Skip to main content
Log in

Omadacycline: A Novel Oral and Intravenous Aminomethylcycline Antibiotic Agent

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Omadacycline is a novel aminomethylcycline antibiotic developed as a once-daily, intravenous and oral treatment for acute bacterial skin and skin structure infection (ABSSSI) and community-acquired bacterial pneumonia (CABP). Omadacycline, a derivative of minocycline, has a chemical structure similar to tigecycline with an alkylaminomethyl group replacing the glycylamido group at the C-9 position of the D-ring of the tetracycline core. Similar to other tetracyclines, omadacycline inhibits bacterial protein synthesis by binding to the 30S ribosomal subunit. Omadacycline possesses broad-spectrum antibacterial activity against Gram-positive and Gram-negative aerobic, anaerobic, and atypical bacteria. Omadacycline remains active against bacterial isolates possessing common tetracycline resistance mechanisms such as efflux pumps (e.g., TetK) and ribosomal protection proteins (e.g., TetM) as well as in the presence of resistance mechanisms to other antibiotic classes. The pharmacokinetics of omadacycline are best described by a linear, three-compartment model following a zero-order intravenous infusion or first-order oral administration with transit compartments to account for delayed absorption. Omadacycline has a volume of distribution (Vd) ranging from 190 to 204 L, a terminal elimination half-life (t½) of 13.5–17.1 h, total clearance (CLT) of 8.8–10.6 L/h, and protein binding of 21.3% in healthy subjects. Oral bioavailability of omadacycline is estimated to be 34.5%. A single oral dose of 300 mg (bioequivalent to 100 mg IV) of omadacycline administered to fasted subjects achieved a maximum plasma concentration (Cmax) of 0.5–0.6 mg/L and an area under the plasma concentration-time curve from 0 to infinity (AUC0–∞) of 9.6–11.9 mg h/L. The free plasma area under concentration–time curve divided by the minimum inhibitory concentration (i.e., fAUC24h/MIC), has been established as the pharmacodynamic parameter predictive of omadacycline antibacterial efficacy. Several animal models including neutropenic murine lung infection, thigh infection, and intraperitoneal challenge model have documented the in vivo antibacterial efficacy of omadacycline. A phase II clinical trial on complicated skin and skin structure infection (cSSSI) and three phase III clinical trials on ABSSSI and CABP demonstrated the safety and efficacy of omadacycline. The phase III trials, OASIS-1 (ABSSSI), OASIS-2 (ABSSSI), and OPTIC (CABP), established non-inferiority of omadacycline to linezolid (OASIS-1, OASIS-2) and moxifloxacin (OPTIC), respectively. Omadacycline is currently approved by the FDA for use in treatment of ABSSSI and CABP. Phase II clinical trials involving patients with acute cystitis and acute pyelonephritis are in progress. Mild, transient gastrointestinal events are the predominant adverse effects associated with use of omadacycline. Based on clinical trial data to date, the adverse effect profile of omadacycline is similar to studied comparators, linezolid and moxifloxacin. Unlike tigecycline and eravacycline, omadacycline has an oral formulation that allows for step-down therapy from the intravenous formulation, potentially facilitating earlier hospital discharge, outpatient therapy, and cost savings. Omadacycline has a potential role as part of an antimicrobial stewardship program in the treatment of patients with infections caused by antibiotic-resistant and multidrug-resistant Gram-positive [including methicillin-resistant Staphylococcus aureus (MRSA)] and Gram-negative pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from Refs. [1, 10, 12])

Similar content being viewed by others

References

  1. Nelson ML, Levy SB. The history of the tetracyclines. Ann N Y Acad Sci. 2011;1241:17–32.

    CAS  PubMed  Google Scholar 

  2. Thaker M, Spanogiannopoulos P, Wright GD. The tetracycline resistome. Cell Mol Life Sci. 2010;67:419–31.

    CAS  PubMed  Google Scholar 

  3. Zhanel GG, Homenuik K, Nichol K, Noreddin A, Vercaigne L, Embil J, et al. The glycylcyclines. Drugs. 2004;64:63–88.

    CAS  PubMed  Google Scholar 

  4. Draper MP, Weir S, Macone A, Donatelli J, Trieber CA, Tanaka SK, et al. Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob Agents Chemother. 2014;58:1279–83.

