Skip to main content
Log in

Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Therapeutic deficiencies with monoaminergic antidepressants invites the need to identify and develop novel rapid-acting antidepressants. Hitherto, ketamine and esketamine are identified as safe, well-tolerated rapid-acting antidepressants in adults with treatment-resistant depression, and also mitigate measures of suicidality. Psilocybin is a naturally occurring psychoactive alkaloid and non-selective agonist at many serotonin receptors, especially at serotonin 5-HT2A receptors, and is found in the Psilocybe genus of mushrooms. Preliminary studies with psilocybin have shown therapeutic promise across diverse populations including major depressive disorder. The pharmacodynamic mechanisms mediating the antidepressant and psychedelic effects of psilocybin are currently unknown but are thought to involve the modulation of the serotonergic system, primarily through agonism at the 5-HT2A receptors and downstream changes in gene expression. It is also established that indirect effects on dopaminergic and glutamatergic systems are contributory, as well as effects at other lower affinity targets. Along with the direct effects on neurochemical systems, psilocybin alters neural circuitry and key brain regions previously implicated in depression, including the default mode network and amygdala. The aim of this review is to synthesize the current understanding of the receptor pharmacology and neuronal mechanisms underlying the psychedelic and putative antidepressant properties of psilocybin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. WHO. Depression. https://www.who.int/news-room/fact-sheets/detail/depression. Accessed 1 Jun 2021.

  2. McIntyre RS, et al. Treatment-resistant depression: definitions, review of the evidence, and algorithmic approach. J Affect Disord. 2014;156:1–7.

    Article  CAS  PubMed  Google Scholar 

  3. Zhdanava M, et al. The prevalence and national burden of treatment-resistant depression and major depressive disorder in the United States. J Clin Psychiatry. 2021;82(2):20m13699.

    Article  PubMed  Google Scholar 

  4. Rizvi SJ, et al. Treatment-resistant depression in primary care across Canada. Can J Psychiatry. 2014;59(7):349–57.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Witkin JM, Martin AE, Golani LK, Xu NZ, Smith JL. Rapid-acting antidepressants. Adv Pharmacol. 2019;86:47–96.

    Article  CAS  PubMed  Google Scholar 

  6. Patacchini A, Cosci F. Exposure to serotonin selective reuptake inhibitors or serotonin noradrenaline reuptake inhibitors and sexual dysfunction: results from an online survey. Int J Risk Saf Med. 2021;32(3):229–42.

    Article  PubMed  Google Scholar 

  7. Dodd S, et al. A clinical approach to treatment resistance in depressed patients: what to do when the usual treatments don’t work well enough? World J Biol Psychiatry. 2021;22(7):483–94.

    Article  PubMed  Google Scholar 

  8. McIntyre RS, et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry. 2021;178(5):383–99.

    Article  PubMed  Google Scholar 

  9. Gould TD, Zarate CA Jr, Thompson SM. Molecular pharmacology and neurobiology of rapid-acting antidepressants. Annu Rev Pharmacol Toxicol. 2019;59(1):213–36.

    Article  CAS  PubMed  Google Scholar 

  10. Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther. 2019;199:58–90.

    Article  CAS  PubMed  Google Scholar 

  11. Duman RS. Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide. F1000Res. 2018;7:659.

    Article  Google Scholar 

  12. Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol. 2015;23(1):1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Albert PR, Benkelfat C, Descarries L. The neurobiology of depression: revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci. 2012;367(1601):2378–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Serafini G, Pompili M, Innamorati M, Dwivedi Y, Brahmachari G, Girardi P. Pharmacological properties of glutamatergic drugs targeting NMDA receptors and their application in major depression. Curr Pharm Des. 2013;19(10):1898–922.

    Article  CAS  PubMed  Google Scholar 

  15. Rubio-Casillas A, Fernández-Guasti A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev Neurosci. 2016;27(6):599–622.

    Article  CAS  PubMed  Google Scholar 

  16. Pochwat B, Nowak G, Szewczyk B. An update on NMDA antagonists in depression. Expert Rev Neurother. 2019;19(11):1055–67.

