Skip to main content
Log in

Pancreas and Adverse Drug Reactions: A Literature Review

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Adverse drug reactions (ADRs) affecting the pancreas are a heterogeneous group of side effects that cause damage to pancreatic cells. Various mechanisms such as hypersensitization, sphincter of Oddi constriction, direct cytotoxic and metabolic effects on pancreatic cells, and dose-dependent idiosyncrasy lead to intrapancreatic activation of pancreatic enzymes resulting in drug-induced acute pancreatitis. Several medications have been linked with the development of pancreatic cancer. Pancreatic cancer may result from proinflammatory, proliferative, and antiapoptotic effects. Diabetogenic effect of drugs, which is understood as impairment of insulin secretion, may occur due to direct destruction of β cells, systemic toxicity affecting pancreatic islets and cell membrane glucose transporters, induction of Th1-type autoimmune response, and impairment of voltage-gated calcium channels in β cells, endoplasmic reticulum stress, and insulin signaling. A better understanding of ADRs that affect the pancreas may contribute to improving the awareness of clinicians and patients and reducing potential harmful side effects of implemented therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Laughlin S, Jackson R. A brief history of drug reactions. Clin Dermatol. 1986;4:1–14.

    Article  CAS  PubMed  Google Scholar 

  2. Dunn JS, McLetchie NGB. Experimental alloxan diabetes in the rat. Lancet. 1943;245:384–7.

    Article  Google Scholar 

  3. Ulrich AB, Standop J, Schmied BM, Schneider MB, Lawson TA, Pour PM. Species differences in the distribution of drug-metabolizing enzymes in the pancreas. Toxicol Pathol. 2002;30:247–53.

    Article  CAS  PubMed  Google Scholar 

  4. Tani S, Itoh H, Okabayashi Y, Nakamura T, Fujii M, Fujisawa T, et al. New model of acute necrotizing pancreatitis induced by excessive doses of arginine in rats. Dig Dis Sci. 1990;35:367–74.

    Article  CAS  PubMed  Google Scholar 

  5. Singh S, Bhardwaj U, Verma SK, Bhalla A, Gill K. Hyperamylasemia and acute pancreatitis following anticholinesterase poisoning. Hum Exp Toxicol. 2007;26:467–71.

    Article  CAS  PubMed  Google Scholar 

  6. Walgren JL, Mitchell MD, Whiteley LO, Thompson DC. Identification of novel peptide safety markers for exocrine pancreatic toxicity induced by cyanohydroxybutene. Toxicol Sci. 2007;96:174–83.

    Article  CAS  PubMed  Google Scholar 

  7. Yoshizawa K, Marsh T, Foley JF, Cai B, Peddada S, Walker NJ, et al. Mechanisms of exocrine pancreatic toxicity induced by oral treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin in female Harlan Sprague–Dawley rats. Toxicol Sci. 2005;85:594–606.

    Article  CAS  PubMed  Google Scholar 

  8. Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P, et al. Pathophysiology of acute pancreatitis. Pancreatology. 2005;5:132–44.

    Article  PubMed  Google Scholar 

  9. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–11.

    Article  PubMed  Google Scholar 

  10. Andersen V, Sonne J, Andersen M. Spontaneous reports on drug-induced pancreatitis in Denmark from 1968 to 1999. Eur J Clin Pharmacol. 2001;57:517–21.

    Article  CAS  PubMed  Google Scholar 

  11. Lankisch PG, Dröge M, Gottesleben F. Drug induced acute pancreatitis: incidence and severity. Gut. 1995;37:565–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balani AR, Grendell JH. Drug-induced pancreatitis: incidence, management and prevention. Drug Saf. 2008;31:823–37.

    Article  CAS  PubMed  Google Scholar 

  13. Vinklerová I, Procházka M, Procházka V, Urbánek K. Incidence, severity, and etiology of drug-induced acute pancreatitis. Dig Dis Sci. 2010;55:2977–81.

    Article  PubMed  Google Scholar 

  14. Niinomi I, Hosohata K, Oyama S, Inada A, Wakabayashi T, Iwanaga K. Pharmacovigilance assessment of drug-induced acute pancreatitis using a spontaneous reporting database. Int J Toxicol. 2019;38:487–92.

