Skip to main content
Log in

Antibody-Based Drugs and Approaches Against Amyloid-β Species for Alzheimer’s Disease Immunotherapy

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), one of the most devastating diseases for the older population, has become a major healthcare burden in the increasingly aging society worldwide. Currently, there are still only symptomatic treatments available on the market, just to slow down disease progression. In the past decades, extensive research focusing on the development of immunotherapy using monoclonal antibodies (mAbs) as potential “disease-modifying drugs” has shown promise in inhibiting or clearing the formation of toxic amyloid-β (Aβ) species, the suspected causative agents of AD. As a result, these potential life-saving drugs can break the amyloid cascade, cease neurodegeneration, and prevent further reduction in cognitive and physical function. In this review, we first describe the polymorphisms of Aβ species, comprising three different pools, including monomers, soluble oligomers, and insoluble fibrils, with each pool encompassing multiple structures of Aβ aggregation. A comprehensive review on their toxicities follows in relation to the characterized epitopes of anti-Aβ mAb candidates under development. We then present the outcomes of these mAbs in clinical or pre-clinical trials and conclude by providing a summary of other novel and promising antibody-based immunotherapeutic approaches that deserve more attention for the effective treatment of AD in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc. 2007;3:186–91.

    Article  Google Scholar 

  2. Alzheimer’s disease—global drug forecast and market analysis to 2023. GlobalData PharmaPoint. Reference code: GDHC010EPIDR. Publication data: May 2015.

  3. Geldmacher DS. Treatment guidelines for Alzheimer’s disease: redefining perceptions in primary care. Prim Care Companion J Clin Psychiatry. 2007;9:113–21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer’s disease and its models. Neuroscience. 2013;251:51–65.

    Article  CAS  PubMed  Google Scholar 

  5. Hane F, Tran G, Attwood SJ, Leonenko Z. Cu(2+) affects amyloid-beta (1–42) aggregation by increasing peptide-peptide binding forces. PLoS One. 2013;8:e59005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fu HJ, Liu B, Frost JL, Lemere CA. Amyloid-beta immunotherapy for Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 2003;9:448–52.

    Article  CAS  PubMed  Google Scholar 

  8. Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimer’s Dis. 2013;33(Suppl 1):S67–78.

    Google Scholar 

  9. Goure WF, Krafft GA, Jerecic J, Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res Ther. 2014;6:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cole SL, Vassar R. The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener. 2007;2:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hamley IW. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev. 2012;112:5147–92.

    Article  CAS  PubMed  Google Scholar 

  12. Dong X, Chen W, Mousseau N, Derreumaux P. Energy landscapes of the monomer and dimer of the Alzheimer’s peptide Abeta(1–28). J Chem Phys. 2008;128:125108.

    Article  PubMed  CAS  Google Scholar 

  13. Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem. 1992;267:546–54.

    CAS  PubMed  Google Scholar 

  14. Jang S, Shin S. Computational study on the structural diversity of amyloid beta peptide (abeta(10–35)) oligomers. J Phys Chem B. 2008;112:3479–84.

    Article  CAS  PubMed  Google Scholar 

  15. Miller Y, Ma B, Nussinov R. Polymorphism of Alzheimer’s Abeta17–42 (p3) oligomers: the importance of the turn location and its conformation. Biophys J. 2009;97:1168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, Terenius L, et al. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem. 1999;274:12619–25.

    Article  CAS  PubMed  Google Scholar 

  17. Miller Y, Ma B, Nussinov R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev. 2010;110:4820–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci. 1998;95:6448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Lyubchenko YL. The structure of misfolded amyloidogenic dimers: computational analysis of force spectroscopy data. Biophys J. 2014;107:2903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spencer RK, Li H, Nowick JS. X-ray crystallographic structures of trimers and higher-order oligomeric assemblies of a peptide derived from Abeta(17–36). J Am Chem Soc. 2014;136:5595–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Du J, Murphy RM. Characterization of the interaction of beta-amyloid with transthyretin monomers and tetramers. Biochemistry. 2010;49:8276–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barrera Guisasola EE, Gutierrez LJ, Andujar SA, Angelina E, Rodriguez AM, Enriz RD. Pentameric models as alternative molecular targets for the design of new antiaggregant agents. Curr Protein Pept Sci. 2016;17:156–68.