    Article  CAS  PubMed  Google Scholar 

  17. Ates-Alagoz Z, Adejare A. NMDA receptor antagonists for treatment of depression. Pharmaceuticals. 2013;6(4):480–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Müller N, Myint A-M, Schwarz MJ. The impact of neuroimmune dysregulation on neuroprotection and neurotoxicity in psychiatric disorders: relation to drug treatment. Dialogues Clin Neurosci. 2009;11(3):319–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102(1):75–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry. 2006;19(1):25–33.

    Article  PubMed  Google Scholar 

  21. Serafini G, Amore M, Rihmer Z. The role of glutamate excitotoxicity and neuroinflammation in depression and suicidal behavior: focus on microglia cells. Neuroimmunol Neuroinflamm. 2015;2(3):127.

    Article  CAS  Google Scholar 

  22. Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42(1):193–215.

    Article  CAS  PubMed  Google Scholar 

  23. Kishimoto T, et al. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med. 2016;46(7):1459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salloum NC, et al. Time to relapse after a single administration of intravenous ketamine augmentation in unipolar treatment-resistant depression. J Affect Disord. 2020;260:131–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mahapatra A, Gupta R. Role of psilocybin in the treatment of depression. Ther Adv Psychopharmacol. 2017;7(1):54–6.

    Article  CAS  PubMed  Google Scholar 

  26. Patra S. Return of the psychedelics: psilocybin for treatment resistant depression. Asian J Psychiatr. 2016;24:51–2.

    Article  PubMed  Google Scholar 

  27. Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res. 2015;277:99–120.

    Article  CAS  PubMed  Google Scholar 

  28. Passie T, Seifert J, Schneider U, Emrich HM. The pharmacology of psilocybin. Addict Biol. 2002;7(4):357–64.

    Article  CAS  PubMed  Google Scholar 

  29. Ross S, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30(12):1165–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carhart-Harris RL, et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;3(7):619–27.

    Article  PubMed  Google Scholar 

  31. Goldberg SB, Pace BT, Nicholas CR, Raison CL, Hutson PR. The experimental effects of psilocybin on symptoms of anxiety and depression: a meta-analysis. Psychiatry Res. 2020;284:112749.

    Article  CAS  PubMed  Google Scholar 

  32. Carhart-Harris R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021;384(15):1402–11.

    Article  CAS  PubMed  Google Scholar 

  33. Dinis-Oliveira RJ. Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metab Rev. 2017;49(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  34. Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD. Psychedelics, but not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem Neurosci. 2020;11(6):864–71.

    Article  CAS  PubMed  Google Scholar 

  35. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118(17):e2022489118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gill H, et al. The emerging role of psilocybin and MDMA in the treatment of mental illness. Expert Rev Neurother. 2020;20(12):1263–73.

    Article  CAS  PubMed  Google Scholar 

  37. Mertens LJ, Wall MB, Roseman L, Demetriou L, Nutt DJ, Carhart-Harris RL. Therapeutic mechanisms of psilocybin: changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. J Psychopharmacol. 2020;34(2):167–80.

    Article  CAS  PubMed  Google Scholar 

  38. Glennon RA, Titeler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 1984;35(25):2505–11.

    Article  CAS  PubMed  Google Scholar 

  39. Kometer M, Schmidt A, Jäncke L, Vollenweider FX. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci. 2013;33(25):10544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vollenweider FX, Geyer MA. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull. 2001;56(5):495–507.

    Article  CAS  PubMed  Google Scholar 

  41. Tylš F, Páleníček T, Horáček J. Psilocybin: summary of knowledge and new perspectives. Eur Neuropsychopharmacol. 2014;24(3):342–56.

    Article  PubMed  Google Scholar 

  42. Quednow BB, Kometer M, Geyer MA, Vollenweider FX. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology. 2012;37(3):630–40.

    Article  CAS  PubMed  Google Scholar 

  43. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport. 1998;9(17):3897–902.

    Article  CAS  PubMed  Google Scholar 

  44. Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci. 2010;11(9):642–51.