    Article  PubMed  Google Scholar 

  15. Johnston DH, Cornish AL. Acute pancreatitis in patients receiving chlorothiazide. J Am Med Assoc. 1959;170:2054–6.

    Article  CAS  PubMed  Google Scholar 

  16. Wolfe D, Kanji S, Yazdi F, Barbeau P, Rice D, Beck A, et al. Drug induced pancreatitis: a systematic review of case reports to determine potential drug associations. PLoS ONE. 2020;15: e0231883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mallory A, Kern F. Drug-induced pancreatitis: a critical review. Gastroenterology. 1980;78:813–20.

    Article  CAS  PubMed  Google Scholar 

  18. Badalov N, Baradarian R, Iswara K, Li J, Steinberg W, Tenner S. Drug-induced acute pancreatitis: an evidence-based review. Clin Gastroenterol Hepatol. 2007;5:648–61 (quiz 644).

    Article  PubMed  Google Scholar 

  19. Saluja AK, Lerch MM, Phillips PA, Dudeja V. Why does pancreatic overstimulation cause pancreatitis? Annu Rev Physiol. 2007;69:249–69.

    Article  CAS  PubMed  Google Scholar 

  20. Nilsson J, Sjödin L, Gylfe E. Supramaximal inhibition of cholecystokinin-induced pancreatic amylase release involves desensitization to cytoplasmic Ca2+. Scand J Gastroenterol. 1994;29:561–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zaninovic V, Gukovskaya AS, Gukovsky I, Mouria M, Pandol SJ. Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells. Am J Physiol Gastrointest Liver Physiol. 2000;279:G666-676.

    Article  CAS  PubMed  Google Scholar 

  22. Gukovsky I, Gukovskaya AS, Blinman TA, Zaninovic V, Pandol SJ. Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am J Physiol. 1998;275:G1402-1414.

    CAS  PubMed  Google Scholar 

  23. Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg. 2002;9:401–10.

    Article  PubMed  Google Scholar 

  24. Saluja AK, Saluja M, Printz H, Zavertnik A, Sengupta A, Steer ML. Experimental pancreatitis is mediated by low-affinity cholecystokinin receptors that inhibit digestive enzyme secretion. Proc Natl Acad Sci USA. 1989;86:8968–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuoppala J, Enlund H, Pulkkinen J, Kastarinen H, Jyrkkä J, Happonen P, et al. ACE inhibitors and the risk of acute pancreatitis-a population-based case-control study. Pharmacoepidemiol Drug Saf. 2017;26:853–7.

    Article  CAS  PubMed  Google Scholar 

  26. Bexelius TS, Ljung R, Mattsson F, Lu Y, Lindblad M. Angiotensin II receptor blockers and risk of acute pancreatitis—a population based case-control study in Sweden. BMC Gastroenterol. 2017;17:36.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hussain MS, Deliwala SS, Ponnapalli A, Modi V, Kanugula A, Elbedawi MM, et al. Angiotensin-converting enzyme (ACE) inhibitors and pancreatitis: a potential dose-dependent relationship. Eur J Case Rep Intern Med. 2020;7: 001956.

    PubMed  PubMed Central  Google Scholar 

  28. Arakawa M, Murata Y, Rikimaru Y, Sasaki Y. Drug-induced isolated visceral angioneurotic edema. Intern Med. 2005;44:975–8.

    Article  PubMed  Google Scholar 

  29. Griesbacher T. Kallikrein-kinin system in acute pancreatitis: potential of B(2)-bradykinin antagonists and kallikrein inhibitors. Pharmacology. 2000;60:113–20.

    Article  CAS  PubMed  Google Scholar 

  30. Elliott DF, Horton EW, Lewis GP. Actions of pure bradykinin. J Physiol. 1960;153:473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oskarsson V, Orsini N, Sadr-Azodi O, Wolk A. Postmenopausal hormone replacement therapy and risk of acute pancreatitis: a prospective cohort study. CMAJ. 2014;186:338–44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pousette A, Fernstad R, Häggmark A, Sköldefors H, Theve NO, Carlström K. The estrogen binding protein in human pancreas: concentrations in subcellular fractions of normal pancreatic tissue, in duodenal juice during pancreatic stimulation and in peripheral serum in normal and pathological conditions. J Steroid Biochem. 1988;29:423–7.

