Skip to main content
Log in

Current and Emerging Options for the Drug Treatment of Narcolepsy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Narcolepsy/hypocretin deficiency (now called type 1 narcolepsy) is a lifelong neurologic disorder with well-established diagnostic criteria and etiology. Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness (EDS) and symptoms of dissociated rapid eye movement sleep such as cataplexy (sudden loss of muscle tone), hypnagogic hallucinations (sensory events that occur at the transition from wakefulness to sleep), sleep paralysis (inability to perform movements upon wakening or sleep onset), and nocturnal sleep disruption. As these symptoms are often disabling, most patients need life-long treatment. The treatment of narcolepsy is well defined, and, traditionally, amphetamine-like stimulants (i.e., dopaminergic release enhancers) have been used for clinical management to improve EDS and sleep attacks, whereas tricyclic antidepressants have been used as anticataplectics. However, treatments have evolved to better-tolerated compounds such as modafinil or armodafinil (for EDS) and adrenergic/serotonergic selective reuptake inhibitors (as anticataplectics). In addition, night-time administration of a short-acting sedative, γ-hydroxybutyrate (sodium oxybate), has been used for the treatment for EDS and cataplexy. These therapies are almost always needed in combination with non-pharmacologic treatments (i.e., behavioral modification). A series of new drugs is currently being tested in animal models and in humans. These include a wide variety of hypocretin agonists, melanin-concentrating hormone receptor antagonists, antigen-specific immunopharmacology, and histamine H3 receptor antagonists/inverse agonists (e.g., pitolisant), which have been proposed for specific therapeutic applications, including the treatment of Alzheimer’s disease, attention-deficit hyperactivity disorder, epilepsy, and more recently, narcolepsy. Even though current treatment is strictly symptomatic, based on the present state of knowledge of the pathophysiology of narcolepsy, we expect that more pathophysiology-based treatments will be available in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Longstreth WT Jr, Koepsell TD, Ton TG, Hendrickson AF, van Belle G. The epidemiology of narcolepsy. Sleep. 2007;30:13–26.

    PubMed  Google Scholar 

  2. Broughton R, Dunham W, Newman J, Lutley K, Duschesne P, Rivers M. Ambulatory 24 hour sleep-wake monitoring in narcolepsy-cataplexy compared to matched controls. Electroencephalogr Clin Neurophysiol. 1988;70:473–81.

    Article  PubMed  CAS  Google Scholar 

  3. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355:39–40.

    Article  PubMed  CAS  Google Scholar 

  4. De la Herrán-Arita AK, Guerra-Crespo M, Drucker-Colín R. Narcolepsy and orexins: an example of progress in sleep research. Front Neurol. 2011;2:26.

    PubMed  Google Scholar 

  5. Dauvilliers Y, Arnulf I, Mignot E. Narcolepsy with cataplexy. Lancet. 2007;369:499–511.

    Article  PubMed  Google Scholar 

  6. Mignot EJ. A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics. 2012;9:739–52.

    Article  PubMed  Google Scholar 

  7. Broughton RJ, Fleming JA, George CF, Hill JD, Kryger MH, Moldofsky H, Montplaisir JY, Morehouse RL, Moscovitch A, Murphy WF. Randomized, double-blind, placebo-controlled crossover trial of modafinil in the treatment of excessive daytime sleepiness in narcolepsy. Neurology. 1997;49:444–51.

    Article  PubMed  CAS  Google Scholar 

  8. Kumar R. Approved and investigational uses of modafinil: an evidence-based review. Drugs. 2008;68:1803–39.

    Article  PubMed  CAS  Google Scholar 

  9. Myrick H, Malcolm R, Taylor B, LaRowe S. Modafinil: preclinical, clinical, and post-marketing surveillance: a review of abuse liability issues. Ann Clin Psychiatry. 2004;16:101–9.

    Article  PubMed  Google Scholar 

  10. Mignot E, Renaud A, Nishino S, Arrigoni J, Guilleminault C, Dement WC. Canine cataplexy is preferentially controlled by adrenergic mechanisms: evidence using monoamine selective uptake inhibitors and release enhancers. Psychopharmacology. 1993;113:76–82.