    Article  CAS  PubMed  Google Scholar 

  45. Lee H-M, Roth BL. Hallucinogen actions on human brain revealed. Proc Natl Acad Sci USA. 2012;109(6):1820–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hanks JB, González-Maeso J. Animal models of serotonergic psychedelics. ACS Chem Neurosci. 2013;4(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  47. López-Giménez JF, González-Maeso J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. Curr Top Behav Neurosci. 2018;36:45–73.

    Article  PubMed  PubMed Central  Google Scholar 

  48. González-Maeso J, et al. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53(3):439–52.

    Article  PubMed  Google Scholar 

  49. Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett. 2011;493(3):76–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. González-Maeso J, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452(7183):93–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moreno JL, et al. Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A·mGlu2) receptor heteromerization and its psychoactive behavioral function. J Biol Chem. 2012;287(53):44301–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. González-Maeso J, et al. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci. 2003;23(26):8836–43.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Duclot F, Kabbaj M. The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci. 2017;11:35.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cole AJ, Saffen DW, Baraban JM, Worley PF. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 1989;340(6233):474–6.

    Article  CAS  PubMed  Google Scholar 

  55. Schmid CL, Bohn LM. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ß-arrestin2/Src/Akt signaling complex in vivo. J Neurosci. 2010;30(40):13513–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmid CL, Raehal KM, Bohn LM. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA. 2008;105(3):1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weisstaub NV, et al. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science. 2006;313(5786):536–40.

    Article  CAS  PubMed  Google Scholar 

  58. Van Oekelen D, Luyten WHML, Leysen JE. 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci. 2003;72(22):2429.

    Article  PubMed  Google Scholar 

  59. Trajkovska V, et al. BDNF downregulates 5-HT2A receptor protein levels in hippocampal cultures. Neurochem Int. 2009;55(7):697–702.

    Article  CAS  PubMed  Google Scholar 

  60. Björkholm C, Monteggia LM. BDNF: a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–9.

    Article  PubMed  Google Scholar 

  61. Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2014;53:23–34.

    Article  CAS  PubMed  Google Scholar 

  62. Dowlati Y, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  CAS  PubMed  Google Scholar 

  63. Berthold-Losleben M, Himmerich H. The TNF-alpha system: functional aspects in depression, narcolepsy and psychopharmacology. Curr Neuropharmacol. 2008;6(3):193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ting EY-C, Yang AC, Tsai S-J. Role of interleukin-6 in depressive disorder. Int J Mol Sci. 2020;21(6):2194.

    Article  CAS  PubMed Central  Google Scholar 

  65. Bob P, et al. Depression, traumatic stress and interleukin-6. J Affect Disord. 2010;120(1–3):231–4.

    Article  CAS  PubMed  Google Scholar 

  66. Lee Y, et al. Peripheral inflammatory biomarkers define biotypes of bipolar depression. Mol Psychiatry. 2021;89:S156.

    Google Scholar 

  67. Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O. Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation. 2010;7(1):1–8.

    Article  Google Scholar 

  68. De Cesaris P, Starace D, Riccioli A, Padula F, Filippini A, Ziparo E. Tumor necrosis factor-alpha induces interleukin-6 production and integrin ligand expression by distinct transduction pathways. J Biol Chem. 1998;273(13):7566–71.

    Article  PubMed  Google Scholar 

  69. Dunn AJ, Swiergiel AH. Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacol Biochem Behav. 2005;81(3):688–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin N Am. 2009;29(2):247–64.

    Article  Google Scholar 

  71. Fan N, Luo Y, Ou Y, He H. Altered serum levels of TNF-α, IL-6, and IL-18 in depressive disorder patients. Hum Psychopharmacol. 2017;32(4):e2588.

    Article  Google Scholar 

  72. Luo Y, He H, Zhang M, Huang X, Fan N. Altered serum levels of TNF-α, IL-6 and IL-18 in manic, depressive, mixed state of bipolar disorder patients. Psychiatry Res. 2016;244:19–23.