    Article  CAS  PubMed  Google Scholar 

  33. Blevins GT, Huang HS, Tangoku A, Mckay DW, Rayford PL. Estrogens influence cholecystokinin stimulated pancreatic amylase release and acinar cell membrane cholecystokinin receptors in rat. Life Sci. 1991;48:1565–74.

    Article  CAS  PubMed  Google Scholar 

  34. Blevins GT, McCullough SS, Wilbert TN, Isom RM, Chowdhury P, Miller ST. Estradiol alters cholecystokinin stimulus-response coupling in rat pancreatic acini. Am J Physiol. 1998;275:G993-998.

    PubMed  Google Scholar 

  35. Heap GA, Weedon MN, Bewshea CM, Singh A, Chen M, Satchwell JB, et al. HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nat Genet. 2014;46:1131–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weersma RK, Peters FTM, Oostenbrug LE, van den Berg AP, van Haastert M, Ploeg RJ, et al. Increased incidence of azathioprine-induced pancreatitis in Crohn’s disease compared with other diseases. Aliment Pharmacol Ther. 2004;20:843–50.

    Article  CAS  PubMed  Google Scholar 

  37. Teich N, Mohl W, Bokemeyer B, Bündgens B, Büning J, Miehlke S, et al. Azathioprine-induced acute pancreatitis in patients with inflammatory bowel diseases—a prospective study on incidence and severity. J Crohns Colitis. 2016;10:61–8.

    Article  PubMed  Google Scholar 

  38. Hart PA, Kamisawa T, Brugge WR, Chung JB, Culver EL, Czakó L, et al. Long-term outcomes of autoimmune pancreatitis: a multicentre, international analysis. Gut. 2013;62:1771–6.

    Article  PubMed  Google Scholar 

  39. O’Donnell S, O’Morain CA. Therapeutic benefits of budesonide in gastroenterology. Ther Adv Chronic Dis. 2010;1:177–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gerstner T, Büsing D, Bell N, Longin E, Kasper J-M, Klostermann W, et al. Valproic acid-induced pancreatitis: 16 new cases and a review of the literature. J Gastroenterol. 2007;42:39–48.

    Article  CAS  PubMed  Google Scholar 

  41. Arafa HMM, Hemeida RAM, Hassan MIA, Abdel-Wahab MH, Badary OA, Hamada FMA. Acetyl-l-carnitine ameliorates caerulein-induced acute pancreatitis in rats. Basic Clin Pharmacol Toxicol. 2009;105:30–6.

    Article  CAS  PubMed  Google Scholar 

  42. Eisses JF, Criscimanna A, Dionise ZR, Orabi AI, Javed TA, Sarwar S, et al. Valproic acid limits pancreatic recovery after pancreatitis by inhibiting histone deacetylases and preventing acinar redifferentiation programs. Am J Pathol. 2015;185:3304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manfredi R, Calza L. HIV infection and the pancreas: risk factors and potential management guidelines. Int J STD AIDS. 2008;19:99–105.

    Article  PubMed  Google Scholar 

  44. Cappell MS, Marks M. Acute pancreatitis in HIV-seropositive patients: a case control study of 44 patients. Am J Med. 1995;98:243–8.

    Article  CAS  PubMed  Google Scholar 

  45. Dutta SK, Ting CD, Lai LL. Study of prevalence, severity, and etiological factors associated with acute pancreatitis in patients infected with human immunodeficiency virus. Am J Gastroenterol. 1997;92:2044–8.

    CAS  PubMed  Google Scholar 

  46. Li C-L, Jiang M, Pan C-Q, Li J, Xu L-G. The global, regional, and national burden of acute pancreatitis in 204 countries and territories, 1990–2019. BMC Gastroenterol. 2021;21:332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reisler RB, Murphy RL, Redfield RR, Parker RA. Incidence of pancreatitis in HIV-1-infected individuals enrolled in 20 adult AIDS clinical trials group studies: lessons learned. J Acquir Immune Defic Syndr. 2005;39:159–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Foli A, Benvenuto F, Piccinini G, Bareggi A, Cossarizza A, Lisziewicz J, et al. Direct analysis of mitochondrial toxicity of antiretroviral drugs. AIDS. 2001;15:1687–94.

