Skip to main content
Log in

Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is a disorder characterized by a complex chronic inflammatory response that is largely poorly responsive to treatment with corticosteroids. Consequently, there is a huge need to find effective anti-inflammatory agents for the treatment of patients with this disease. Inhibition of cytokines and chemokines or their receptors using monoclonal antibodies (mAbs) could be a potential strategy to treat the inflammatory component of COPD. In this article, we review the therapeutic potential of some of these mAbs; however, to date there has been little or no therapeutic effect of any mAb directed against cytokines or chemokines in patients with COPD. This may reflect the complexity of COPD in which there is no dominant role for any single cytokine or chemokine. It is also likely that since the umbrella term COPD covers many endotypes having different underlying mechanisms, mAbs directed towards specific cytokines or chemokines should be tested in restricted and focused populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cazzola M, Page CP, Calzetta L, Matera MG. Emerging anti-inflammatory strategies for COPD. Eur Respir J. 2012;40(3):724–41.

    Article  CAS  PubMed  Google Scholar 

  2. Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71–86.

    Article  PubMed  Google Scholar 

  3. Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2009;41(6):631–8.

    Article  CAS  PubMed  Google Scholar 

  4. Caramori G, Adcock IM, Di Stefano A, Chung KF. Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:397–412.

    PubMed  PubMed Central  Google Scholar 

  5. Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov. 2013;12(7):543–59.

  6. Fellner RC, Terryah ST, Tarran R. Inhaled protein/peptide-based therapies for respiratory disease. Mol Cell Pediatr. 2016;3(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matera MG, Calzetta L, Cazzola M. TNF-α inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010;23(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  8. Hacievliyagil SS, Gunen H, Mutlu LC, Karabulut AB, Temel I. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. Respir Med. 2006;100(5):846–54.

    Article  PubMed  Google Scholar 

  9. Bathoorn E, Liesker JJ, Postma DS, et al. Change in inflammation in out-patient COPD patients from stable phase to a subsequent exacerbation. Int J Chron Obstruct Pulmon Dis. 2009;4:101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Banerjee A, Koziol-White C, Panettieri R Jr. p38 MAPK inhibitors, IKK2 inhibitors, and TNFα inhibitors in COPD. Curr Opin Pharmacol. 2012;12(3):287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suissa S, Ernst P, Hudson M. TNF-α antagonists and the prevention of hospitalisation for chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2008;21(1):234–8.

    Article  CAS  PubMed  Google Scholar 

  12. Aaron SD, Vandemheen KL, Maltais F, et al. TNFα antagonists for acute exacerbations of COPD: a randomised double-blind controlled trial. Thorax. 2013;68(2):142–8.

    Article  PubMed  Google Scholar 

  13. Dejager L, Dendoncker K, Eggermont M, et al. Neutralizing TNFα restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunol. 2015;8(6):1212–25.

    Article  CAS  PubMed  Google Scholar 

  14. Yilmaz O, Karaman M, Bagriyanik HA, et al. Comparison of TNF antagonism by etanercept and dexamethasone on airway epithelium and remodeling in an experimental model of asthma. Int Immunopharmacol. 2013;17(3):768–73.

    Article  CAS  PubMed  Google Scholar 

  15. Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003;284(4):L566–77.

    Article  CAS  PubMed  Google Scholar 

  16. Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest. 2003;123(4):1240–7.

    Article  CAS  PubMed  Google Scholar 

  17. Mahler DA, Huang S, Tabrizi M, Bell GM. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest. 2004;126(3):926–34.

    Article  CAS  PubMed  Google Scholar 

  18. Yang XD, Corvalan JR, Wang P, Roy CM, Davis CG. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol. 1999;66(3):401–10.

    CAS  PubMed  Google Scholar 

  19. Proudfoot AE, Handel TM, Johnson Z, et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci. 2003;100(4):1885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of heparin and related drugs. Pharmacol Rev. 2016;68(1):76–141.

    Article  PubMed  Google Scholar 

  21. Brown RA, Allegra L, Matera MG, Page CP, Cazzola M. Additional clinical benefit of enoxaparin in COPD patients receiving salmeterol and fluticasone propionate in combination. Pulm Pharmacol Ther. 2006;19(6):419–24.

    Article  CAS  PubMed  Google Scholar 

  22. Ockham Biotech. Results of a phase IIB study of inhaled heparin in moderate to severe COPD patients. Available at: http://www.ockhambiotech.com/european-patent.php. Accessed 18 June 2016.