    Article  CAS  PubMed  Google Scholar 

  73. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2016;23(2):335–43.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nau F, Yu B, Martin D, Nichols CD. Serotonin 5-HT2A receptor activation blocks TNF-α mediated inflammation in vivo. PLoS ONE. 2013;8(10):e75426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. House RV, Thomas PT, Bhargava HN. Immunological consequences of in vitro exposure to lysergic acid diethylamide (LSD). Immunopharmacol Immunotoxicol. 1994;16(1):23–40.

    Article  CAS  PubMed  Google Scholar 

  76. Szabo A, Kovacs A, Frecska E, Rajnavolgyi E, Psychedelic N. N-dimethyltryptamine and 5-methoxy-N, N-dimethyltryptamine modulate innate and adaptive inflammatory responses through the sigma-1 receptor of human monocyte-derived dendritic cells. PLoS ONE. 2014;9(8):e106533.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dos Santos RG, Osório FL, Crippa JAS, Riba J, Zuardi AW, Hallak JEC. Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): a systematic review of clinical trials published in the last 25 years. Ther Adv Psychopharmacol. 2016;6(3):193–213.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nkadimeng SM, Steinmann CML, Eloff JN. Effects and safety of Psilocybe cubensis and Panaeolus cyanescens magic mushroom extracts on endothelin-1-induced hypertrophy and cell injury in cardiomyocytes. Sci Rep. 2020;10(1):22314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Halberstadt AL, Geyer MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology. 2011;61(3):364–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vollenweider F. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man: a PET study with [11C]raclopride. Neuropsychopharmacology. 1999;20(5):424–33.

    Article  CAS  PubMed  Google Scholar 

  81. Puig MV, Celada P, Díaz-Mataix L, Artigas F. In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex. 2003;13(8):870–82.

    Article  PubMed  Google Scholar 

  82. Béïque J-C, Imad M, Mladenovic L, Gingrich JA, Andrade R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA. 2007;104(23):9870–5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marek GJ, Wright RA, Gewirtz JC, Schoepp DD. A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience. 2001;105(2):379–92.

    Article  CAS  PubMed  Google Scholar 

  84. Pałucha-Poniewiera A. The role of glutamatergic modulation in the mechanism of action of ketamine, a prototype rapid-acting antidepressant drug. Pharmacol Rep. 2018;70(5):837–46.

    Article  PubMed  Google Scholar 

  85. Marek GJ, Salek AA. Extending the specificity of DRL 72-s behavior for screening antidepressant-like effects of glutamatergic clinically validated anxiolytic or antidepressant drugs in rats. J Pharmacol Exp Ther. 2020;374(1):200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gewirtz JC, Marek GJ. Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology. 2000;23(5):569–76.

    Article  CAS  PubMed  Google Scholar 

  87. Aghajanian GK, Hailgler HJ. Hallucinogenic indoleamines: preferential action upon presynaptic serotonin receptors. Psychopharmacol Commun. 1975;1(6):619–29.

    CAS  PubMed  Google Scholar 

  88. Geiger HA, Wurst MG, Daniels RN. DARK classics in chemical neuroscience: psilocybin. ACS Chem Neurosci. 2018;9(10):2438–47.

    Article  CAS  PubMed  Google Scholar 

  89. Michelsen KA, Prickaerts J, Steinbusch HWM. The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Prog Brain Res. 2008;172:233–64.

    Article  CAS  PubMed  Google Scholar 

  90. Pokorny T, Preller KH, Kometer M, Dziobek I, Vollenweider FX. Effect of psilocybin on empathy and moral decision-making. Int J Neuropsychopharmacol. 2017;20(9):747–57.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J. Depression, rumination and the default network. Soc Cogn Affect Neurosci. 2011;6(5):548–55.

    Article  PubMed  Google Scholar 

  92. Coutinho JF, Fernandesl SV, Soares JM, Maia L, Gonçalves ÓF, Sampaio A. Default mode network dissociation in depressive and anxiety states. Brain Imaging Behav. 2016;10(1):147–57.

    Article  PubMed  Google Scholar 

  93. Carhart-Harris RL, et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci USA. 2012;109(6):2138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Daniel J, Haberman M. Clinical potential of psilocybin as a treatment for mental health conditions. Ment Health Clin. 2017;7(1):24–8.

