

    Article  CAS  PubMed  Google Scholar 

  64. Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s disease. Lancet. 2011;377:1019–31.

    Article  PubMed  Google Scholar 

  65. Rossor M. Alzheimer’s disease. BMJ. 1993;307:779–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vandenberghe R, Tournoy J. Cognitive aging and Alzheimer’s disease. Postgrad Med J. 2005;81:343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sherwin BB. Estrogen and cognitive functioning in women: lessons we have learned. Behav Neurosci. 2012;126:123–7.

    Article  CAS  PubMed  Google Scholar 

  68. Boss L, Kang DH, Marcus M, Bergstrom N. Endogenous sex hormones and cognitive function in older adults: a systematic review. West J Nurs Res. 2014;36:388–426.

    Article  PubMed  Google Scholar 

  69. Hogervorst E, De Jager C, Budge M, Smith DA. Serum levels of estradiol and testosterone and performance in different cognitive domains in healthy elderly men and women. Psychoneuroendocrinology. 2004;29:405–21.

    Article  CAS  PubMed  Google Scholar 

  70. Drake EB, Henderson VW, Stanczyk FZ, et al. Associations between circulating sex steroid hormones and cognition in normal elderly women. Neurology. 2000;54:599–602.

    Article  CAS  PubMed  Google Scholar 

  71. Wolf OT, Kirschbaum C. Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm Behav. 2002;41:259–66.

    Article  CAS  PubMed  Google Scholar 

  72. Yonker JE, Eriksson E, Nilsson LG, Herlitz A. Sex differences in episodic memory: minimal influence of estradiol. Brain Cogn. 2003;52:231–8.

    Article  PubMed  Google Scholar 

  73. Henderson VW, St John JA, Hodis HN, et al. Cognition, mood, and physiological concentrations of sex hormones in the early and late postmenopause. Proc Natl Acad Sci USA. 2013;110:20290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilson DL, Barnes M, Ellett L, et al. Compromised verbal episodic memory with intact visual and procedural memory during pregnancy. J Clin Exp Neuropsychol. 2011;33:680–91.

    Article  PubMed  Google Scholar 

  75. Martin A, Chao LL. Semantic memory and the brain: structure and processes. Curr Opin Neurobiol. 2001;11:194–201.

    Article  CAS  PubMed  Google Scholar 

  76. Rapp PR, Morrison JH, Roberts JA. Cyclic estrogen replacement improves cognitive function in aged ovariectomized rhesus monkeys. J Neurosci. 2003;23:5708–14.

    CAS  PubMed  Google Scholar 

  77. Baxter MG, Roberts MT, Gee NA, et al. Multiple clinically relevant hormone therapy regimens fail to improve cognitive function in aged ovariectomized rhesus monkeys. Neurobiol Aging. 2013;34:1882–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Daniel JM, Hulst JL, Berbling JL. Estradiol replacement enhances working memory in middle-aged rats when initiated immediately after ovariectomy but not after a long-term period of ovarian hormone deprivation. Endocrinology. 2006;147:607–14.

    Article  CAS  PubMed  Google Scholar 

  79. Sheehan B. Assessment scales in dementia. Ther Adv Neurol Disord. 2012;5:349–58.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brinton RD. The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci. 2008;31:529–37.

    Article  CAS  PubMed  Google Scholar 

  81. Talboom JS, Williams BJ, Baxley ER, et al. Higher levels of estradiol replacement correlate with better spatial memory in surgically menopausal young and middle-aged rats. Neurobiol Learn Mem. 2008;90:155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gresack JE, Kerr KM, Frick KM. Life-long environmental enrichment differentially affects the mnemonic response to estrogen in young, middle-aged, and aged female mice. Neurobiol Learn Mem. 2007;88:393–408.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gibbs RB. Long-term treatment with estrogen and progesterone enhances acquisition of a spatial memory task by ovariectomized aged rats. Neurobiol Aging. 2000;21:107–16.

    Article  CAS  PubMed  Google Scholar 

  84. Hogervorst E, Bandelow S. Sex steroids to maintain cognitive function in women after the menopause: a meta-analyses of treatment trials. Maturitas. 2010;66:56–71.

    Article  CAS  PubMed  Google Scholar 

  85. Kantor HI, Michael CM, Shore H. Estrogen for older women. Am J Obstet Gynecol. 1973;116:115–8.

    Article  CAS  PubMed  Google Scholar 

  86. Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. JAMA. 2000;283:1007–15.

    Article  CAS  PubMed  Google Scholar 

  87. Hembree WC, Bardin CW, Lipsett MB. A study of estrogen metabolic clearance rates and transfer factors. J Clin Invest. 1969;48:1809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chisholm NC, Juraska JM. Factors influencing the cognitive and neural effects of hormone treatment during aging in a rodent model. Brain Res. 2013;1514:40–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. O’Connell MB. Pharmacokinetic and pharmacologic variation between different estrogen products. J Clin Pharmacol. 1995;35:18–24.