    Article  CAS  PubMed  Google Scholar 

  23. Tran L, Basdevant N, Prevost C, Ha-Duong T. Structure of ring-shaped Abeta42 oligomers determined by conformational selection. Sci Rep. 2016;6:21429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strodel B, Lee JW, Whittleston CS, Wales DJ. Transmembrane structures for Alzheimer’s Abeta(1–42) oligomers. J Am Chem Soc. 2010;132:13300–12.

    Article  CAS  PubMed  Google Scholar 

  25. Gessel MM, Wu C, Li H, Bitan G, Shea JE, Bowers MT. Abeta(39–42) modulates Abeta oligomerization but not fibril formation. Biochemistry. 2012;51:108–17.

    Article  CAS  PubMed  Google Scholar 

  26. Sherman MA, Lesne SE. Detecting abeta*56 oligomers in brain tissues. Methods Mol Biol. 2011;670:45–56.

    Article  CAS  PubMed  Google Scholar 

  27. Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem. 2005;95:834–47.

    Article  CAS  PubMed  Google Scholar 

  28. Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, Acton P, et al. Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry. 2006;45:15157–67.

    Article  CAS  PubMed  Google Scholar 

  29. Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci. 2003;26:267–98.

    Article  CAS  PubMed  Google Scholar 

  30. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, et al. Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc Natl Acad Sci. 2003;100:6370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, et al. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem. 1999;274:25945–52.

    Article  CAS  PubMed  Google Scholar 

  32. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature. 2008;451:720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tu S, Okamoto S, Lipton SA, Xu H. Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener. 2014;9:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci. 2008;28:4231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, et al. Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J. 2008;27:224–33.

    Article  CAS  PubMed  Google Scholar 

  36. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27:796–807.

    Article  CAS  PubMed  Google Scholar 

  37. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature. 2002;418:291.

    Article  CAS  PubMed  Google Scholar 

  38. Ono K, Condron MM, Teplow DB. Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci. 2009;106:14745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morozova OA, Gupta S, Colby DW. Prefibrillar huntingtin oligomers isolated from HD brain potently seed amyloid formation. FEBS Lett. 2015;589:1897–903.

    Article  CAS  PubMed  Google Scholar 

  40. Walker LC, Jucker M. Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci. 2015;38:87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee HG, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA. Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther. 2007;321:823–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9:156–67.

    Article  CAS  PubMed  Google Scholar 

  43. Spangenberg EE, Green KN. Inflammation in Alzheimer’s disease: lessons learned from microglia-depletion models. Brain Behav Immun. 2016. doi:10.1016/j.bbi.2016.07.003.

    PubMed  Google Scholar 

  44. Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, et al. Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J. 2010;29:3408–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morrone CD, Liu M, Black SE, McLaurin J. Interaction between therapeutic interventions for Alzheimer’s disease and physiological Abeta clearance mechanisms. Front Aging Neurosci. 2015;7:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Paul S, Planque S, Nishiyama Y. Beneficial catalytic immunity to abeta peptide. Rejuvenation Res. 2010;13:179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lichtlen P, Mohajeri MH. Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem. 2008;104:859–74.

    Article  CAS  PubMed  Google Scholar 

  48. Robert R, Lefranc MP, Ghochikyan A, Agadjanyan MG, Cribbs DH, Van Nostrand WE, et al. Restricted V gene usage and VH/VL pairing of mouse humoral response against the N-terminal immunodominant epitope of the amyloid beta peptide. Mol Immunol. 2010;48:59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Solomon B, Koppel R, Frankel D, Hanan-Aharon E. Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci. 1997;94:4109–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6:916–9.