    Article  CAS  PubMed  Google Scholar 

  49. Wu S-D, Zhang Z-H, Jin J-Z, Kong J, Wang W, Zhang Q, et al. Effects of narcotic analgesic drugs on human Oddi’s sphincter motility. World J Gastroenterol. 2004;10:2901–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barlass U, Dutta R, Cheema H, George J, Sareen A, Dixit A, et al. Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut. 2018;67:600–2.

    PubMed  Google Scholar 

  51. Gawron AJ, Bielefeldt K. Risk of Pancreatitis Following Treatment of Irritable Bowel Syndrome With Eluxadoline. Clin Gastroenterol Hepatol. 2018;16:378-384.e2.

    Article  CAS  PubMed  Google Scholar 

  52. Public Health—European Commission [Internet]. Union Register of medicinal products. [cited 2021 Aug 31]. https://ec.europa.eu/health/documents/community-register/html/h1126.htm. [Accessed 2022 Jun 18].

  53. Bálint ER, Fűr G, Kui B, Balla Z, Kormányos ES, Orján EM, et al. Fentanyl but not morphine or buprenorphine improves the severity of necrotizing acute pancreatitis in rats. Int J Mol Sci. 2022;23:1192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bourke JB, McIllmurray MB, Mead GM, Langman MJ. Drug-associated primary acute pancreatitis. Lancet. 1978;1:706–8.

    Article  CAS  PubMed  Google Scholar 

  55. Holland SD, Williamson HE. Acute effects of high ceiling diuretics on pancreatic blood flow and function. J Pharmacol Exp Ther. 1984;229:440–6.

    CAS  PubMed  Google Scholar 

  56. Thomas FB, Sinar D, Caldwell JH, Mekhjian HS, Falko JM. Stimulation of pancreatic secretion of water and electrolytes by furosemide. Gastroenterology. 1977;73:221–5.

    Article  CAS  PubMed  Google Scholar 

  57. Pickleman J, Straus FH, Paloyan E. Pancreatitis associated with thiazide administration. A role for the parathyroid glands? Arch Surg. 1979;114:1013–6.

    Article  CAS  PubMed  Google Scholar 

  58. Paloyan E, Farland M, Pickleman JR. Hyperparathyroidism coexisting with hypertension and prolonged thiazide administration. JAMA. 1969;210:1243–5.

    Article  CAS  PubMed  Google Scholar 

  59. Chadalavada P, Simons-Linares CR, Chahal P. Drug-induced acute pancreatitis: prevalence, causative agents, and outcomes. Pancreatology. 2020;20:1281–6.

    Article  CAS  PubMed  Google Scholar 

  60. Oppenheimer EH, Boitnott JK. Pancreatitis in children following adrenal cortico-steroid therapy. Bull Johns Hopkins Hosp. 1960;107:297–306.

    CAS  PubMed  Google Scholar 

  61. Sadr-Azodi O, Mattsson F, Bexlius TS, Lindblad M, Lagergren J, Ljung R. Association of oral glucocorticoid use with an increased risk of acute pancreatitis: a population-based nested case-control study. JAMA Intern Med. 2013;173:444–9.

    Article  CAS  PubMed  Google Scholar 

  62. Buttgereit F, Brand MD, Burmester GR. Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochem Pharmacol. 1999;58:363–8.

    Article  CAS  PubMed  Google Scholar 

  63. Luo C, Li B, Liu L, Yin H-P, Wang M, Liu J-L. Transcriptional activation of Reg2 and Reg3β genes by glucocorticoids and interleukin-6 in pancreatic acinar and islet cells. Mol Cell Endocrinol. 2013;365:187–96.