    PubMed  PubMed Central  Google Scholar 

  5. Tanaka SK, Steenbergen J, Villano S. Discovery, pharmacology, and clinical profile of omadacycline, a novel aminomethylcycline antibiotic. Bioorg Med Chem. 2016;24:6409–19.

    CAS  PubMed  Google Scholar 

  6. Markley JL, Fang L, Gasparrini AJ, Symister CT, Kumar H, Tolia NH, et al. Semisynthetic analogues of anhydrotetracycline as inhibitors of tetracycline destructase enzymes. ACS Infect Dis. 2019;5:618–33.

    CAS  PubMed  Google Scholar 

  7. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24:718–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Heidrich C, Mitova S, Schedlbauer A, Connell S, Fucini P, Steenbergen J, et al. The novel aminomethylcycline omadacycline has high specificity for the primary tetracycline-binding site on the bacterial ribosome. Antibiotics. 2016;5:32.

    PubMed Central  Google Scholar 

  9. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Honeyman L, Ismail M, Nelson ML, Bhatia B, Bowser TE, Chen J, et al. Structure–activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob Agents Chemother. 2015;59:7044–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Macone AB, Caruso BK, Leahy RG, Donatelli J, Weir S, Draper MP, et al. In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother. 2014;58:1127–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhanel GG, Cheung D, Adam H, Zelenitsky S, Golden A, Schweizer F, et al. Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs. 2016;76:567–88.

    CAS  PubMed  Google Scholar 

  13. HIGHLIGHTS OF PRESCRIBING INFORMATION. These highlights do not include all the information needed to use NUZYRA TM safely and effectively. See full prescribing information for NUZYRA. NUZYRA (omadacycline) for injection, for intravenous use NUZYRA (omadacycline) tablets, for oral use. http://www.fda.gov/medwatch.

  14. Gallagher JC. Omadacycline: a modernized tetracycline. Clin Infect Dis. 2019;69:S1–5.

    PubMed  PubMed Central  Google Scholar 

  15. Watkins RR, Deresinski S. Omadacycline: a novel tetracycline derivative with oral and intravenous formulations. Clin Infect Dis. 2019;69:890–6.

    PubMed  Google Scholar 

  16. Karlowsky JA, Steenbergen J, Zhanel GG. Microbiology and preclinical review of omadacycline. Clin Infect Dis. 2019;69:S6–15.

    PubMed  PubMed Central  Google Scholar 

  17. Huband MD, Pfaller MA, Shortridge D, Flamm RK. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: results from the SENTRY antimicrobial surveillance programme, 2017. J Glob Antimicrob Resist. 2019;19:56–63.

    PubMed  Google Scholar 

  18. Nelson ML, Levy SB. Tetracyclines and tetracycline derivatives. Comprehensive Biotechnology, vol. 3. 2nd ed. Amsterdam: Elsevier; 2011. p. 269–83.

    Google Scholar 

  19. Zhanel GG, Karlowsky JA, Rubinstein E, Hoban DJ. Tigecycline: a novel glycylcycline antibiotic. Expert Rev Anti Infect Ther. 2006;4:9–25.

    CAS  PubMed  Google Scholar 

  20. Nguyen F, Starosta AL, Arenz S, Sohmen D, Dönhöfer A, Wilson DN. Tetracycline antibiotics and resistance mechanisms. Biol Chem. 2014;395:559–75.

    CAS  PubMed  Google Scholar 

  21. Dougherty JA, Sucher AJ, Chahine EB, Shihadeh KC. Omadacycline: a new tetracycline antibiotic. Ann Pharmacother. 2019;53:486–500.

    CAS  PubMed  Google Scholar 

  22. Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005;245:195–203.

    CAS  PubMed  Google Scholar 

  23. Durães Sousa. Omadacycline: a newly approved antibacterial from the class of tetracyclines. Pharmaceuticals. 2019;12:63.