    Article  CAS  PubMed  Google Scholar 

  51. Sil S, Ghosh A, Ghosh T. Impairment of blood brain barrier is related with the neuroinflammation induced peripheral immune status in intracerebroventricular colchicine injected rats: an experimental study with mannitol. Brain Res. 2016;1646:278–86.

    Article  CAS  PubMed  Google Scholar 

  52. Kerchner GA, Boxer AL. Bapineuzumab. Expert Opin Biol Ther. 2010;10:1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci. 2005;25:629–36.

    Article  CAS  PubMed  Google Scholar 

  54. DiFrancesco JC, Longoni M, Piazza F. Anti-Abeta autoantibodies in amyloid related imaging abnormalities (ARIA): candidate biomarker for immunotherapy in Alzheimer’s disease and cerebral amyloid angiopathy. Front Neurol. 2015;6:207.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Miles LA, Crespi GA, Doughty L, Parker MW. Bapineuzumab captures the N-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci Rep. 2013;3:1302.

    PubMed  PubMed Central  Google Scholar 

  56. clinicaltrials.gov. A service of the U.S. National Institutes of Health. https://www.clinicaltrials.gov/. Accessed 09 Sep 2016.

  57. Bagyinszky E, Youn YC, An SS, Kim S. The genetics of Alzheimer’s disease. Clin Interv Aging. 2014;9:535–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid beta clearance in Alzheimer’s disease. Alzheimers Res Ther. 2013;5:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, Vellas B, et al. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res Ther. 2016;8:18.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wisniewski T, Goni F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron. 2015;85:1162–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Delnomdedieu M, Duvvuri S, Li DJ, Atassi N, Lu M, Brashear HR, et al. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease. Alzheimers Res Ther. 2016;8:12.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moreth J, Mavoungou C, Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer’s disease: what are the most promising targets? Immun Ageing. 2013;10:18.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Leyhe T, Andreasen N, Simeoni M, Reich A, von Arnim CA, Tong X, et al. Modulation of beta-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: a phase I study. Alzheimers Res Ther. 2014;6:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Volz C, Pauly D. Antibody therapies and their challenges in the treatment of age-related macular degeneration. Eur J Pharm Biopharm. 2015;95:158–72.

    Article  CAS  PubMed  Google Scholar 

  65. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci. 2001;98:8850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karran E, Hardy J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol. 2014;76:185–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lundkvist J, Halldin MM, Sandin J, Nordvall G, Forsell P, Svensson S, et al. The battle of Alzheimer’s Disease—the beginning of the future unleashing the potential of academic discoveries. Front Pharmacol. 2014;5:102.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:311–21.

    Article  CAS  PubMed  Google Scholar 

  69. Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s Dement J Alzheimer’s Assoc. 2016;12:110–20.

    Article  Google Scholar 

  70. Wilcock DM, Alamed J, Gottschall PE, Grimm J, Rosenthal A, Pons J, et al. Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. J Neurosci. 2006;26:5340–6.

    Article  CAS  PubMed  Google Scholar 

  71. Miyoshi I, Fujimoto Y, Yamada M, Abe S, Zhao Q, Cronenberger C, et al. Safety and pharmacokinetics of PF-04360365 following a single-dose intravenous infusion in Japanese subjects with mild-to-moderate Alzheimer’s disease: a multicenter, randomized, double-blind, placebo-controlled, dose-escalation study. Int J Clin Pharmacol Ther. 2013;51:911–23.

    Article  CAS  PubMed  Google Scholar 

  72. Bogstedt A, Groves M, Tan K, Narwal R, McFarlane M, Hoglund K. Development of immunoassays for the quantitative assessment of amyloid-beta in the presence of therapeutic antibody: application to pre-clinical studies. J Alzheimer’s Dis. 2015;46:1091–101.

    Article  CAS  Google Scholar 

  73. Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, et al. Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removal of human amyloid-beta. J Alzheimer’s Dis. 2012;28:49–69.