    Article  PubMed  Google Scholar 

  95. Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am J Psychiatry. 2012;169(7):693–703.

    Article  PubMed  Google Scholar 

  96. Tang S, et al. Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: a comparative meta-analysis. EBioMedicine. 2018;36:436–45.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ferri J, Eisendrath SJ, Fryer SL, Gillung E, Roach BJ, Mathalon DH. Blunted amygdala activity is associated with depression severity in treatment-resistant depression. Cogn Affect Behav Neurosci. 2017;17(6):1221–31.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Roseman L, Nutt DJ, Carhart-Harris RL. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front Pharmacol. 2017;8:974.

    Article  PubMed  Google Scholar 

  99. Christoffel DJ, Golden SA, Russo SJ. Structural and synaptic plasticity in stress-related disorders. Rev Neurosci. 2011;22(5):535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ly C, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23(11):3170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33(1):88–109.

    Article  CAS  PubMed  Google Scholar 

  102. Castrén E, Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci. 2013;36(5):259–67.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rief W, et al. Rethinking psychopharmacotherapy: the role of treatment context and brain plasticity in antidepressant and antipsychotic interventions. Neurosci Biobehav Rev. 2016;60:51–64.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang G, Stackman RW Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015;6:225.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yang T, et al. The role of BDNF on neural plasticity in depression. Front Cell Neurosci. 2020;14:82.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang J-C, Yao W, Hashimoto K. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol. 2016;14(7):721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron. 2002;36(1):121–37.

    Article  CAS  PubMed  Google Scholar 

  108. Minichiello L, et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron. 1999;24(2):401–14.

    Article  CAS  PubMed  Google Scholar 

  109. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA. 1995;92(19):8856–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Korte M, Kang H, Bonhoeffer T, Schuman E. A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology. 1998;37(4–5):553–9.

    Article  CAS  PubMed  Google Scholar 

  111. Gruart A, Sciarretta C, Valenzuela-Harrington M, Delgado-García JM, Minichiello L. Mutation at the TrkB PLC{gamma}-docking site affects hippocampal LTP and associative learning in conscious mice. Learn Mem. 2007;14(1):54–62.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron. 1996;16(6):1137–45.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang J-C, et al. Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol. 2014;18(4):pyu077.

    PubMed  Google Scholar 

  114. Fava M, et al. A phase 2, randomized, double-blind, placebo-controlled study of adjunctive pimavanserin in patients with major depressive disorder and an inadequate response to therapy (CLARITY). J Clin Psychiatry. 2019;80(6):19m12928.

    Article  PubMed  Google Scholar 

  115. Cruz MP. Pimavanserin (Nuplazid): a treatment for hallucinations and delusions associated with Parkinson’s disease. P T. 2017;42(6):368–71.

    PubMed  PubMed Central  Google Scholar 

  116. Muttoni S, Ardissino M, John C. Classical psychedelics for the treatment of depression and anxiety: a systematic review. J Affect Disord. 2019;258:11–24.

    Article  PubMed  Google Scholar 

  117. Malcolm BJ, Lee KC. Ayahuasca: an ancient sacrament for treatment of contemporary psychiatric illness? Ment Health Clin. 2017;7(1):39–45.

    Article  PubMed  Google Scholar 

  118. Psilocybin PDSP database—UNC. https://pdsp.unc.edu/databases/pdsp.php?recDDRadio=recDDRadio&receptorDD=&receptor=&speciesDDRadio=speciesDDRadio&speciesDD=&species=&sourcesDD=&source=&hotLigandDD=&hotLigand=&testLigandDD=&testFreeRadio=testFreeRadio&testLigand=psilocybin&referenceDD=&reference=&KiGreater=&KiLess=&kiAllRadio=all&doQuery=Submit+Query. Accessed 20 Sep 2021.

  119. Psilocin PDSP database—UNC. https://pdsp.unc.edu/databases/pdsp.php?recDDRadio=recDDRadio&receptorDD=&receptor=&speciesDDRadio=speciesDDRadio&speciesDD=&species=&sourcesDD=&source=&hotLigandDD=&hotLigand=&testLigandDD=&testFreeRadio=testFreeRadio&testLigand=psilocin&referenceDD=&reference=&KiGreater=&KiLess=&kiAllRadio=all&doQuery=Submit+Query. Accessed 20 Sep 2021.