    PubMed Central  Google Scholar 

  24. Mendes R, Castanheira M, Armstrong E, Steenbergen J, Flamm R. Omadacycline in vitro activity against a molecularly characterized collection of clinical isolates with known tetracycline resistance mechanisms [abstract no 1377 plus poster]. Infectious Disease Week; 3–7 Oct 2018; San Francisco.

  25. Villano S, Steenbergen J, Loh E. Omadacycline: development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections. Future Microbiol. 2016;11:1421–34.

    CAS  PubMed  Google Scholar 

  26. Dubois J, Dubois M, Steenbergen JN. In vitro activity of omadacycline against resistant Staphylococcus aureus [abstract no P1829 plus poster]. In: 28th European Congress and Clinical Microbiology and Infectious Disease; 21–24 April 2018; Madrid.

  27. Pfaller MA, Rhomberg PR, Huband MD, Flamm RK. Activity of omadacycline tested against Streptococcus pneumoniae from a global surveillance program (2014). Diagn Microbiol Infect Dis. 2018;90:143–7.

    CAS  PubMed  Google Scholar 

  28. Pfaller MA, Rhomberg PR, Huband MD, Flamm RK. Activities of omadacycline and comparator agents against Staphylococcus aureus isolates from a surveillance program conducted in North America and Europe. Antimicrob Agents Chemother. 2017;61:e02411–6.

    PubMed  PubMed Central  Google Scholar 

  29. Pfaller MA, Huband MD, Rhomberg PR, Flamm RK. Surveillance of omadacycline activity against clinical isolates from a global collection (North America, Europe, Latin America, Asia-Western Pacific), 2010–2011. Antimicrob Agents Chemother. 2017;61:e00018–17.

    PubMed  PubMed Central  Google Scholar 

  30. Pfaller MA, Huband MD, Streit JM, Flamm RK, Sader HS. Surveillance of tigecycline activity tested against clinical isolates from a global (North America, Europe, Latin America and Asia-Pacific) collection (2016). Int J Antimicrob Agents. 2018;51:848–53.

    CAS  PubMed  Google Scholar 

  31. Zhanel GG, Baxter A, Hink R, Liang N, Lagacé-Wiens PRS, Hoban DJ, et al. In vitro antimicrobial activity of omadacycline, a new aminomethylcycline, against Gram-positive and Gram-negative bacterial pathogens isolated from patients attending Canadian hospitals in 2015: The CANWARD Study [abstract no Saturday-46 plus poster]. American Society for Microbiology; 1–5 June 2017; Louisiana.

  32. Farrell DJ, Turnidge JD, Bell J, Sader HS, Jones RN. The in vitro evaluation of tigecycline tested against pathogens isolated in eight countries in the Asia-Western Pacific region (2008). J Infect. 2010;60:440–51.

    PubMed  Google Scholar 

  33. Sader HS, Mendes RE, Le J, Denys G, Flamm RK, Jones RN. Antimicrobial susceptibility of Streptococcus pneumoniae for North America, Europe, Latin America, and the Asia-Pasific Region: results from 20 years of the SENTRY antimicrobial surveillance program (1997–2016). Open Forum Infect Dis. 2019;6:S14–23.

    PubMed  PubMed Central  Google Scholar 

  34. Horn K, Gotfried MH, Steenbergen JN, Villano SA, Tzanis E, Garrity-Ryan L, et al. Comparison of omadacycline (OMC) and tigecycline (TGC) pharmacodynamics (PD) in the plasma, epithelial lining fluid (ELF), and alveolar macrophages (AM) in healthy subjects [abstract no OS1018 plus poster]. In: 27th European Congress of Clinical Microbiology and Infectious Disease; 22–25 April 2017; Vienna.

  35. Noskin GA. Tigecycline: a new glycylcycline for treatment of serious infections. Clin Infect Dis. 2005;41:S303–14.

    CAS  PubMed  Google Scholar 

  36. Bopp LH, Baltch AL, Ritz WJ, Michelsen PB, Smith RP. Activities of tigecycline and comparators against Legionella pneumophila and Legionella micdadei extracellularly and in human monocyte-derived macrophages. Diagn Microbiol Infect Dis. 2011;69:86–93.