    CAS  Google Scholar 

  74. Shughrue PJ, Acton PJ, Breese RS, Zhao WQ, Chen-Dodson E, Hepler RW, et al. Anti-ADDL antibodies differentially block oligomer binding to hippocampal neurons. Neurobiol Aging. 2010;31:189–202.

    Article  CAS  PubMed  Google Scholar 

  75. Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, et al. Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem. 2007;100:23–35.

    Article  CAS  PubMed  Google Scholar 

  76. Kayed R, Canto I, Breydo L, Rasool S, Lukacsovich T, Wu J, et al. Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Abeta oligomers. Mol Neurodegener. 2010;5:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sarsoza F, Saing T, Kayed R, Dahlin R, Dick M, Broadwater-Hollifield C, et al. A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathol. 2009;118:505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.

    Article  CAS  PubMed  Google Scholar 

  79. Morgado I, Wieligmann K, Bereza M, Ronicke R, Meinhardt K, Annamalai K, et al. Molecular basis of beta-amyloid oligomer recognition with a conformational antibody fragment. Proc Natl Acad Sci. 2012;109:12503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perchiacca JM, Ladiwala AR, Bhattacharya M, Tessier PM. Structure-based design of conformation- and sequence-specific antibodies against amyloid beta. Proc Natl Acad Sci. 2012;109:84–9.

    Article  CAS  PubMed  Google Scholar 

  81. Westwood M, Lawson ADG. Opportunities for conformation-selective antibodies in amyloid-related diseases. Antibodies 2015;4:170–96.

    Article  Google Scholar 

  82. Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener. 2006;2:99–119.

    Google Scholar 

  83. Larson ME, Lesne SE. Soluble Abeta oligomer production and toxicity. J Neurochem. 2012;120(Suppl 1):125–39.

    Article  CAS  PubMed  Google Scholar 

  84. Barghorn S, Striebinger A, Giaisi S, Koehler A, Ebert U, Hillen H. Abeta-oligomer selective antibody A-887755 exhibits a favorable profile for Alzheimer’s disease immunotherapy compared to Abeta-peptide unselective antibodies. Alzheimer’s Dementia. 2009;5:424.

    Article  Google Scholar 

  85. Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, et al. An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci. 2012;32:9677–89.

    Article  CAS  PubMed  Google Scholar 

  86. Cummings J. Cho W, Ward M, Friesenhahn M, Brunstein F, Honigberg L, et al. A randomized, double-blind, placebo-controlled phase 2 study to evaluate the efficacy and safety of crenezumab in patients with mild to moderate Alzheimer’s disease. In: Alzheimer’s association international conference 2014, Copenhagen, Presentation number: O4-11-062014.

  87. Demattos RB, Lu J, Tang Y, Racke MM, Delong CA, Tzaferis JA, et al. A plaque-specific antibody clears existing beta-amyloid plaques in Alzheimer’s disease mice. Neuron. 2012;76:908–20.

    Article  CAS  PubMed  Google Scholar 

  88. Sehlin D, Englund H, Simu B, Karlsson M, Ingelsson M, Nikolajeff F, et al. Large aggregates are the major soluble Abeta species in AD brain fractionated with density gradient ultracentrifugation. PLoS One. 2012;7:e32014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lannfelt L, Moller C, Basun H, Osswald G, Sehlin D, Satlin A, et al. Perspectives on future Alzheimer therapies: amyloid-beta protofibrils—a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res Ther. 2014;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tucker S, Moller C, Tegerstedt K, Lord A, Laudon H, Sjodahl J, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimer’s Disease. 2015;43:575–88.

    CAS  Google Scholar 

  91. Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J, Osswald G, et al. Safety and tolerability of BAN2401 - a clinical study in Alzheimer’s disease with a protofibril selective Abeta antibody. Alzheimers Res Ther. 2016;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nerelius C, Laudon H, Sigvrdson J. Improved Aβ protofibril binding antibodies. WIPO Patent Application WO/2016/005466. International Publication Data, 14 Jan 2016.