    Article  PubMed  CAS  Google Scholar 

  11. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001;21(5):1787–94.

    PubMed  CAS  Google Scholar 

  12. Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang GJ, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K. Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA. 2009;301:1148–54.

    Article  PubMed  CAS  Google Scholar 

  13. Aagaard L, Hansen EH. The occurrence of adverse drug reactions reported for attention deficit hyperactivity disorder (ADHD) medications in the pediatric population: a qualitative review of empirical studies. Neuropsychiatr Dis Treat. 2011;7:729–44.

    Article  PubMed  CAS  Google Scholar 

  14. Rugino T. A review of modafinil film-coated tablets for attention-deficit/hyperactivity disorder in children and adolescents. Neuropsychiatr Dis Treat. 2007;3:293–301.

    PubMed  CAS  Google Scholar 

  15. Lecendreux M, Bruni O, Franco P, Gringras P, Konofal E, Nevsimalova S, Paiva T, Partinen M, Peeters E, Peraita-Adrados R, Plazzi G, Poli F. Clinical experience suggests that modafinil is an effective and safe treatment for paediatric narcolepsy. J Sleep Res. 2012;21:481–3.

    Article  PubMed  Google Scholar 

  16. Ivanenko A, Tauman R, Gozal D. Modafinil in the treatment of excessive daytime sleepiness in children. Sleep Med. 2003;4:579–82.

    Article  PubMed  Google Scholar 

  17. Dinges DF, Arora S, Darwish M, Niebler GE. Pharmacodynamic effects on alertness of single doses of armodafinil in healthy subjects during a nocturnal period of acute sleep loss. Curr Med Res Opin. 2006;22:159–67.

    Article  PubMed  CAS  Google Scholar 

  18. Wise MS, Arand DL, Auger RR, Brooks SN, Watson NF, American Academy of Sleep Medicine. Treatment of narcolepsy and other hypersomnias of central origin. Sleep. 2007;30:1712–27.

    PubMed  Google Scholar 

  19. Morgenthaler TI, Kapur VK, Brown T, Swick TJ, Alessi C, Aurora RN, Boehlecke B, Chesson AL Jr, Friedman L, Maganti R, Owens J, Pancer J, Zak R, Standards of Practice Committee of the American Academy of Sleep Medicine. Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin. Sleep. 2007;30:1705–11.

    PubMed  Google Scholar 

  20. De la Herrán-Arita AK, Equihua-Benítez AC, Drucker-Colín R. Treatment of cataplexy. Expert Opin Orphan Drugs. 2013;1:199–210.

    Article  Google Scholar 

  21. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27:699–711.

    Article  PubMed  CAS  Google Scholar 

  22. Swanson J, Baler RD, Volkow ND. Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: a decade of progress. Neuropsychopharmacology. 2011;36:207–26.

    Article  PubMed  CAS  Google Scholar 

  23. Heil SH, Holmes HW, Bickel WK, Higgins ST, Badger GJ, Laws HF, Faries DE. Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend. 2002;67:149–56.

    Article  PubMed  CAS  Google Scholar 

  24. Wee S, Woolverton WL. Evaluation of the reinforcing effects of atomoxetine in monkeys: comparison to methylphenidate and desipramine. Drug Alcohol Depend. 2004;75:271–6.

    Article  PubMed  CAS  Google Scholar 

  25. Van Brunt DL, Johnston JA, Ye W, Pohl GM, Sun PJ, Sterling KL, Davis ME. Predictors of selecting atomoxetine therapy for children with attention-deficit-hyperactivity disorder. Pharmacotherapy. 2005;2511:1541–9.

    Article  Google Scholar 

  26. Huang YS, Guilleminault C. Narcolepsy: action of two gamma-aminobutyric acid type B agonists, baclofen and sodium oxybate. Pediatr Neurol. 2009;41:9–16.

    Article  PubMed  Google Scholar 

  27. Broughton R, Mamelak M. The treatment of narcolepsy-cataplexy with nocturnal gamma-hydroxybutyrate. Can J Neurol Sci. 1979;6:1–6.