    CAS  PubMed  Google Scholar 

  37. McKeage K, Keating GM. Tigecycline: in community-acquired pneumonia. Drugs. 2008;68:2633–44.

    CAS  PubMed  Google Scholar 

  38. Lee H, Kim H, Hee Seo Y, Yong D, Hoon Jeong S, Lee K, et al. In vitro activity of tigecycline alone and antimicrobial combinations against clinical Neisseria gonorrhoeae isolates. Diagn Microbiol Infect Dis. 2017;87:160–2.

    CAS  PubMed  Google Scholar 

  39. Betriu C, Culebras E, Gómez M, Rodríguez-Avial I, Picazo JJ. In vitro activity of tigecycline against Bacteroides species. J Antimicrob Chemother. 2005;56:349–52.

    CAS  PubMed  Google Scholar 

  40. Felmingham D. Tigecycline—the first glycylcycline to undergo clinical development: an overview of in vitro activity compared to tetracycline. J Chemother. 2005;17:5–11.

    CAS  PubMed  Google Scholar 

  41. Luna VA, King DS, Gulledge J, Cannons AC, Amuso PT, Cattani J. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre(R) automated microbroth dilution and Etest(R) agar gradient diffusion methods. J Antimicrob Chemother. 2007;60:555–67.

    CAS  PubMed  Google Scholar 

  42. Heaney M, Mahoney MV, Gallagher JC. Eravacycline: the tetracyclines strike back. Ann Pharmacother. 2019;53:1124–35.

    CAS  PubMed  Google Scholar 

  43. Welsh L, Gaydos C, Quinn TC. In vitro activities of azithromycin, clarithromycin, erythromycin, and tetracycline against 13 strains of Chlamydia pneumoniae. Antimicrob Agents Chemother. 1996;40:212–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stapert L, Wolfe C, Shinabarger D, Marra A, Pillar C. In vitro activities of omadacycline and comparators against anaerobic bacteria. Antimicrob Agents Chemother. 2018;62:e00047–+.

    PubMed  PubMed Central  Google Scholar 

  45. Shoen C, Benaroch D, Sklaney M, Cynamon M, Benaroch D, Cynamon M. In vitro activities of omadacycline against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2019;63:e02522–18.

    PubMed  PubMed Central  Google Scholar 

  46. Goldstein EJC, Citron DM, Tyrrell KL, Leoncio E, Merriama CV. Comparative in vitro activity of omadacycline against dog and cat bite wound isolates. Antimicrob Agents Chemother. 2018;62:e02551–17.

    PubMed  PubMed Central  Google Scholar 

  47. Steenbergen J, Tanaka SK, Miller LL, Halasohoris SA, Hershfield JR. In vitro and in vivo activity of omadacycline against two biothreat pathogens, Bacillus anthracis and Yersinia pestis. Antimicrob Agents Chemother. 2017;61:e02434–16.

    PubMed  PubMed Central  Google Scholar 

  48. Kohlhoff SA, Huerta N, Hammerschlag MR. In vitro activity of omadacycline against Chlamydia pneumoniae [abstract no Saturday-626 plus poster]. American Society for Microbiology; 7–11 June 2018; Atlanta.

  49. Waites KB, Crabb DM, Liu Y, Duffy LB. In vitro activities of omadacycline (PTK 0796) and other antimicrobial agents against human Mycoplasmas and Ureaplasmas. Antimicrob Agents Chemother. 2016;60:7502–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Flamm RK, Steenbergen JN, Huband MD, Rhomberg PR, Sader HS. Activity of omadacycline when tested against respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus isolated during 2016 from medical centers in the USA [abstract no A6856 plus poster]. American Thoracic Society; 19–24 May 2017; Washington.

  51. Cunha BA, Sibley CM, Ristuccia AM. Doxyxycline. Ther Drug Monit. 1982;4:115–35.

    CAS  PubMed  Google Scholar 

  52. Lindsay Grayson M. Minocycline Kucers’ the use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic, and antiviral drugs, vol. 1. 7th ed. Washington: American Society for Microbiology; 2017. p. 1230–48.