    Article  CAS  PubMed  Google Scholar 

  64. Cao Y, Tian Y, Liu Y, Su Z. Reg3β: a potential therapeutic target for tissue injury and inflammation-associated disorders. Int Rev Immunol. 2022;41:160-70

  65. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10:10–27.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cancer Tomorrow [Internet]. [cited 2021 Aug 17]. https://gco.iarc.fr/tomorrow/en/about. [Accessed 2022 Jun 18].

  67. Cancer Facts & Figures 2020 | American Cancer Society [Internet]. [cited 2021 Aug 17]. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html. [Accessed 2022 Jun 18].

  68. Midha S, Chawla S, Garg PK. Modifiable and non-modifiable risk factors for pancreatic cancer: a review. Cancer Lett. 2016;381:269–77.

    Article  CAS  PubMed  Google Scholar 

  69. Batabyal P, Vander Hoorn S, Christophi C, Nikfarjam M. Association of diabetes mellitus and pancreatic adenocarcinoma: a meta-analysis of 88 studies. Ann Surg Oncol. 2014;21:2453–62.

    Article  PubMed  Google Scholar 

  70. Andersen DK, Korc M, Petersen GM, Eibl G, Li D, Rickels MR, et al. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes. 2017;66:1103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10:455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Permert J, Ihse I, Jorfeldt L, von Schenck H, Arnqvist HJ, Larsson J. Pancreatic cancer is associated with impaired glucose metabolism. Eur J Surg. 1993;159:101–7.

    CAS  PubMed  Google Scholar 

  73. Nakamura T, Ito T, Uchida M, Hijioka M, Igarashi H, Oono T, et al. PSCs and GLP-1R: occurrence in normal pancreas, acute/chronic pancreatitis and effect of their activation by a GLP-1R agonist. Lab Investig. 2014;94:63–78.

    Article  CAS  PubMed  Google Scholar 

  74. Research C for DE and. FDA Drug Safety Communication: FDA investigating reports of possible increased risk of pancreatitis and pre-cancerous findings of the pancreas from incretin mimetic drugs for type 2 diabetes. FDA [Internet]. FDA; 2019 [cited 2021 Aug 17]. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-investigating-reports-possible-increased-risk-pancreatitis-and-pre. [Accessed 2022 Jun 18].

  75. Pinto LC, Falcetta MR, Rados DV, Leitão CB, Gross JL. Glucagon-like peptide-1 receptor agonists and pancreatic cancer: a meta-analysis with trial sequential analysis. Sci Rep. 2019;9:2375.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dicembrini I, Montereggi C, Nreu B, Mannucci E, Monami M. Pancreatitis and pancreatic cancer in patientes treated with dipeptidyl peptidase-4 inhibitors: an extensive and updated meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2020;159: 107981.

    Article  CAS  PubMed  Google Scholar 

  77. Tang H, Yang K, Li X, Song Y, Han J. Pancreatic safety of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2020;29:161–72.

    Article  CAS  PubMed  Google Scholar 

  78. Hendriks AM, Schrijnders D, Kleefstra N, de Vries EGE, Bilo HJG, Jalving M, et al. Sulfonylurea derivatives and cancer, friend or foe? Eur J Pharmacol. 2019;861: 172598.

    Article  CAS  PubMed  Google Scholar 

  79. Szymczak-Pajor I, Fleszar K, Kasznicki J, Gralewska P, Śliwińska A. A potential role of calpains in sulfonylureas (SUs)—mediated death of human pancreatic cancer cells (1.2B4). Toxicol in Vitro. 2021;73:105128.

    Article  CAS  PubMed  Google Scholar 

  80. Colmers IN, Bowker SL, Tjosvold LA, Johnson JA. Insulin use and cancer risk in patients with type 2 diabetes: a systematic review and meta-analysis of observational studies. Diabetes Metab. 2012;38:485–506.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang K, Bai P, Dai H, Deng Z. Metformin and risk of cancer among patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Prim Care Diabetes. 2021;15:52–8.

    Article  PubMed  Google Scholar 

  82. Weinstein D, Simon M, Yehezkel E, Laron Z, Werner H. Insulin analogues display IGF-I-like mitogenic and anti-apoptotic activities in cultured cancer cells. Diabetes Metab Res Rev. 2009;25:41–9.