    PubMed  CAS  Google Scholar 

  28. Scharf MB, Lai AA, Branigan B, Stover R, Berkowitz DB. Pharmacokinetics of gammahydroxybutyrate (GHB) in narcoleptic patients. Sleep. 1998;21:507–14.

    PubMed  CAS  Google Scholar 

  29. Black J, Pardi D, Hornfeldt CS, Inhaber N. The nightly use of sodium oxybate is associated with a reduction in nocturnal sleep disruption: a double-blind, placebo-controlled study in patients with narcolepsy. J Clin Sleep Med. 2010;6:596–602.

    PubMed  Google Scholar 

  30. Nissinen MJ, Karlstedt K, Castren E, Panula P. Expression of histidine decarboxylase and cellular histamine-like immunoreactivity in rat embryogenesis. J Histochem Cytochem. 1995;43:1241–52.

    Article  PubMed  CAS  Google Scholar 

  31. Parsons ME, Ganellin CR. Histamine and its receptors. Br J Pharmacol. 2006;147:S127–35.

    Article  PubMed  CAS  Google Scholar 

  32. Leurs R, Chazot PL, Shenton FC, Lim HD, de Esch IJ. Molecular and biochemical pharmacology of the histamine H4 receptor. Br J Pharmacol. 2009;157:14–23.

    Article  PubMed  CAS  Google Scholar 

  33. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88:1183–241.

    Article  PubMed  CAS  Google Scholar 

  34. Ogawa S, Yanai K, Watanabe T, Wang ZM, Akaike H, Ito Y, Akaike N. Histamine responses of large neostriatal interneurons in histamine H1 and H2 receptor knock-out mice. Brain Res Bull. 2009;78:189–94.

    Article  PubMed  CAS  Google Scholar 

  35. Bayer L, Eggermann E, Serafin M, Saint-Mleux B, Machard D, Jones B, Mühlethaler M. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci. 2001;14:1571–5.

    Article  PubMed  CAS  Google Scholar 

  36. Lin JS, Dauvilliers Y, Arnulf I, Bastuji H, Anaclet C, Parmentier R, Kocher L, Yanagisawa M, Lehert P, Ligneau X, Perrin D, Robert P, Roux M, Lecomte JM, Schwartz JC. An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin−/− mice and patients. Neurobiol Dis. 2008;30:74–83.

    Article  PubMed  Google Scholar 

  37. Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S, Shimizu T, Nishino S. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep. 2009;32:181–7.

    PubMed  Google Scholar 

  38. Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K, Mignot E. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep. 2009;32:175–80.

    PubMed  Google Scholar 

  39. Bassetti CL, Baumann CR, Dauvilliers Y, Croyal M, Robert P, Schwartz JC. Cerebrospinal fluid histamine levels are decreased in patients with narcolepsy and excessive daytime sleepiness of other origin. J Sleep Res. 2010;19:620–3.

    Article  PubMed  Google Scholar 

  40. Hondo M, Nagai K, Ohno K, Kisanuki Y, Willie JT, Watanabe T, Yanagisawa M, Sakurai T. Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states. Acta Physiol. 2010;198:287–94.

    Article  CAS  Google Scholar 

  41. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435:6–25.

    Article  PubMed  CAS  Google Scholar 

  42. Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA. 2012;25(109):E2635–44.

    Article  Google Scholar 

  43. Inocente C, Arnulf I, Bastuji H, Thibault-Stoll A, Raoux A, Reimão R, Lin JS, Franco P. Pitolisant, an inverse agonist of the histamine H3 receptor: an alternative stimulant for narcolepsy-cataplexy in teenagers with refractory sleepiness. Clin Neuropharmacol. 2012;35:55–60.

    Article  PubMed  CAS  Google Scholar 

  44. Barbier AJ, Berridge C, Dugovic C, Laposky AD, Wilson SJ, Boggs J, Aluisio L, Lord B, Mazur C, Pudiak CM, Langlois X, Xiao W, Apodaca R, Carruthers NI, Lovenberg TW. Acute wake-promoting actions of JNJ-5207852, a novel, diamine-based H3 antagonist. Br J Pharmacol. 2004;43:649–61.