    Google Scholar 

  53. Bishburg E, Bishburg K. Minocycline—an old drug for a new century: emphasis on methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii. Int J Antimicrob Agents. 2009;34:395–401.

    CAS  PubMed  Google Scholar 

  54. Chen A, Smith KP, Whitfield BA, Zucchi PC, Lasco TM, Bias TE, et al. Activity of minocycline against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae clinical isolates, with comparison to doxycycline and tigecycline. Diagn Microbiol Infect Dis. 2017;88:365–7.

    CAS  PubMed  Google Scholar 

  55. Jamal W, Rotimi VO, Pal T, Sonnevend A, Dimitrov TS. Comparative in vitro activity of tigecycline and other antimicrobial agents against Shigella species from Kuwait and the United Arab of Emirates. J Infect Public Health. 2010;3:35–42.

    PubMed  Google Scholar 

  56. Kaushik A, Ammerman NC, Martins O, Parrish NM, Nuermberger EL. In vitro activity of new tetracycline analogs omadacycline and eravacycline against drug-resistant clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother. 2019;63:e00470–19.

    PubMed  PubMed Central  Google Scholar 

  57. Bassetti M, Righi E. Eravacycline for the treatment of intra-abdominal infections. Expert Opin Investig Drugs. 2014;23:1575–84.

    CAS  PubMed  Google Scholar 

  58. Bax HI, de Vogel CP, Mouton JW, de Steenwinkel JEM. Omadacycline as a promising new agent for the treatment of infections with Mycobacterium abscessus. J Antimicrob Chemother. 2019;74:2930–3.

    PubMed  Google Scholar 

  59. Sutcliffe JA. Antibiotics in development targeting protein synthesis. Ann N Y Acad Sci. 2011;1241:122–52.

    CAS  PubMed  Google Scholar 

  60. Diehl D, Bionda N, Cady NC, Strickland A, Tanaka SK. In vitro activity of omadacycline against Escherichia coli biofilms [abstract no Monday-552 plus poster]. American Society for Microbiology; 16–20 June 2016; Boston.

  61. Kim O, Leahy RG, Traczewski M, MAocne A, Steenbergen JN. Activity and efficacy of omadacycline against Clostridium difficile [abstract no P1325 plus poster]. In: 26th European Congress of Clinical Microbiology and Infectious Disease; 9–12 April 2016; Amsterdam.

  62. Dubois J, Dubois M, Martel F, Tanaka SK. In vitro activity of omadacycline against Legionella pneumophilia [abstract no Monday-551 plus poster). American Society for Microbiology; 16–20 June 2016; Boston.

  63. Sweeney D, Hall D, D. S, Pillar C. Activity of omadacycline against clinical isolates of Neisseria gonorrhea including ciprofloxacin-resistant isolates [abstract no Monday-001 plus poster]. American Society for Microbiology; 16–20 June 2016; Boston.

  64. Fluit AC, van Gorkum S, Vlooswijk J. Minimal inhibitory concentration of omadacycline and doxycycline against bacterial isolates with known tetracycline resistance determinants. Diagn Microbiol Infect Dis. 2019;94:78–80.

    CAS  PubMed  Google Scholar 

  65. Carvalhaes CG, Huband MD, Reinhart HH, Flamm RK, Sader HS. Antimicrobial activity of omadacycline tested against clinical bacterial isolates from hospitals in Mainland China, Hong Kong, and Taiwan: results from the SENTRY Antimicrobial Surveillance Program (2013 to 2016). Antimicrob Agents Chemother. 2019;63:e02262–18.

    PubMed  PubMed Central  Google Scholar 

  66. Pfaller MA, Huband MD, Shortridge D, Flamm RK. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe as PART of the 2016 SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2018;62:e02327–17.

