Skip to main content
Log in

Interactions Between Direct Oral Anticoagulants (DOACs) and Antiseizure Medications: Potential Implications on DOAC Treatment

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The use of direct oral anticoagulants (DOACs) is increasing because of their superior efficacy and safety compared with vitamin K antagonists. Pharmacokinetic drug interactions, particularly those involving cytochrome P450- mediated metabolism and P-glycoprotein transport, significantly affect the efficacy and safety of DOACs. In this article, we assess the effects of cytochrome P450- and P-glycoprotein-inducing antiseizure medications on DOAC pharmacokinetics in comparison to rifampicin. Rifampicin decreases to a varying extent the plasma exposure (area under the concentration–time curve) and peak concentration of each DOAC, consistent with its specific absorption and elimination pathways. For apixaban and rivaroxaban, rifampicin had a greater effect on the area under the concentration–time curve than on peak concentration. Therefore, using peak concentration to monitor DOAC concentrations may underestimate the effect of rifampicin on DOAC exposure. Antiseizure medications that are cytochrome P450 and P-glycoprotein inducers are commonly used with DOACs. Several studies have observed a correlation between the concomitant use of DOACs and enzyme-inducing antiseizure medications and DOAC treatment failure, for example, ischemic and thrombotic events. The European Society of Cardiology recommends avoiding this combination, as well as the combination of DOACs with levetiracetam and valproic acid, owing to a risk of low DOAC concentrations. However, levetiracetam and valproic acid are not cytochrome P450 or P-glycoprotein inducers, and the implications of their use with DOACs remain to be elucidated. Our comparative analysis suggests DOAC plasma concentration monitoring as a possible strategy to guide dosing owing to the predictable correlation between DOACs’ plasma concentration and effect. Patients taking concomitant enzyme-inducing antiseizure medications are at risk for low DOAC concentrations and subsequently, treatment failure and thus can benefit from DOAC concentration monitoring to prophylactically identify this risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yao X, Abraham NS, Sangaralingham LR, Bellolio MF, McBane RD, Shah ND, et al. Effectiveness and safety of dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J Am Heart Assoc. 2016;5:e003725. https://doi.org/10.1161/JAHA.116.003725.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease: CHEST Guideline and Expert Panel report. Chest. 2016;149:315–52.

    Article  PubMed  Google Scholar 

  3. Pundi KN, Perino AC, Fan J, Schmitt S, Kothari M, Szummer K, et al. Direct oral anticoagulant adherence of patients with atrial fibrillation transitioned from warfarin. J Am Heart Assoc. 2021;10: e020904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383:955–62.

    Article  CAS  PubMed  Google Scholar 

  5. Derendorf H, Schmidt S, Rowland M, Tozer TN. Rowland and Tozer’s clinical pharmacokinetics and pharmacodynamics: concepts and applications. 5th ed. Philadelphia: Wolters Kluwer; 2020.

    Google Scholar 

  6. US Food and Drug Administration. Pradaxa prescribing information. 2010. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022512s000lbl.pdf. Accessed 20 Nov 2022.

  7. US Food and Drug Administration. Xarelto prescribing information. 2011. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202439s000lbl.pdf. Accessed 20 Nov 2022.

  8. US Food and Drug Administration. Eliquis prescribing information. 2012. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202155s000lbl.pdf. Accessed 20 Nov 2022.

  9. US Food and Drug Administration. Savaysa prescribing information. 2015. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/206316lbl.pdf. Accessed 20 Nov 2022.

  10. Center for Drug Evaluation and Research. FDA betrixaban clinical pharmacology and biopharmaceutics review. DRUGS@FDA data files. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208383Orig1s000ClinPharmR.pdf. Accessed 20 Nov 2022.

  11. Kubitza D, Becka M, Roth A, Mueck W. Absence of clinically relevant interactions between rivaroxaban—an oral, direct Factor Xa inhibitor—and digoxin or atorvastatin in healthy subjects. J Int Med Res. 2012;40:1688–707.