  23. Adage T, del Bene F, Fiorentini F, et al. PA401, a novel CXCL8-based biologic therapeutic with increased glycosaminoglycan binding, reduces bronchoalveolar lavage neutrophils and systemic inflammatory markers in a murine model of LPS-induced lung inflammation. Cytokine. 2015;76(2):433–41.

    Article  CAS  PubMed  Google Scholar 

  24. Abderrazak A, Syrovets T, Couchie D, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015;4:296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rogliani P, Calzetta L, Ora J, Matera MG. Canakinumab for the treatment of chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2015;31:15–27.

    Article  CAS  PubMed  Google Scholar 

  26. Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. Interleukin-1β causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol. 2005;32(4):311–8.

    Article  CAS  PubMed  Google Scholar 

  27. Botelho FM, Bauer CM, Finch D, et al. IL-1α/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLoS One. 2011;6(12):e28457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brusselle G, Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11(Suppl 5):S322–8.

    Article  PubMed  Google Scholar 

  29. Calverley PM, Sethi S, Dawson M, Ward C, Newbold P, Van Der Merwe R. A phase 2 study of MEDI8968, an anti-interleukin-1 receptor I (IL-1RI) monoclonal antibody, in adults with moderate-to-very severe chronic obstructive pulmonary disease (COPD) [abstract]. Am J Respir Crit Care Med. 2015;191:A3964.

    Article  Google Scholar 

  30. de Boer WI. Perspectives for cytokine antagonist therapy in COPD. Drug Discov Today. 2005;10(2):93–106.

    Article  PubMed  Google Scholar 

  31. George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis. 2016;7(1):34–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014;44(6):1697–700.

    Article  PubMed  Google Scholar 

  33. Eltboli O, Mistry V, Barker B, Brightling CE. Relationship between blood and bronchial submucosal eosinophilia and reticular basement membrane thickening in chronic obstructive pulmonary disease. Respirology. 2015;20(4):667–70.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barnes PJ. Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allergy Clin Immunol. 2015;136(3):531–45.

    Article  PubMed  Google Scholar 

  35. Nair PK, Dasgupta A, Kjarsgaard M, et al. Mepolizumab in COPD with eosinophilic bronchitis: a randomized clinical trial [abstract]. J Allergy Clin Immunol. 2016;137:AB392.

  36. Brightling CE, Bleecker ER, Panettieri RA Jr, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med. 2014;2(11):891–901.

    Article  CAS  PubMed  Google Scholar 

  37. Fulkerson PC, Schollaert KL, Bouffi C, Rothenberg ME. IL-5 triggers a cooperative cytokine network that promotes eosinophil precursor maturation. J Immunol. 2014;193(8):4043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rincon M, Irvin CG. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci. 2012;8(9):1281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao X, Huang J, Zhong H, et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther. 2014;141(2):125–39.

    Article  CAS  PubMed  Google Scholar 

  40. Agusti A, Edwards LD, Rennard SI, et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012;7(5):e37483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hurst JR, Perera WR, Wilkinson TM, Donaldson GC, Wedzicha JA. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  42. Pinto-Plata VM, Livnat G, Girish M, et al. Systemic cytokines, clinical and physiological changes in patients hospitalized for exacerbation of COPD. Chest. 2007;131(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  43. Chaouat A, Savale L, Chouaid C, et al. Role for interleukin-6 in COPD-related pulmonary hypertension. Chest. 2009;136(3):678–87.

    Article  CAS  PubMed  Google Scholar 

  44. May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine. 2015;75(1):89–116.

    Article  CAS  PubMed  Google Scholar 

  45. van der Pouw Kraan TC, Küçükaycan M, Bakker AM, et al. Chronic obstructive pulmonary disease is associated with the −1055 IL-13 promoter polymorphism. Genes Immun. 2002;3(7):436–9.

    Article  PubMed  Google Scholar 

  46. He JQ, Connett JE, Anthonisen NR, Sandford AJ. Polymorphisms in the IL13, IL13RA1, and IL4RA genes and rate of decline in lung function in smokers. Am J Respir Cell Mol Biol. 2003;28(3):379–85.

    Article  CAS  PubMed  Google Scholar 

  47. Barczyk A, Pierzchała W, Kon OM, Cosio B, Adcock IM, Barnes PJ. Cytokine production by bronchoalveolar lavage T lymphocytes in chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2006;117(6):1484–92.