    PubMed  PubMed Central  Google Scholar 

  67. Townsend ML, Pound MW, Drew RH. Tigecycline: a new glycylcycline antimicrobial. Int J Clin Pract. 2006;60:1662–72.

    CAS  PubMed  Google Scholar 

  68. Pfaller MA, Rhomberg PR, Huband MD, Flamm RK. Activity of omadacycline tested against Enterobacteriaceae causing urinary tract infections from a global surveillance program (2014). Diagn Microbiol Infect Dis. 2018;91:179–83.

    CAS  PubMed  Google Scholar 

  69. Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs. 2011;34:737–51.

    CAS  PubMed  Google Scholar 

  70. Sun H, Ting L, Machineni S, Praestgaard J, Kuemmell A, Stein DS, et al. Randomized, open-label study of the pharmacokinetics and safety of oral and intravenous administration of omadacycline to healthy subjects. Antimicrob Agents Chemother. 2016;60:7431–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tzanis E, Manley A, Villano S, Tanaka SK, Bai S, Loh E. Effect of food on the bioavailability of omadacycline in healthy participants. J Clin Pharmacol. 2017;57:321–7.

    CAS  PubMed  Google Scholar 

  72. Bundrant LA, Tzanis E, Garrity-Ryan L, Bai S, Chitra S, Manley A, et al. Safety and pharmacokinetics of the aminomethylcycline antibiotic omadacycline administered to healthy subjects in oral multiple-dose regimens. Antimicrob Agents Chemother. 2018;62:e01487–17.

    PubMed  PubMed Central  Google Scholar 

  73. Overcash JS, Bhiwandi P, Garrity-Ryan L, Steenbergen J, Bai S, Chitra S, et al. Pharmacokinetics, safety, and clinical outcomes of omadacycline in women with cystitis: results from a phase 1 study. Antimicrob Agents Chemother. 2019;63:e02083–18.

    PubMed  PubMed Central  Google Scholar 

  74. Sun H, Ting L, Maietta R, Machineni S, Praestgaard J, Kuemmell A, et al. A single-dose study to evaluate the pharmacokinetics, safety, and tolerability of multiple formulation of PTK 0796 in healthy subjects [abstract no P1423 plus poster]. In: 22nd European Congress of Clinical Microbiology and Infectious Disease; 31 Mar–3 April 2012; London.

  75. Berg JK, Tzanis E, Garrity-Ryan L, Bai S, Chitra S, Manley A, et al. Pharmacokinetics and safety of omadacycline in subjects with impaired renal function. Antimicrob Agents Chemother. 2018;62:e02057–17.

    PubMed  PubMed Central  Google Scholar 

  76. Gotfried MH, Horn K, Garrity-Ryan L, Villano S, Tzanis E, Chitra S, et al. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells of healthy adult subjects. Antimicrob Agents Chemother. 2017;61:e01135–17.

    PubMed  PubMed Central  Google Scholar 

  77. Flarakos J, Du Y, Gu H, Wang L, Einolf HJ, Chun DY, et al. Clinical disposition, metabolism and in vitro drug–drug interaction properties of omadacycline. Xenobiotica. 2017;47:682–96.

    CAS  PubMed  Google Scholar 

  78. Lin W, Flarakos J, Du Y, Hu W, He H, Mangold J, et al. Pharmacokinetics, distribution, metabolism, and excretion of omadacycline following a single intravenous or oral dose of 14C-omadacycline in rats. Antimicrob Agents Chemother. 2017;61:e01784–16.

    PubMed  Google Scholar 

  79. Lakota E, Van Wart S, Tzanis E, Bhavnani S, Ambrose P, Rubino C. Population pharmacokinetic (PK) analyses of omadacycline using phase 1 and phase 3 data [abstract no. Saturday-628 plus poster]. American Society for Microbiology; 7–11 June 2018; Atlanta.

  80. Lakota E, Steenbergen J, McGovern O, Tzanis E, Bhavnani S, Rubino C. Omadacycline pharmacokinetics: impact of comorbidities [abstract no P1943 plus poster]. 29th European Congress Clinical Microbiology and Infectious Disease; 13–16 April 2019; Amsterdam.