    Article  CAS  PubMed  Google Scholar 

  12. Mendell J, Zahir H, Matsushima N, Noveck R, Lee F, Chen S, et al. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs. 2013;13:331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Škorňová I, Samoš M, Bolek T, Stančiaková L, Vádelová Ľ, Galajda P, et al. Does atorvastatin therapy change the anti-Xa activity in xabans-treated patients with atrial fibrillation? Pharmacol Res Perspect. 2021;9: e00730.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Soh XQ, Tan DS-Y, Chan ECY. Simvastatin, but not atorvastatin, is associated with higher peak rivaroxaban serum levels and bleeding: an Asian cohort study from Singapore. Cardiovasc Drugs Ther. 2022. https://doi.org/10.1007/s10557-022-07346-8.

    Article  PubMed  Google Scholar 

  15. Wu H-H, Chang S-H, Lee T-H, Tu H-T, Liu C-H, Chang T-Y. Concurrent use of statins decreases major bleeding and intracerebral hemorrhage in non-valvular atrial fibrillation patients taking direct oral anticoagulants: a nationwide cohort study. Front Cardiovasc Med. 2022;9: 969259.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chang S-H, Chou I-J, Yeh Y-H, Chiou M-J, Wen M-S, Kuo C-T, et al. Association between use of non-vitamin K oral anticoagulants with and without concurrent medications and risk of major bleeding in nonvalvular atrial fibrillation. JAMA. 2017;318:1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steffel J, Collins R, Antz M, Cornu P, Desteghe L, Haeusler KG, et al. 2021 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. EP Europace. 2021;23:1612–76.

    Article  Google Scholar 

  18. Chang K-H, Chen C-M, Wang C-L, Tu H-T, Huang Y-T, Wu H-C, et al. Major bleeding risk in patients with non-valvular atrial fibrillation concurrently taking direct oral anticoagulants and antidepressants. Front Aging Neurosci. 2022;14: 791285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bellia A, Della-Morte D, Di Daniele N, Lauro D. Drug interactions of direct oral anticoagulants in elderly patients with cardiometabolic diseases. Curr Res Pharmacol Drug Discov. 2021;2: 100029.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen C-M, Chang K-H, Wang C-L, Tu H-T, Huang Y-T, Wu H-C, et al. Major bleeding risk in atrial fibrillation patients co-medicated with non-vitamin K oral anticoagulants and antipsychotics. Front Pharmacol. 2022;13: 819878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Härtter S, Koenen-Bergmann M, Sharma A, Nehmiz G, Lemke U, Timmer W, et al. Decrease in the oral bioavailability of dabigatran etexilate after co-medication with rifampicin: rifampicin decreases oral bioavailability of dabigatran etexilate. Br J Clin Pharmacol. 2012;74:490–500.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Center for Drug Evaluation and Research. FDA rivaroxaban clinical pharmacology biopharmaceutics review. DRUGS@FDA data files. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022406Orig1s000ClinPharmR.pdf. Accessed 19 Oct 2022.

  23. Vakkalagadda B, Frost C, Byon W, Boyd RA, Wang J, Zhang D, et al. Effect of rifampin on the pharmacokinetics of apixaban, an oral direct inhibitor of Factor Xa. Am J Cardiovasc Drugs. 2016;16:119–27.

    Article  CAS  PubMed  Google Scholar 

  24. Mendell J, Chen S, He L, Desai M, Parasramupria DA. The effect of rifampin on the pharmacokinetics of edoxaban in healthy adults. Clin Drug Investig. 2015;35:447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foerster KI, Hermann S, Mikus G, Haefeli WE. Drug–drug interactions with direct oral anticoagulants. Clin Pharmacokinet. 2020;59:967–80.

    Article  PubMed  PubMed Central  Google Scholar 

  26. US Food and Drug Administration, FDA. Drug development and drug interactions. Table of substrates, inhibitors and inducers. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers. Accessed 19 Oct 2022.

  27. US Food and Drug Administration. Clinical drug interaction studies: cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry. 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions. Accessed 19 Oct 2022.

  28. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003;2:473–81.

    Article  CAS  PubMed  Google Scholar 

  29. Josephson CB, Wiebe S, Delgado-Garcia G, Gonzalez-Izquierdo A, Denaxas S, Sajobi TT, et al. Association of enzyme-inducing antiseizure drug use with long-term cardiovascular disease. JAMA Neurol. 2021;78:1367.