    Article  Google Scholar 

  45. Barbier AJ, Aluisio L, Lord B, Qu Y, Wilson SJ, Boggs JD, Bonaventure P, Miller K, Fraser I, Dvorak L, Pudiak C, Dugovic C, Shelton J, Mazur C, Letavic MA, Carruthers NI, Lovenberg TW. Pharmacological characterization of JNJ-28583867, a histamine H(3) receptor antagonist and serotonin reuptake inhibitor. Eur J Pharmacol. 2007;576:43–54.

    Article  PubMed  CAS  Google Scholar 

  46. Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, Cilia J, Cluderay JE, Crook B, Davis JB, Davis RK, Davis RP, Dawson LA, Foley AG, Gartlon J, Gonzalez MI, Heslop T, Hirst WD, Jennings C, Jones DN, Lacroix LP, Martyn A, Ociepka S, Ray A, Regan CM, Roberts JC, Schogger J, Southam E, Stean TO, Trail BK, Upton N, Wadsworth G, Wald JA, White T, Witherington J, Woolley ML, Worby A, Wilson DM. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther. 2007;321:1032–45.

    Article  PubMed  CAS  Google Scholar 

  47. Medhurst SJ, Collins SD, Billinton A, Bingham S, Dalziel RG, Brass A, Roberts JC, Medhurst AD, Chessell IP. Novel histamine H3 receptor antagonists GSK189254 and GSK334429 are efficacious in surgically-induced and virally-induced rat models of neuropathic pain. Pain. 2008;138:61–9.

    Article  PubMed  CAS  Google Scholar 

  48. Guo RX, Anaclet C, Roberts JC, Parmentier R, Zhang M, Guidon G, Buda C, Sastre JP, Feng JQ, Franco P, Brown SH, Upton N, Medhurst AD, Lin JS. Differential effects of acute and repeat dosing with the H3 antagonist GSK189254 on the sleep-wake cycle and narcoleptic episodes in Ox−/− mice. Br J Pharmacol. 2009;157:104–17.

    Article  PubMed  CAS  Google Scholar 

  49. De La Herrán-Arita AK, Zomosa-Signoret VC, Millán-Aldaco DA, Palomero-Rivero M, Guerra-Crespo M, Drucker-Colín R, Vidaltamayo R. Aspects of the narcolepsy-cataplexy syndrome in O/E3-null mutant mice. Neuroscience. 2011;183:134–43.

    Article  Google Scholar 

  50. Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA. 2004;101:4649–54.

    Article  PubMed  CAS  Google Scholar 

  51. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.

    Article  PubMed  CAS  Google Scholar 

  52. Schatzberg SJ, Cutter-Schatzberg K, Nydam D, Barrett J, Penn R, Flanders J, de Lahunta A, Lin L, Mignot E. The effect of hypocretin replacement therapy in a 3-year-old Weimaraner with narcolepsy. J Vet Intern Med. 2004;18:586–8.

    Article  PubMed  Google Scholar 

  53. Hanson LR, Martinez PM, Taheri S. Intranasal administration of hypocretin-1 (orexin A) bypasses the blood-brain barrier and targets the brain: a new strategy for the treatment of narcolepsy. Drug Deliv Technol. 2004;4:66–71.

    CAS  Google Scholar 

  54. Baier PC, Hallschmid M, Seeck-Hirschner M, Weinhold SL, Burkert S, Diessner N, Göder R, Aldenhoff JB, Hinze-Selch D. Effects of intranasal hypocretin-1 (orexin A) on sleep in narcolepsy with cataplexy. Sleep Med. 2011;12:941–6.

    Article  PubMed  CAS  Google Scholar 

  55. Darker JG, Porter RA, Eggleston DS, Smart D, Brough SJ, Sabido-David C, Jerman JC. Structure-activity analysis of truncated orexin-A analogues at the orexin-1 receptor. Bioorg Med Chem Lett. 2001;11:737–40.

    Article  PubMed  CAS  Google Scholar 

  56. Vaughan JM, Fischer WH, Hoeger C, Rivier J, Vale W. Characterization of melanin-concentrating hormone from rat hypothalamus. Endocrinology. 1989;125:1660–5.