  81. Ting L, Kovacs SJ, Praestgaard J, Maietta R, Stein DS, Sunkara G, et al. Pharmacokinetics of omadacycline (PTK0796) in subjects with hepatic impairment [abstract no A-1282 plus poster]. In: 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 9–12 Sept 2012; San Francisco.

  82. Lepak AJ, Zhao M, Marchillo K, VanHecker J, Andes DR. In vivo pharmacodynamics of omadacycline against Staphylococcus aureus in the neutropenic murine thigh infection model. Antimicrob Agents Chemother. 2019;63:e00624–19.

    PubMed  PubMed Central  Google Scholar 

  83. Lepak AJ, Zhao M, Marchillo K, VanHecker J, Andes DR. In vivo pharmacodynamic evaluation of omadacycline (PTK 0796) against Streptococcus pneumoniae in the murine pneumonia model. Antimicrob Agents Chemother. 2017;61:e02368–16.

    PubMed  PubMed Central  Google Scholar 

  84. Bhavnani S, Hammel J, Lakota E, Liolios K, Rubino C, Steenbergen J, et al. Assessment of pharmacokinetic-pharmacodynamics to support omadacycline dosing regimens for the treatment of patients with acute bacterial skin and skin structure infections (ABSSSI) [abstract no P1944 plus poster]. In: 29th European Congress of Clinical Microbiology and Infectious Disease; 13–16 April 2019; Amsterdam.

  85. Abrahamian FM, Sakoulas G, Tzanis E, Manley A, Steenbergen J, Das AF, et al. Omadacycline for acute bacterial skin and skin structure infections. Clin Infect Dis. 2019;69:S23–32.

    PubMed  PubMed Central  Google Scholar 

  86. Craig W, Andes DR, Odinecs A. In vivo pharmacodynamics of MK-2764/PTK 0796 against various Gram-positive and Gram-negative bacteria in the thighs of neutropenic and normal mice [abstrat no F1-1974 plus poster]. In: 46th Interscience Conference on Antiretroviral Agents and Chemotherapy; 27–30 Sept 2006; San Francisco.

  87. Noel GJ, Draper MP, Hait H, Tanaka SK, Arbeit RD. A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother. 2012;56:5650–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. O’Riordan W, Green S, Overcash JS, Puljiz I, Metallidis S, Gardovskis J, et al. Omadacycline for acute bacterial skin and skin-structure infections. N Engl J Med. 2019;380:528–38.

    PubMed  Google Scholar 

  89. O’Riordan W, Cardenas C, Shin E, Sirbu A, Garrity-Ryan L, Das AF, et al. Once-daily oral omadacycline versus twice-daily oral linezolid for acute bacterial skin and skin structure infections (OASIS-2): a phase 3, double-blind, multicentre, randomised, controlled, non-inferiority trial. Lancet Infect Dis. 2019;19(10):1080–90.

    PubMed  Google Scholar 

  90. Stets R, Popescu M, Gonong JR, Mitha I, Nseir W, Madej A, et al. Omadacycline for community-acquired bacterial pneumonia. N Engl J Med. 2019;380:517–27.

    CAS  PubMed  Google Scholar 

  91. Ramirez JA, Tzanis E, Curran M, Noble R, Chitra S, Manley A, et al. Early clinical response in community-acquired bacterial pneumonia: from clinical endpoint to clinical practice. Clin Infect Dis. 2019;69:S33–9.

    PubMed  PubMed Central  Google Scholar 

  92. Opal S, File TM, van der Poll T, Tzanis E, Chitra S, McGovern PC. An integrated safety summary of omadacycline, a novel aminomethylcycline antibiotic. Clin Infect Dis. 2019;69:S40–7.

    PubMed  PubMed Central  Google Scholar 

  93. Rodvold KA, Pai MP. Pharmacokinetics and pharmacodynamics of oral and intravenous omadacycline. Clin Infect Dis. 2019;69:S16–22.

    PubMed  PubMed Central  Google Scholar 

  94. Lexicomp Online, Interaction Monograph, Tetracyclines/Antacids [Internet]: Wolters Kluwer Clinical Drug Information, Inc.; 2019. online.lexi.com. Accessed 03 August 94. Lexi. Lexicomp: Iron/Tet.