    Article  PubMed  Google Scholar 

  30. Chang C-S, Liao C-H, Lin C-C, Lane H-Y, Sung F-C, Kao C-H. Patients with epilepsy are at an increased risk of subsequent stroke: a population-based cohort study. Seizure. 2014;23:377–81.

    Article  PubMed  Google Scholar 

  31. Perlman A, Goldstein R, Choshen Cohen L, Hirsh-Raccah B, Hakimian D, Matok I, et al. Effect of enzyme-inducing antiseizure medications on the risk of sub-therapeutic concentrations of direct oral anticoagulants: a retrospective cohort study. CNS Drugs. 2021;35:305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. King PK, Stump TA, Walkama AM, Ash BM, Bowling SM. Management of phenobarbital and apixaban interaction in recurrent cardioembolic stroke. Ann Pharmacother. 2018;52:605–6.

    Article  PubMed  Google Scholar 

  33. Cole JL. Enzymatic deinduction phenomenon and clinical implications with a focus on direct-acting oral anticoagulants. Blood Coagul Fibrinolysis. 2020;31:283–6.

    Article  CAS  PubMed  Google Scholar 

  34. Di Gennaro L, Lancellotti S, De Cristofaro R, De Candia E. Carbamazepine interaction with direct oral anticoagulants: help from the laboratory for the personalized management of oral anticoagulant therapy. J Thromb Thrombolysis. 2019;48:528–31.

    Article  PubMed  Google Scholar 

  35. Stöllberger C, Finsterer J. Recurrent venous thrombosis under rivaroxaban and carbamazepine for symptomatic epilepsy. Neurol Neurochir Pol. 2017;51:194–6.

    Article  PubMed  Google Scholar 

  36. Burden T, Thompson C, Bonanos E, Medford AR. Lesson of the month 2: pulmonary embolism in a patient on rivaroxaban and concurrent carbamazepine. Clin Med. 2018;18:103–5.

    Article  Google Scholar 

  37. Risselada AJ, Visser MJ, van Roon EN. Pulmonary embolism due to interaction between rivaroxaban and carbamazepine. Ned Tijdschr Geneeskd. 2013;157:A6568.

    PubMed  Google Scholar 

  38. Hager N, Bolt J, Albers L, Wojcik W, Duffy P, Semchuk W. Development of left atrial thrombus after coadministration of dabigatran etexilate and phenytoin. Can J Cardiol. 2017;33:554.e13-554.e14.

    Article  PubMed  Google Scholar 

  39. Perlman A, Wanounou M, Goldstein R, Choshen Cohen L, Singer DE, Muszkat M. Ischemic and thrombotic events associated with concomitant Xa-inhibiting direct oral anticoagulants and antiepileptic drugs: analysis of the FDA Adverse Event Reporting System (FAERS). CNS Drugs. 2019;33:1223–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gronich N, Stein N, Muszkat M. Association between use of pharmacokinetic-interacting drugs and effectiveness and safety of direct acting oral anticoagulants: nested case-control study. Clin Pharmacol Ther. 2021;110:1526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Werhahn KJ, Trinka E, Dobesberger J, Unterberger I, Baum P, Deckert-Schmitz M, et al. A randomized, double-blind comparison of antiepileptic drug treatment in the elderly with new-onset focal epilepsy. Epilepsia. 2015;56:450–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ip BY, Ko H, Wong GL, Yip TC, Lau LH, Lau AY, et al. Thromboembolic risks with concurrent direct oral anticoagulants and antiseizure medications: a population-based analysis. CNS Drugs. 2022;36:1313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moerman L, wyffels L, Slaets D, Raedt R, Boon P, De Vos F. Antiepileptic drugs modulate P-glycoproteins in the brain: a mice study with 11C-desmethylloperamide. Epilepsy Res. 2011;94:18–25.

    Article  CAS  PubMed  Google Scholar 

  44. Mathy F-X, Dohin E, Bonfitto F, Pelgrims B. Drug-drug interaction between levetiracetam and non-vitamin K antagonist anticoagulants. Eur Heart J. 2019;40:1571.