  120. BioRender. https://biorender.com/. Accessed 10 Jun 2021.

  121. Mason NL, et al. Me, myself, bye: regional alterations in glutamate and the experience of ego dissolution with psilocybin. Neuropsychopharmacology. 2020;45(12):2003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gouzoulis-Mayfrank E, et al. Effects of the hallucinogen psilocybin on habituation and prepulse inhibition of the startle reflex in humans. Behav Pharmacol. 1998;9(7):561–6.

    Article  CAS  PubMed  Google Scholar 

  123. Carhart-Harris RL, et al. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci Rep. 2017;7(1):13187.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci. 2005;17(10):1497–508.

    Article  PubMed  Google Scholar 

  125. Varley TF, Carhart-Harris R, Roseman L, Menon DK, Stamatakis EA. Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains. Neuroimage. 2020;220:117049.

    Article  CAS  PubMed  Google Scholar 

  126. Kometer M, Schmidt A, Bachmann R, Studerus E, Seifritz E, Vollenweider FX. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry. 2012;72(11):898–906.

    Article  CAS  PubMed  Google Scholar 

  127. Bernasconi F, Schmidt A, Pokorny T, Kometer M, Seifritz E, Vollenweider FX. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin. Cereb Cortex. 2014;24(12):3221–31.

    Article  PubMed  Google Scholar 

  128. Wackermann J, Wittmann M, Hasler F, Vollenweider FX. Effects of varied doses of psilocybin on time interval reproduction in human subjects. Neurosci Lett. 2008;435(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  129. Wittmann M, et al. Effects of psilocybin on time perception and temporal control of behaviour in humans. J Psychopharmacol. 2007;21(1):50–64.

    Article  CAS  PubMed  Google Scholar 

  130. Vollenweider FX, Csomor PA, Knappe B, Geyer MA, Quednow BB. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval. Neuropsychopharmacology. 2007;32(9):1876–87.

    Article  CAS  PubMed  Google Scholar 

  131. Carter OL, et al. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin. Neuropsychopharmacology. 2005;30(6):1154–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger S. McIntyre.

Ethics declarations

Funding

This paper was not funded.

Conflicts of interest

Dr. Roger McIntyre has received research grant support from CIHR/GACD/Chinese National Natural Research Foundation; speaker/consultation fees from Lundbeck, Janssen, Purdue, Pfizer, Otsuka, Takeda, Neurocrine, Sunovion, Bausch Health, Novo Nordisk, Kris, Sanofi, Eisai, Intra-Cellular, NewBridge Pharmaceuticals, Abbvie. Dr. Roger McIntyre is a CEO of Braxia Scientific Corp. Dr. Joshua D. Rosenblat is the medical director of the Braxia Health (formally known as the Canadian Rapid Treatment Center of Excellence and is a fully owned subsidiary of Braxia Scientific Corp) which provides ketamine and esketamine treatment for depression; he has received research grant support from the American Psychiatric Association, the American Society of Psychopharmacology, the Canadian Cancer Society, the Canadian Psychiatric Association, the Joseph M. West Family Memorial Fund, the Timeposters Fellowship, the University Health Network Centre for Mental Health, and the University of Toronto and speaking, consultation, or research fees from Allergan, COMPASS, Janssen, Lundbeck, and Sunovion. Dr. Yena Lee is an employee of Braxia Scientific Corp. Leanna M.W. Lui has received: personal fees from Braxia Scientific Corp and honoraria Medscape. Kayla M. Teopiz has received personal fees from Braxia Scientific Corp. All other authors declare no conflicts of interest and/or financial disclosures.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

SL, FC, and RSM drafted the manuscript. All authors provided critical feedback and revisions, approved the final manuscript, and agreed to be accountable for the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, S., Ceban, F., Lui, L.M.W. et al. Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression. CNS Drugs 36, 17–30 (2022). https://doi.org/10.1007/s40263-021-00877-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-021-00877-y

Navigation