  93. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–25.

    Article  CAS  PubMed  Google Scholar 

  94. Hillen H, Barghorn S, Striebinger A, Labkovsky B, Muller R, Nimmrich V, et al. Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. J Neurosci. 2010;30:10369–79.

    Article  CAS  PubMed  Google Scholar 

  95. Krafft GA, Hefti F, Goure WF, Jerecic J, Iverson K. ACU-193: A drug candidate antibody that selectively targets soluble Abeta oligomers. Alzheimer’s Dementia. 2013;9:326.

    Article  Google Scholar 

  96. Neurimmune. RTM™ Technology Platform. http://www.neurimmune.com/-technology/rtm-technology-platform-.html. Accessed 08 Sep 2016.

  97. Thierry B, Paul HW, Thomas E, Kenneth R, Joseph A, Fang Q, et al. A method of reducing brain amyloid plaques using anti-Aβ antibodies. WIPO Patent Application WO/2014/089500. International Publication Data, 12 June 2014.

  98. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537:50–6.

    Article  CAS  PubMed  Google Scholar 

  99. Biogen Presents New Data from Phase 1B Study of Investigational Alzheimer’s Disease Treatment Aducanumab (BIIB037) at Alzheimer’s Association International Conference® 2015. Available 22 July 2015.

  100. Lannfelt L, Relkin NR, Siemers ER. Amyloid-ss-directed immunotherapy for Alzheimer’s disease. J Intern Med. 2014;275:284–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jia Q, Deng Y, Qing H. Potential therapeutic strategies for Alzheimer’s disease targeting or beyond beta-amyloid: insights from clinical trials. BioMed Res Int. 2014;2014:837157.

    PubMed  PubMed Central  Google Scholar 

  102. Relkin N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J Clin Immunol. 2014;34(Suppl 1):S74–9.

    Article  PubMed  CAS  Google Scholar 

  103. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403.

    Article  CAS  PubMed  Google Scholar 

  104. da Rocha MD, Viegas FP, Campos HC, Nicastro PC, Fossaluzza PC, Fraga CA, et al. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2011;10:251–70.

    Article  PubMed  Google Scholar 

  105. Dias KS, Viegas C Jr. Multi-target directed drugs: a modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr Neuropharmacol. 2014;12:239–55.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.

  107. Gadkar K, Yadav DB, Zuchero JY, Couch JA, Kanodia J, Kenrick MK, et al. Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain. Eur J Pharm Biopharm. 2016;101:53–61.

    Article  CAS  PubMed  Google Scholar 

  108. Miller TW, Messer A. Intrabody applications in neurological disorders: progress and future prospects. Mol Ther. 2005;12:394–401.

    Article  CAS  PubMed  Google Scholar 

  109. de Marco A. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact. 2015;14:125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G. The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet. 1995;9:21–30.

    Article  CAS  PubMed  Google Scholar 

  111. Paganetti P, Calanca V, Galli C, Stefani M, Molinari M. beta-site specific intrabodies to decrease and prevent generation of Alzheimer’s Abeta peptide. J Cell Biol. 2005;168:863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Moran N. Mouse platforms jostle for slice of humanized antibody market. Nat Biotechnol. 2013;31:267–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chen Suen.

Ethics declarations

Funding

This work was funded by the Guangdong province special plan for introducing innovative R&D teams (201101Y0104990178, China).

Conflict of interest

All authors (Jing Liu, Bin Yang, Jun Ke, Wenjia Li, and Wen-Chen Suen) are employees of Sunshine Lake Pharma Co. which has an interest in the development of therapeutic agents for Alzheimer’s disease and concur with this submission.

Additional information

J. Liu and B. Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, B., Ke, J. et al. Antibody-Based Drugs and Approaches Against Amyloid-β Species for Alzheimer’s Disease Immunotherapy. Drugs Aging 33, 685–697 (2016). https://doi.org/10.1007/s40266-016-0406-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-016-0406-x

Keywords

Navigation