    Article  CAS  PubMed  Google Scholar 

  83. Mayer D, Shukla A, Enzmann H. Proliferative effects of insulin analogues on mammary epithelial cells. Arch Physiol Biochem. 2008;114:38–44.

    Article  CAS  PubMed  Google Scholar 

  84. Lin C-M, Huang H-L, Chu F-Y, Fan H-C, Chen H-A, Chu D-M, et al. Association between gastroenterological malignancy and diabetes mellitus and anti-diabetic therapy: a nationwide, population-based cohort study. PLoS ONE. 2015;10: e0125421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, et al. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer. 2011;47:1928–37.

    Article  PubMed  Google Scholar 

  86. Alkhushaym N, Almutairi AR, Althagafi A, Fallatah SB, Oh M, Martin JR, et al. Exposure to proton pump inhibitors and risk of pancreatic cancer: a meta-analysis. Expert Opin Drug Saf. 2020;19:327–34.

    Article  CAS  PubMed  Google Scholar 

  87. Hong H-E, Kim A-S, Kim M-R, Ko H-J, Jung MK. Does the use of proton pump inhibitors increase the risk of pancreatic cancer? A systematic review and meta-analysis of epidemiologic studies. Cancers (Basel). 2020;12:2220.

    Article  CAS  PubMed Central  Google Scholar 

  88. Chao C, Hellmich MR. Gastrin, inflammation, and carcinogenesis. Curr Opin Endocrinol Diabetes Obes. 2010;17:33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smith JP, Fantaskey AP, Liu G, Zagon IS. Identification of gastrin as a growth peptide in human pancreatic cancer. Am J Physiol. 1995;268:R135-141.

    CAS  PubMed  Google Scholar 

  90. Smith JP, Fonkoua LK, Moody TW. The role of gastrin and CCK receptors in pancreatic cancer and other malignancies. Int J Biol Sci. 2016;12:283–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang T, Yang X, Zhou J, Liu P, Wang H, Li A, et al. Benzodiazepine drug use and cancer risk: a dose–response meta analysis of prospective cohort studies. Oncotarget. 2017;8:102381–91.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zdrîncă M, Muţiu G, Bogdan M, Dobjanschi L, Antonescu A, Moş I, et al. Effects of Alprazolam, Zolpidem and Zopiclone, and of chronic inflammation on peripheral experimental algesia in Wistar rats. Rom J Morphol Embryol. 2011;52:471–4.

    PubMed  Google Scholar 

  93. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10:14790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jain V, Patel RK, Kapadia Z, Galiveeti S, Banerji M, Hope L. Drugs and hyperglycemia: a practical guide. Maturitas. 2017;104:80–3.

    Article  CAS  PubMed  Google Scholar 

  95. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–46.

    CAS  PubMed  Google Scholar 

  96. Zornitzki T, Malnick S, Lysyy L, Knobler H. Interferon therapy in hepatitis C leading to chronic type 1 diabetes. World J Gastroenterol. 2015;21:233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Devendra D, Eisenbarth GS. Interferon alpha—a potential link in the pathogenesis of viral-induced type 1 diabetes and autoimmunity. Clin Immunol. 2004;111:225–33.

    Article  CAS  PubMed  Google Scholar 

  98. Stewart TA, Hultgren B, Huang X, Pitts-Meek S, Hully J, MacLachlan NJ. Induction of type I diabetes by interferon-alpha in transgenic mice. Science. 1993;260:1942–6.

    Article  CAS  PubMed  Google Scholar 

  99. Nakamura K, Kawasaki E, Imagawa A, Awata T, Ikegami H, Uchigata Y, et al. Type 1 diabetes and interferon therapy: a nationwide survey in Japan. Diabetes Care. 2011;34:2084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ning Q, Brown D, Parodo J, Cattral M, Gorczynski R, Cole E, et al. Ribavirin inhibits viral-induced macrophage production of TNF, IL-1, the procoagulant fgl2 prothrombinase and preserves Th1 cytokine production but inhibits Th2 cytokine response. J Immunol. 1998;160:3487–93.