    Article  CAS  PubMed  Google Scholar 

  48. Lee JS, Rosengart MR, Kondragunta V, et al. Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study. Respir Res. 2007;8:64.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Makris D, Lazarou S, Alexandrakis M, et al. Tc2 response at the onset of COPD exacerbations. Chest. 2008;134(3):483–8.

    Article  PubMed  Google Scholar 

  50. Christenson SA, Steiling K, van den Berge M, et al. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(7):758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitchell PD, El-Gammal AI, O’Byrne PM. Emerging monoclonal antibodies as targeted innovative therapeutic approaches to asthma. Clin Pharmacol Ther. 2016;99(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  52. Fragoulis GE, Siebert S, McInnes IB. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Annu Rev Med. 2016;67:337–53.

    Article  CAS  PubMed  Google Scholar 

  53. Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71(1):1–8.

    CAS  PubMed  Google Scholar 

  54. Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med. 2016;22(3):230–41.

    Article  CAS  PubMed  Google Scholar 

  55. Cazzola M, Matera MG. IL-17 in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2012;6(2):135–8.

    Article  CAS  PubMed  Google Scholar 

  56. Hartupee J, Liu C, Novotny M, Li X, Hamilton T. IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol. 2007;179(6):4135–41.

    Article  CAS  PubMed  Google Scholar 

  57. Zrioual S, Ecochard R, Tournadre A, Lenief V, Cazalis MA, Miossec P. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol. 2009;182(5):3112–20.

    Article  CAS  PubMed  Google Scholar 

  58. Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76.

    Article  CAS  PubMed  Google Scholar 

  59. Jiang Z, Zhu L. Update on molecular mechanisms of corticosteroid resistance in chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2016;37:1–8.

    Article  CAS  PubMed  Google Scholar 

  60. Di Stefano A, Caramori G, Gnemmi I, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol. 2009;157(2):316–24.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fujii U, Miyahara N, Taniguchi A, et al. Importance of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema [abstract]. Am J Respir Crit Care Med. 2015;191:A2715.

    Google Scholar 

  62. Chang Y, Al-Alwan L, Audusseau S, et al. Genetic deletion of IL-17A reduces cigarette smoke-induced inflammation and alveolar type II cell apoptosis. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):L132–43.

    Article  CAS  PubMed  Google Scholar 

  63. Roos AB, Sandén C, Mori M, Bjermer L, Stampfli MR, Erjefält JS. IL-17A is elevated in end-stage chronic obstructive pulmonary disease and contributes to cigarette smoke-induced lymphoid neogenesis. Am J Respir Crit Care Med. 2015;191(11):1232–41.

    Article  CAS  PubMed  Google Scholar 

  64. Chang Y, Al-Alwan L, Alshakfa S, et al. Upregulation of IL-17A/F from human lung tissue explants with cigarette smoke exposure: implications for COPD. Respir Res. 2014;15:145.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang L, Cheng Z, Liu W, Wu K. Expression of interleukin (IL)-10, IL-17A and IL-22 in serum and sputum of stable chronic obstructive pulmonary disease patients. COPD. 2013;10(4):459–65.

    Article  PubMed  Google Scholar 

  66. Roos AB, Sethi S, Nikota J, et al. IL-17A and the promotion of neutrophilia in acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(4):428–37.

    Article  CAS  PubMed  Google Scholar 

  67. Bartlett HS, Million RP. Targeting the IL-17-Th17 pathway. Nat Rev Drug Discov. 2015;14(1):11–2.

    Article  CAS  PubMed  Google Scholar 

  68. Liang SC, Long AJ, Bennett F, et al. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol. 2007;179(11):7791–9.

    Article  CAS  PubMed  Google Scholar 

  69. Shen N, Wang J, Zhao M, Pei F, He B. Anti-interleukin-17 antibodies attenuate airway inflammation in tobacco-smoke-exposed mice. Inhal Toxicol. 2011;23(4):212–8.

    Article  CAS  PubMed  Google Scholar 

  70. Kirsten A, Watz H, Pedersen F, et al. The anti-IL-17A-antibody secukinumab does not attenuate ozone induced acute airway neutrophilia in healthy volunteers. Eur Respir J. 2013;41(1):239–41.

    Article  PubMed  Google Scholar 

  71. Kolls JK, Kanaly ST, Ramsay AJJ. Interleukin-17: an emerging role in lung inflammation. Am J Respir Cell Mol Biol. 2003;28(1):9–11.