    Article  Google Scholar 

  90. Lowry NC, Pardon LP, Yates MA, Juraska JM. Effects of long-term treatment with 17 beta-estradiol and medroxyprogesterone acetate on water maze performance in middle aged female rats. Horm Behav. 2010;58:200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bardin CW, Brown T, Isomaa VV, Jänne OA. Progestins can mimic, inhibit and potentiate the actions of androgens. Pharmacol Ther. 1983;23:443–59.

    Article  CAS  PubMed  Google Scholar 

  92. Bamberger CM, Else T, Bamberger AM, et al. Dissociative glucocorticoid activity of medroxyprogesterone acetate in normal human lymphocytes. J Clin Endocrinol Metab. 1999;84:4055–61.

    CAS  PubMed  Google Scholar 

  93. Braden BB, Talboom JS, Crain ID, et al. Medroxyprogesterone acetate impairs memory and alters the GABAergic system in aged surgically menopausal rats. Neurobiol Learn Mem. 2010;93:444–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ryan J, Carrière I, Scali J, et al. Characteristics of hormone therapy, cognitive function, and dementia: the prospective 3C Study. Neurology. 2009;73:1729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Albertazzi P, Natale V, Barbolini C, et al. The effect of tibolone versus continuous combined norethisterone acetate and oestradiol on memory, libido and mood of postmenopausal women: a pilot study. Maturitas. 2000;36:223–9.

    Article  CAS  PubMed  Google Scholar 

  96. Valen-Sendstad A, Engedal K, Stray-Pedersen B, ADACT Study Group, et al. Effects of hormone therapy on depressive symptoms and cognitive functions in women with Alzheimer disease: a 12 month randomized, double-blind, placebo-controlled study of low-dose estradiol and norethisterone. Am J Geriatr Psychiatry. 2010;18:11–20.

    Article  PubMed  Google Scholar 

  97. Kantarci K, Lowe VJ, Lesnick TG, et al. Early postmenopausal transdermal 17β-estradiol therapy and amyloid-β deposition. J Alzheimers Dis. 2016;53:547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karahancer M, Cirpan T, Kanit L, et al. The effects of raloxifen on depression and cognition in ovariectomized rats. Fertil Steril. 2008;89:240–2.

    Article  CAS  PubMed  Google Scholar 

  99. Wu J, Zhu Y, Wu J. Effects of estrogen and estrogenic compounds on cognition in ovariectomized rats. Climacteric. 2008;11:212–20.

    Article  CAS  PubMed  Google Scholar 

  100. Yang ZD, Yu J, Zhang Q. Effects of raloxifene on cognition, mental health, sleep and sexual function in menopausal women: a systematic review of randomized controlled trials. Maturitas. 2013;75:341–8.

    Article  CAS  PubMed  Google Scholar 

  101. Yaffe K, Krueger K, Sarkar S, et al. Cognitive function in postmenopausal women treated with raloxifene. N Engl J Med. 2001;344:1207–13.

    Article  CAS  PubMed  Google Scholar 

  102. Henderson VW, Ala T, Sainani KL, et al. Raloxifene for women with Alzheimer disease: a randomized controlled pilot trial. Neurology. 2015;85:1937–44.

    Article  CAS  PubMed  Google Scholar 

  103. Legault C, Maki PM, Resnick SM, et al. Effects of tamoxifen and raloxifene on memory and other cognitive abilities: cognition in the study of tamoxifen and raloxifene. J Clin Oncol. 2009;27:5144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yaffe K, Sawaya G, Lieberburg I, Grady D. Estrogen therapy in postmenopausal women: effects on cognitive function and dementia. JAMA. 1998;279:688–95.

    Article  CAS  PubMed  Google Scholar 

  105. O’Brien J, Jackson JW, Grodstein F, et al. Postmenopausal hormone therapy is not associated with risk of all-cause dementia and Alzheimer’s disease. Epidemiol Rev. 2014;36:83–103.

    Article  PubMed  Google Scholar 

  106. Espeland MA, Shumaker SA, Leng I, WHIMSY Study Group, et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern Med. 2013;173:1429–36.

    Article  PubMed  Google Scholar 

  107. Manson JE, Hsia J, Johnson KC, Women’s Health Initiative Investigators, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003;349:523–34.

    Article  CAS  PubMed  Google Scholar 

  108. Resnick SM, Maki PM, Rapp SR, Women’s Health Initiative Study of Cognitive Aging Investigators, et al. Effects of combination estrogen plus progestin hormone treatment on cognition and affect. J Clin Endocrinol Metab. 2006;91:1802–10.

    Article  CAS  PubMed  Google Scholar 

  109. Resnick SM, Espeland MA, An Y, Women’s Health Initiative Study of Cognitive Aging Investigators, et al. Effects of conjugated equine estrogens on cognition and affect in postmenopausal women with prior hysterectomy. J Clin Endocrinol Metab. 2009;94:4152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Asthana S, Craft S, Baker LD, et al. Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology. 1999;24:657–77.