    CAS  PubMed  Google Scholar 

  101. Wedemeyer H, Wiegand J, Cornberg M, Manns MP. Polyethylene glycol-interferon: current status in hepatitis C virus therapy. J Gastroenterol Hepatol. 2002;17(Suppl 3):S344-350.

    Article  PubMed  Google Scholar 

  102. Currie O, Williman J, Mangin D, McKinnon-Gee B, Bridgford P. Comparative risk of new-onset diabetes following commencement of antipsychotics in New Zealand: a population-based clustered multiple baseline time series design. BMJ Open. 2019;9: e022984.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Grajales D, Ferreira V, Valverde ÁM. Second-generation antipsychotics and dysregulation of glucose metabolism: beyond weight gain. Cells. 2019;8:1336.

    Article  CAS  PubMed Central  Google Scholar 

  104. Teff KL, Rickels MR, Grudziak J, Fuller C, Nguyen H-L, Rickels K. Antipsychotic-induced insulin resistance and postprandial hormonal dysregulation independent of weight gain or psychiatric disease. Diabetes. 2013;62:3232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, et al. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol. 2012;26:1757–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ozasa R, Okada T, Nadanaka S, Nagamine T, Zyryanova A, Harding H, et al. The antipsychotic olanzapine induces apoptosis in insulin-secreting pancreatic β cells by blocking PERK-mediated translational attenuation. Cell Struct Funct. 2013;38:183–95.

    Article  CAS  PubMed  Google Scholar 

  107. Johnson DE, Yamazaki H, Ward KM, Schmidt AW, Lebel WS, Treadway JL, et al. Inhibitory effects of antipsychotics on carbachol-enhanced insulin secretion from perifused rat islets: role of muscarinic antagonism in antipsychotic-induced diabetes and hyperglycemia. Diabetes. 2005;54:1552–8.

    Article  CAS  PubMed  Google Scholar 

  108. Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, et al. Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes. 1999;48:77–85.

    Article  CAS  PubMed  Google Scholar 

  109. Singh V, Brendel MD, Zacharias S, Mergler S, Jahr H, Wiedenmann B, et al. Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J Clin Endocrinol Metab. 2007;92:673–80.

    Article  CAS  PubMed  Google Scholar 

  110. Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med. 2012;366:914–24.

    Article  CAS  PubMed  Google Scholar 

  111. Henry RR, Ciaraldi TP, Armstrong D, Burke P, Ligueros-Saylan M, Mudaliar S. Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J Clin Endocrinol Metab. 2013;98:3446–53.

    Article  CAS  PubMed  Google Scholar 

  112. Petit P, Loubatières-Mariani MM. Potassium channels of the insulin-secreting B cell. Fundam Clin Pharmacol. 1992;6:123–34.

    Article  CAS  PubMed  Google Scholar 

  113. Henquin JC, Meissner HP. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B cells. Biochem Pharmacol. 1982;31:1407–15.

    Article  CAS  PubMed  Google Scholar 

  114. Warren AM, Topliss DJ, Hamblin PS. Successful medical management of insulinoma with diazoxide for 27 years. Endocrinol Diabetes Metab Case Rep. 2020;2020:20–0132.

    PubMed Central  Google Scholar 

  115. Sargsyan E, Ortsäter H, Thorn K, Bergsten P. Diazoxide-induced beta-cell rest reduces endoplasmic reticulum stress in lipotoxic beta-cells. J Endocrinol. 2008;199:41–50.

    Article  CAS  PubMed  Google Scholar 

  116. Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, et al. Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. Endocrinology. 2007;148:81–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Przybyłkowski.

Ethics declarations

Funding

The study was supported by the statutory budget of the Medical University of Warsaw, Poland.

Conflict of interest

The authors declare that they have no potential conflicts of interest that might be relevant to the content of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

AP devised the main conceptual idea of this article and supervised the work. KS performed initial literature research and wrote the manuscript. PN critically reviewed the manuscript and added relevant information. All authors have read and approved the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnowski, K., Nehring, P. & Przybyłkowski, A. Pancreas and Adverse Drug Reactions: A Literature Review. Drug Saf 45, 929–939 (2022). https://doi.org/10.1007/s40264-022-01204-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-022-01204-0

Navigation