    Article  CAS  PubMed  Google Scholar 

  45. Levy RH, Ragueneau-Majlessi I, Baltes E. Repeated administration of the novel antiepileptic agent levetiracetam does not alter digoxin pharmacokinetics and pharmacodynamics in healthy volunteers. Epilepsy Res. 2001;46:93–9.

    Article  CAS  PubMed  Google Scholar 

  46. Paciullo F, Costa C, Gresele P. Rivaroxaban plasma levels and levetiracetam: a case report. Ann Intern Med. 2020;173:71–2.

    Article  PubMed  Google Scholar 

  47. Hole K, Wollmann BM, Nguyen C, Haslemo T, Molden E. Comparison of CYP3A4-inducing capacity of enzyme-inducing antiepileptic drugs Using 4β-hydroxycholesterol as biomarker. Ther Drug Monit. 2018;40:463–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gjestad C, Huynh DK, Haslemo T, Molden E. 4β-Hydroxycholesterol correlates with dose but not steady-state concentration of carbamazepine: indication of intestinal CYP3A in biomarker formation? Br J Clin Pharmacol. 2016;81:269–76.

    Article  CAS  PubMed  Google Scholar 

  49. Bodin K, Bretillon L, Aden Y, Bertilsson L, Broomé U, Einarsson C, et al. Antiepileptic drugs increase plasma levels of 4β-hydroxycholesterol in humans. J Biol Chem. 2001;276:38685–9.

    Article  CAS  PubMed  Google Scholar 

  50. Giner-Soriano M, Marsal JR, Gomez-Lumbreras A, Morros R. Risk of ischaemic stroke associated with antiepileptic drugs: a population-based case-control study in Catalonia. BMC Neurol. 2021;21:208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Renoux C, Dell’Aniello S, Saarela O, Filion KB, Boivin J-F. Antiepileptic drugs and the risk of ischaemic stroke and myocardial infarction: a population-based cohort study. BMJ Open. 2015;5: e008365.

    Article  PubMed  PubMed Central  Google Scholar 

  52. von Oertzen TJ, Trinka E, Bornstein NM. Levetiracetam and non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation and epilepsy: a reasonable combination. Eur Heart J. 2019;40:3800–1.

    Article  Google Scholar 

  53. Kurt S, Sumbul O, Aksoy D. Combination of non-vitamin K antagonist oral anticoagulants and antiepileptic drugs. Eur Heart J. 2019;40:1572.

    Article  CAS  PubMed  Google Scholar 

  54. Sarycheva T, Lavikainen P, Taipale H, Tiihonen J, Tanskanen A, Hartikainen S, et al. Antiepileptic drug use and mortality among community-dwelling persons with Alzheimer disease. Neurology. 2020;94:e2099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hughes RE, Tadi P, Bollu PC. TPA therapy. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. http://www.ncbi.nlm.nih.gov/books/NBK482376/. Accessed 24 Oct 2022.

  56. Toorop MMA, Lijfering WM, Scheres LJJ. The relationship between DOAC levels and clinical outcomes: the measures tell the tale. J Thromb Haemost. 2020;18:3163–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Macha K, Marsch A, Siedler G, Breuer L, Strasser EF, Engelhorn T, et al. Cerebral ischemia in patients on direct oral anticoagulants: plasma levels are associated with stroke severity. Stroke. 2019;50:873–9.

    Article  CAS  PubMed  Google Scholar 

  58. Testa S, Paoletti O, Legnani C, Dellanoce C, Antonucci E, Cosmi B, et al. Low drug levels and thrombotic complications in high-risk atrial fibrillation patients treated with direct oral anticoagulants. J Thromb Haemost. 2018;16:842–8.

    Article  CAS  PubMed  Google Scholar 

  59. Byon W, Sweeney K, Frost C, Boyd R. Population pharmacokinetics, pharmacodynamics, and exploratory exposure-response analyses of apixaban in subjects treated for venous thromboembolism: subjects treated for venous thromboembolism. CPT Pharmacometrics Syst Pharmacol. 2017;6:340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leil TA, Frost C, Wang X, Pfister M, LaCreta F. Model-based exposure-response analysis of apixaban to quantify bleeding risk in special populations of subjects undergoing orthopedic surgery. CPT Pharmacometrics Syst Pharmacol. 2014;3: e136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ruff CT, Giugliano RP, Braunwald E, Morrow DA, Murphy SA, Kuder JF, et al. Association between edoxaban dose, concentration, anti-Factor Xa activity, and outcomes: an analysis of data from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385:2288–95.