    Article  CAS  PubMed  Google Scholar 

  111. Asthana S, Baker LD, Craft S, et al. High-dose estradiol improves cognition for women with AD: results of a randomized study. Neurology. 2001;57:605–12.

    Article  CAS  PubMed  Google Scholar 

  112. Wharton W, Baker LD, Gleason CE, et al. Short-term hormone therapy with transdermal estradiol improves cognition for postmenopausal women with Alzheimer’s disease: results of a randomized controlled trial. J Alzheimers Dis. 2011;26:495–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer’s disease in women: randomized, double blind, placebo-controlled trial. Neurology. 2000;54:295–301.

    Article  CAS  PubMed  Google Scholar 

  114. Birge SJ. The role of estrogen in the treatment of Alzheimer’s disease. Neurology. 1997;48:36–41.

    Article  Google Scholar 

  115. Rigaud AS, Andre G, Vellas B, et al. No additional benefit of HRT on response to rivastigmine in menopausal women with AD. Neurology. 2003;60:148–9.

    Article  CAS  PubMed  Google Scholar 

  116. Wang PN, Liao SQ, Liu RS, et al. Effects of estrogen on cognition, mood, and cerebral blood flow in AD: a controlled study. Neurology. 2000;54:2061–6.

    Article  CAS  PubMed  Google Scholar 

  117. Gibbs RB, Nelson D, Hammond R. Role of GPR30 in mediating estradiol effects on acetylcholine release in the hippocampus. Horm Behav. 2014;66:339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Newhouse P, Dumas J. Estrogen-cholinergic interactions: implications for cognitive aging. Horm Behav. 2015;74:173–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dumas J, Hancur-Bucci C, Naylor M, et al. Estrogen treatment effects on anticholinergic-induced cognitive dysfunction in normal postmenopausal women. Neuropsychopharmacology. 2006;31:2065–78.

    Article  CAS  PubMed  Google Scholar 

  120. Bohacek J, Bearl AM, Daniel JM. Long-term ovarian hormone deprivation alters the ability of subsequent oestradiol replacement to regulate choline acetyltransferase protein levels in the hippocampus and prefrontal cortex of middle-aged rats. J Neuroendocrinol. 2008;20:1023–7.

    Article  CAS  PubMed  Google Scholar 

  121. Forette F, Seux ML, Staessen JA, et al. Prevention of dementia in randomised double-blind placebo-controlled systolic hypertension in Europe (Syst-Eur) trial. Lancet. 1998;352:1347–51.

    Article  CAS  PubMed  Google Scholar 

  122. Sato N, Morishita R. The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front Aging Neurosci. 2015;7:199.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sun Y, Wang G, Pan Z, Chen S. Systematic review of atorvastatin for the treatment of Alzheimer’s disease. Neural Regen Res. 2012;7:1344–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Mospan CM. Are statins protective or harmful to cognitive function? JAAPA. 2016;29:11–2.

    PubMed  Google Scholar 

  125. Sebastião I, Candeias E, Santos MS, et al. Insulin as a bridge between type 2 diabetes and Alzheimer disease: how anti-diabetics could be a solution for dementia. Front Endocrinol (Lausanne). 2014;5:110.

    PubMed  PubMed Central  Google Scholar 

  126. Rdzak GM, Abdelghany O. Does insulin therapy for type 1 diabetes mellitus protect against Alzheimer’s disease? Pharmacotherapy. 2014;34:1317–23.

    Article  CAS  PubMed  Google Scholar 

  127. Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13:950–8.

    PubMed  Google Scholar 

  128. Meneilly GS, Tessier DM. Diabetes, dementia and hypoglycemia. Can J Diabetes. 2016;40:73–6.

    Article  PubMed  Google Scholar 

  129. Barbagallo M, Dominguez LJ. Type 2 diabetes mellitus and Alzheimer’s disease. World J Diabetes. 2014;5:889–93.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Savonenko AV, Markowska AL. The cognitive effects of ovariectomy and estrogen replacement are modulated by aging. Neuroscience. 2003;119:821–30.

    Article  CAS  PubMed  Google Scholar 

  131. Carroll JC, Rosario ER, Chang L, et al. Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3× Tg-AD mice. J Neurosci. 2007;27:13357–65.

    Article  CAS  PubMed  Google Scholar 

  132. Palm R, Chang J, Blair J, et al. Down-regulation of serum gonadotropins but not estrogen replacement improves cognition in aged-ovariectomized 3× Tg AD female mice. J Neurochem. 2014;130:115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Osmanovic-Barilar.

Ethics declarations

Funding

No funding has been received for the preparation of this manuscript.

Conflict of interest

Jelena Osmanovic Barilar and Melita Salković-Petrišić have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmanovic-Barilar, J., Salkovic-Petrisi, M. Evaluating the Role of Hormone Therapy in Postmenopausal Women with Alzheimer’s Disease. Drugs Aging 33, 787–808 (2016). https://doi.org/10.1007/s40266-016-0407-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-016-0407-9

Keywords

Navigation