    Article  PubMed  CAS  Google Scholar 

  57. Bittencourt J, Celis M. Anatomy, function and regulation of neuropeptide EI (NEI). Peptides. 2008;29:1441–50.

    Article  PubMed  CAS  Google Scholar 

  58. Tan CP, Sano H, Iwaasa H, Pan J, Sailer AW, Hreniuk DL, Feighner SD, Palyha OC, Pong SS, Figueroa DJ, Austin CP, Jiang MM, Yu H, Ito J, Ito M, Ito M, Guan XM, MacNeil DJ, Kanatani A, Van der Ploeg LH, Howard AD. Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics. 2002;79:785–92.

    Article  PubMed  CAS  Google Scholar 

  59. Elias C, Sita L, Zambon B, Oliveira E, Vasconcelos L, Bittencourt J. Melanin-concentrating hormone projections to areas involved in somatomotor responses. J Chem Neuroanat. 2008;35:188–201.

    Article  PubMed  CAS  Google Scholar 

  60. Hong E, Yoon Y, Lee H. Differential distribution of melanin-concentrating hormone (MCH)- and hypocretin (Hcrt)-immunoreactive neurons projecting to the mesopontine cholinergic complex in the rat. Brain Res. 2011;1424:20–31.

    Article  PubMed  CAS  Google Scholar 

  61. Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA. 2009;106:2418–22.

    Article  PubMed  CAS  Google Scholar 

  62. Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Léger L, Boissard R, Salin P, Peyron C, Luppi PH. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 2003;4:19.

    Article  PubMed  Google Scholar 

  63. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience. 2008;156:819–29.

    Article  PubMed  CAS  Google Scholar 

  64. Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O. Molecular characterization of the melanin-concentrating-hormone receptor. Nature. 1999;400:265–9.

    Article  PubMed  CAS  Google Scholar 

  65. Guan JL, Uehara K, Lu S, Wang QP, Funahashi H, Sakurai T, Yanagisawa M, Shioda S. Reciprocal synaptic relationship between orexin-and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int J Obes Relat Metab Disord. 2002;26:1523–32.

    Article  PubMed  CAS  Google Scholar 

  66. Torterolo P, Sampogna S, Morales FR, Chase MH. MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res. 2006;1119:101–14.

    Article  PubMed  CAS  Google Scholar 

  67. Backberg M, Hervieu G, Wilson S, Meister B. Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur J Neurosci. 2002;15:315–28.

    Article  PubMed  Google Scholar 

  68. van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron. 2004;42:635–52.

    Article  PubMed  Google Scholar 

  69. Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR, Gao XB. Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci. 2008;2008(28):9101–10.

    Article  Google Scholar 

  70. Gehlert DR, Rasmussen K, Shaw J, Li X, Ardayfio P, Craft L, Coskun T, Zhang HY, Chen Y, Witkin JM. Preclinical evaluation of melanin-concentrating hormone receptor 1 antagonism for the treatment of obesity and depression. J Pharmacol Exp Ther. 2009;329:429–38.

    Article  PubMed  CAS  Google Scholar 

  71. Mahlios J, De la Herrán-Arita AK, Mignot E. The autoimmune basis of narcolepsy. Curr Opin Neurobiol. 2013. doi:10.1016/j.conb.2013.04.013.

  72. Chatenoud L, Thervet E, Primo J, Bach JF. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA. 1994;91:123–7.

    Article  PubMed  CAS  Google Scholar 

  73. Wang B, Tisch R. Parameters influencing antigen-specific immunotherapy for type 1 diabetes. Immunol Res. 2008;42(1–3):246–58. doi:10.1007/s12026-008-8090-5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Grant 133178 to FGG from CONACYT supported this work. Dr. De la Herran-Arita is an awardee of the Stanford School of Medicine Dean’s Award. Dr. Garcia-Garcia and Dr. De la Herran-Arita have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio García-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De la Herrán-Arita, A.K., García-García, F. Current and Emerging Options for the Drug Treatment of Narcolepsy. Drugs 73, 1771–1781 (2013). https://doi.org/10.1007/s40265-013-0127-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0127-y

Keywords

Navigation