  95. Lexicomp Online, Interaction Monograph, Tetracyclines/Iron Salts [Internet]: Wolters Kluwer Clinical Drug Information, Inc.; 2019. online.lexi.com. Accessed 03 August.

  96. Lexicomp Online, Interaction Monograph, Tetracyclines/Bismuth Subsalicylate [Internet]: Wolters Kluwer Clinical Drug Information, Inc.; 2019. online.lexi.com. Accessed 03 August.

  97. Lexicomp Online, Interaction Monograph, Vitamin K Antagonists/Tetracyclines [Internet]: Wolters Kluwer Clinical Drug Information, Inc.; 2019. online.lexi.com. Accessed 03 August.

  98. Lexicomp Online, Interaction Monograph, Tetracyclines/Digoxin [Internet]: Wolters Kluwer Clinical Drug Information, Inc.; 2019. online.lexi.com. Accessed 03 August.

  99. Lexicomp Online, Interaction Monograph, Penicillin/Tetracyclines [Internet]: Wolters Kluwer Clinical Drug Information, Inc.; 2019. online.lexi.com. Accessed 03 August.

  100. Lexicomp Online, Interaction Monograph, Estrogen Derivatives (Contraceptive)/ Tetracyclines [Internet]: Wolters Kluwer Clinical Drug Information, Inc.; 2019. online.lexi.com. Accessed 03 August.

  101. Zhanel GG, Siemens S, Slayter K, Mandell L. Antibiotic and oral contraceptive drug interactions: is there a need for concern? Can J Infect Dis. 1999;10:429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JE (involved in design and concept of entire manuscript and drafting all sections), SZ (involved in design and concept of entire manuscript and drafting pharmacokinetic and pharmacodynamics sections), CKL (involved in design and concept of entire manuscript and drafting pharmacokinetic and pharmacodynamics sections), HJA (involved in design and concept of entire manuscript and drafting all sections), AG (involved in design and concept of entire manuscript and drafting mechanisms of action and resistance sections), RH (involved in design and concept of entire manuscript and drafting mechanisms of action and resistance and microbiology sections), LB (involved in design and concept of entire manuscript and drafting chemistry and microbiology sections), FS (involved in design and concept of entire manuscript and drafting chemistry and microbiology sections), MAZ (involved in design and concept of entire manuscript and drafting introduction, mechanisms of action/resistance, chemistry and microbiology sections), DB (involved in design and concept of entire manuscript and drafting introduction, mechanisms of action/resistance, chemistry and drug interaction sections), PRSL-W (involved in design and concept of entire manuscript and drafting animal models section), AJW (involved in design and concept of entire manuscript and drafting clinical trials, adverse effects and place in therapy sections), JPL (involved in design and concept of entire manuscript and drafting clinical trials and place in therapy sections), JAK (involved in design and concept of entire manuscript and drafting all sections), GGZ (involved in design and concept of entire manuscript and drafting all sections, senior and corresponding author).

Corresponding author

Correspondence to George G. Zhanel.

Ethics declarations

Conflict of interest

No conflicts are declared for Jenine Esquivel, Sheryl Zelenitsky, Courtney K. Lawrence, Heather J. Adam, Alyssa Golden, Rachel Hink, Liam Berry, Frank Schweizer, Michael A. Zhanel, Denice Bay, Philippe R. S. Lagacé-Wiens, Andrew J. Walkty, Joseph P. Lynch III and James A. Karlowsky. Dr Zhanel has received research grants from Paratek Pharmaceuticals (omadacycline), Pfizer (tigecycline), and Tetraphase (eravacycline).

Funding

The authors are grateful to Paratek Pharmaceuticals for their assistance with literature retrieval and an unrestricted research grant to aid in funding Jenine Esquivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhanel, G.G., Esquivel, J., Zelenitsky, S. et al. Omadacycline: A Novel Oral and Intravenous Aminomethylcycline Antibiotic Agent. Drugs 80, 285–313 (2020). https://doi.org/10.1007/s40265-020-01257-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01257-4

Navigation