    Article  CAS  PubMed  Google Scholar 

  62. Johannessen Landmark C, Johannessen SI, Patsalos PN. Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects. Expert Opin Drug Metab Toxicol. 2020;16:227–38.

    Article  CAS  PubMed  Google Scholar 

  63. Landmark CJ, Johannessen SI, Tomson T. Dosing strategies for antiepileptic drugs: from a standard dose for all to individualised treatment by implementation of therapeutic drug monitoring. Epileptic Disord. 2016;18:367–83.

    Article  PubMed  Google Scholar 

  64. Kahan BD, Keown P, Levy GA, Johnston A. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther. 2002;24:330–50.

    Article  CAS  PubMed  Google Scholar 

  65. Tod MM, Padoin C, Petitjean O. Individualising aminoglycoside dosage regimens after therapeutic drug monitoring: simple or complex pharmacokinetic methods? Clin Pharmacokinet. 2001;40:803–14.

    Article  CAS  PubMed  Google Scholar 

  66. Winter ME. Basic clinical pharmacokinetics. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

  67. Wang CL, Wu VC-C, Chang K-H, Tu H-T, Kuo C-F, Huang Y-T, et al. Assessing major bleeding risk in atrial fibrillation patients concurrently taking non-vitamin K antagonist oral anticoagulants and antiepileptic drugs. Eur Heart J Cardiovasc Pharmacother. 2020;6:147–54.

    Article  PubMed  Google Scholar 

  68. Van der Linden L, Hias J, Vanassche T. The value and limitations of new oral anticoagulant plasma level assessments. Eur Heart J Suppl. 2022;24:A32-41.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Drouet L, Bal dit Sollier C, Steiner T, Purrucker J. Measuring non-vitamin K antagonist oral anticoagulant levels: when is it appropriate and which methods should be used? Int J Stroke. 2016;11:748–58.

    Article  PubMed  Google Scholar 

  70. Brodie MJ, Mintzer S, Pack AM, Gidal BE, Vecht CJ, Schmidt D. Enzyme induction with antiepileptic drugs: cause for concern? Enzyme induction with AEDs Epilepsia. 2013;54:11–27.

    CAS  PubMed  Google Scholar 

  71. Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin Pharmacokinet. 2008;47:285–95.

    Article  CAS  PubMed  Google Scholar 

  72. European Medicines Agency. Eliquis: EPAR product Iiformation. https://www.ema.europa.eu/en/documents/product-information/eliquis-epar-product-information_en.pdf. Accessed 20 Nov 2022.

  73. Candeloro M, Eikelboom JW, Chan N, Bhagirath V, Douketis JD, Schulman S. Carbamazepine, phenytoin, and oral anticoagulants: drug-drug interaction and clinical events in a retrospective cohort. Res Pract Thromb Haemost. 2022;6: e12650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Laureano M, Crowther M, Eikelboom J, Boonyawat K. Measurement of dabigatran drug levels to manage patients taking interacting drugs: a case report. Am J Med. 2016;129:e247–8.

    Article  PubMed  Google Scholar 

  75. Perlman A, Hochberg-Klein S, Choshen Cohen L, Dagan G, Hirsh-Raccah B, Horwitz E, et al. Management strategies of the interaction between direct oral anticoagulant and drug-metabolizing enzyme inducers. J Thromb Thrombolysis. 2019;47:590–5.

    Article  CAS  PubMed  Google Scholar 

  76. Sennesael A-L, Larock A-S, Hainaut P, Lessire S, Hardy M, Douxfils J, et al. The impact of strong inducers on direct oral anticoagulant levels. Am J Med. 2021;134:1295–9.

    Article  CAS  PubMed  Google Scholar 

  77. Giustozzi M, Mazzetti M, Paciaroni M, Agnelli G, Becattini C, Vedovati MC. Concomitant use of direct oral anticoagulants and antiepileptic drugs: a prospective cohort study in patients with atrial fibrillation. Clin Drug Investig. 2021;41:43–51.