    Article  CAS  PubMed  Google Scholar 

  72. Singh D. Chronic obstructive pulmonary disease, neutrophils and bacterial onfection: a complex web involving IL-17 and IL-22 unravels. EBioMedicine. 2015;2(11):1580–1.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  CAS  PubMed  Google Scholar 

  74. Luthi AU, Cullen SP, McNeela EA, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31(1):84–98.

    Article  CAS  PubMed  Google Scholar 

  75. Xia J, Zhao J, Shang J, et al. Increased IL-33 expression in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;308(7):L619–27.

    Article  CAS  PubMed  Google Scholar 

  76. Donovan C, Bourke JE, Vlahos R. Targeting the IL-33/IL-13 axis for respiratory viral infections. Trends Pharmacol Sci. 2016;37(4):252–61.

    Article  CAS  PubMed  Google Scholar 

  77. Shang J, Zhao J, Wu X, Xu Y, Xie J, Zhao J. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation. Biochem Cell Biol. 2015;93(4):359–66.

    Article  CAS  PubMed  Google Scholar 

  78. Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity. 2015;42(6):1005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carroll J. Genentech snags a PhII-ready IL-33 asthma/COPD drug from Amgen. Available at: http://www.fiercebiotech.com/biotech/genentech-snags-a-phii-ready-il-33-asthma-copd-drug-from-amgen. Accessed 18 June 2016.

  80. Verhamme FM, Bracke KR, Joos GF, Brusselle GG. TGF-β superfamily in obstructive lung diseases: more suspects than TGF-β alone. Am J Respir Cell Mol Biol. 2015;52(6):653–62.

    Article  CAS  PubMed  Google Scholar 

  81. Königshoff M, Kneidinger N, Eickelberg O. TGF-β signalling in COPD: deciphering genetic and cellular susceptibilities for future therapeutic regimens. Swiss Med Wkly. 2009;139(39–40):554–63.

    PubMed  Google Scholar 

  82. Moore B, Murphy RF, Agrawal DK. Interaction of TGF-β with immune cells in airway disease. Curr Mol Med. 2008;8(5):427–36.

    Article  CAS  PubMed  Google Scholar 

  83. Takizawa H, Tanaka M, Takami K, et al. Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med. 2001;163(6):1476–83.

    Article  CAS  PubMed  Google Scholar 

  84. Baarsma HA, Spanjer AI, Haitsma G, et al. Activation of WNT/β-catenin signaling in pulmonary fibroblasts by TGF-β1 is increased in chronic obstructive pulmonary disease. PLoS One. 2011;6(9):e25450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 2012;11(10):790–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nussbaumer-Ochsner Y, Rabe KF. Systemic manifestations of COPD. Chest. 2011;139(1):165–73.

    Article  PubMed  Google Scholar 

  87. Cazzola M, Matera MG, Rogliani P, Page C. Treating systemic effects of COPD. Trends Pharmacol Sci. 2007;28(10):544–50.

    Article  CAS  PubMed  Google Scholar 

  88. Woodruff PG, Agusti A, Roche N, Singh D, Martinez FJ. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet. 2015;385(9979):1789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boyman O, Comte D, Spertini F. Adverse reactions to biologic agents and their medical management. Nat Rev Rheumatol. 2014;10(10):612–27.

    Article  CAS  PubMed  Google Scholar 

  90. Guilleminault L, Azzopardi N, Arnoult C, et al. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. J Control Release. 2014;196:344–54.

    Article  CAS  PubMed  Google Scholar 

  91. Lightwood D, O’Dowd V, Carrington B, et al. The discovery, engineering and characterisation of a highly potent anti-human IL-13 fab fragment designed for administration by inhalation. J Mol Biol. 2013;425(3):577–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cazzola.

Ethics declarations

Conflict of interest

Maria Gabriella Matera, Clive Page, Paola Rogliani, Luigino Calzetta and Mario Cazzola have no relevant affiliations or financial involvement with any organization or entity with a financial interest in, or financial conflict with, the subject matter or materials discussed in the manuscript, including employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Funding

This manuscript was not funded/sponsored, and no writing assistance was utilized in its production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matera, M.G., Page, C., Rogliani, P. et al. Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 76, 1257–1270 (2016). https://doi.org/10.1007/s40265-016-0625-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-016-0625-9

Keywords

Navigation