    Article  CAS  PubMed  Google Scholar 

  78. Chin PKL, Wright DFB, Zhang M, Wallace MC, Roberts RL, Patterson DM, et al. Correlation between trough plasma dabigatran concentrations and estimates of glomerular filtration rate based on creatinine and cystatin C. Drugs R D. 2014;14:113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dagan G, Perlman A, Hochberg-Klein S, Kalish Y, Muszkat M. Managing direct oral anticoagulants in patients with antiepileptic medication. Can J Cardiol. 2018;34(1534):e1-3.

    Google Scholar 

  80. Wiggins BS, Northup A, Johnson D, Senfield J. Reduced anticoagulant effect of dabigatran in a patient receiving concomitant phenytoin. Pharmacotherapy. 2016;36:e5-7.

    Article  PubMed  Google Scholar 

  81. Sáez-Torres de Vicente M, Martínez Puig P, Valverde Toresano L. Ischemic stroke due to possible interaction of rivaroxaban with primidone in a patient with atrial fibrillation. Med Clin (Barc). 2021;156:255–6.

    Article  PubMed  Google Scholar 

  82. Robinson ZS, Arvin JP, Madding KL. Rivaroxaban failure in a patient taking oxcarbazepine. Ann Pharmacother. 2021;55:1302–3.

    Article  PubMed  Google Scholar 

  83. Serra W, Li Calzi M, Coruzzi P. Left atrial appendage thrombosis during therapy with rivaroxaban in elective cardioversion for permanent atrial fibrillation. Clin Pract. 2015;5. http://www.clinicsandpractice.org/index.php/cp/article/view/788. Accessed 1 Oct 2020.

  84. Barbar S, Simonetto M, De Bon E, Scarano L, Caneve G, Simioni N. Direct oral anticoagulants and antiepileptic drugs: is there room for concurrent treatment? [abstract]. Res Pract Thromb Haemost. 2020. https://abstracts.isth.org/abstract/direct-oral-anticoagulants-and-antiepileptic-drugs-is-there-room-for-concurrent-treatment. Accessed 17 Jan 2023.

  85. Stöllberger C, Finsterer J. Prolonged anticoagulant activity of rivaroxaban in a polymorbid elderly female with non-convulsive epileptic state. Heart Lung. 2014;43:262–3.

    Article  PubMed  Google Scholar 

  86. Langenbruch L, Meuth SG, Wiendl H, Mesters R, Möddel G. Clinically relevant interaction of rivaroxaban and valproic acid: a case report. Seizure. 2020;80:46–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is abstracted from the Ph.D. thesis of Rachel Goldstein in partial fulfillment of the Ph.D. degree requirements for The Hebrew University of Jerusalem. Meir Bialer (meirb@ekmd.huji.ac.il) and Mordechai Muszkat  (muszkatm@hadassah.org.il) are co-corresponding authors for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meir Bialer.

Ethics declarations

Funding

This work was funded by a research grant from the Estates Committee, Israel Ministry of Justice (proposal submitted to the Chief Scientist, Ministry of Health) to Mordechai Muszkat 2021–2024.

Conflicts of Interest

Meir Bialer received speaker’s or consultancy fees from Alkaloid, Boehringer Ingelheim, Clexio Bioscines, Guidepoint, Pharma Two B, Rekah-Vitamed, USWorldMeds, and Xenon Pharma. Rachel Goldstein, Aviya R. Jacobs, Lana Zighan, Naomi Gronich, and Mordechai Muszkat have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

RG, ARJ, LZ, NG, and MM produced an initial draft of the manuscript and conducted a literature search under guidance and supervision from MB and MM. RG, MB, and MB contributed to a critical evaluation of the data and to the revision and finalization of the manuscript. All authors have read and approved the final version of the manuscript, and agree to be accountable for the work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, R., Jacobs, A.R., Zighan, L. et al. Interactions Between Direct Oral Anticoagulants (DOACs) and Antiseizure Medications: Potential Implications on DOAC Treatment. CNS Drugs 37, 203–214 (2023). https://doi.org/10.1007/s40263-023-00990-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-023-00990-0

Navigation