Skip to main content
Log in

Potential of Ligands for Trace Amine-Associated Receptor 1 (TAAR1) in the Management of Substance Use Disorders

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Trace amines, including β-phenylethylamine (β-PEA), p-tyramine (TYR), tryptamine (TRP), and p-octopamine (OCT), represent a group of amines expressed at low levels in the mammalian brain. Given the close structural similarities to traditional monoamines, links between trace amines and the monoaminergic system have long been suspected. Trace amine-associated receptor 1 (TAAR1), the most well characterized receptor in the TAAR family, has been shown to be potently activated by trace amines such as TYR and PEA. Further, catecholamine metabolites and amphetamine analogs are also potent agonists of TAAR1, implicating the receptor in mediating the monoaminergic system and in substance use disorders. In the central nervous system, TAAR1 is expressed in brain regions involved in dopaminergic, serotonergic, and glutamatergic transmission, and genetic animal models and electrophysiological studies have revealed that TAAR1 is a potent modulator of the monoaminergic system. Selective and potent engineered TAAR1 ligands, including full (RO5166017 and RO5256390) and partial (RO5203648, RO5263397 and RO5073012) agonists and the antagonist EPPTB (N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl) benzamide, RO5212773), serve as invaluable tools for the investigation of TAAR1 functions and display significant potential for the development of TAAR1-based pharmacotherapies for the treatment of substance use disorders. Despite a number of advances that have been made, more clinical studies are warranted in order to test the potential and efficacy of TAAR1 ligands in the treatment of psychiatric disorders, including substance use disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Berry MD. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem. 2004;90(2):257–71.

    Article  CAS  PubMed  Google Scholar 

  2. Grandy DK. Trace amine-associated receptor 1-Family archetype or iconoclast? Pharmacol Ther. 2007;116(3):355–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boulton AA, Wu PH. Biosynthesis of cerebral phenolic amines. I. In vivo formation of p-tyramine, octopamine, and synephrine. Can J Biochem. 1972;50(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  4. Boulton AA, Wu PH. Biosynthesis of cerebral phenolic amines. II. In vivo regional formation of p-tyramine and octopamine from tyrosine and dopamine. Can J Biochem. 1973;51(4):428–35.

    Article  CAS  PubMed  Google Scholar 

  5. Saavedra JM. Enzymatic isotopic assay for and presence of beta-phenylethylamine in brain. J Neurochem. 1974;22(2):211–6.

    Article  CAS  PubMed  Google Scholar 

  6. Dyck LE, Yang CR, Boulton AA. The biosynthesis of p-tyramine, m-tyramine, and beta-phenylethylamine by rat striatal slices. J Neurosci Res. 1983;10(2):211–20.

    Article  CAS  PubMed  Google Scholar 

  7. Gainetdinov RR, Hoener MC, Berry MD. Trace Amines and Their Receptors. Pharmacol Rev. 2018;70(3):549–620.

    Article  CAS  PubMed  Google Scholar 

  8. Berry MD, Shitut MR, Almousa A, Alcorn J, Tomberli B. Membrane permeability of trace amines: evidence for a regulated, activity-dependent, nonexocytotic, synaptic release. Synapse. 2013;67(10):656–67.

    Article  CAS  PubMed  Google Scholar 

  9. Durden DA, Philips SR. Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J Neurochem. 1980;34(6):1725–32.

    Article  CAS  PubMed  Google Scholar 

  10. Mosnaim AD, Callaghan OH, Hudzik T, Wolf ME. Rat brain-uptake index for phenylethylamine and various monomethylated derivatives. Neurochem Res. 2013;38(4):842–6.

    Article  CAS  PubMed  Google Scholar 

  11. Berry MD, Hart S, Pryor AR, Hunter S, Gardiner D. Pharmacological characterization of a high-affinity p-tyramine transporter in rat brain synaptosomes. Sci Rep. 2016;30(6):38006.

    Article  Google Scholar 

  12. Paterson IA, Boulton AA. beta-Phenylethylamine enhances single cortical neurone responses to noradrenaline in the rat. Brain Res Bull. 1988;20(2):173–7.

    Article  PubMed  Google Scholar 

  13. Paterson IA. The potentiation of cortical neuron responses to noradrenaline by 2-phenylethylamine is independent of endogenous noradrenaline. Neurochem Res. 1993;18(12):1329–36.

    Article  CAS  PubMed  Google Scholar 

  14. Jones RS, Boulton AA. Interactions between p-tyramine, m-tyramine, or beta-phenylethylamine and dopamine on single neurones in the cortex and caudate nucleus of the rat. Can J Physiol Pharmacol. 1980;58(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  15. Baker GB, Raiteri M, Bertollini A, del Carmine R. Interaction of beta-phenethylamine with dopamine and noradrenaline in the central nervous system of the rat. J Pharm Pharmacol. 1976;28(5):456–7.

    Article  CAS  PubMed  Google Scholar 

  16. Raiteri M, Del Carmine R, Bertollini A, Levi G. Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur J Pharmacol. 1977;41(2):133–43.

    Article  CAS  PubMed  Google Scholar 

  17. Sotnikova TD, Budygin EA, Jones SR, Dykstra LA, Caron MG, Gainetdinov RR. Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine. J Neurochem. 2004;91(2):362–73.

    Article  CAS  PubMed  Google Scholar 

  18. Borison RL, Mosnaim AD, Sabelli HC. Brain 2-phenylethylamine as a major mediator for the central actions of amphetamine and methylphenidate. Life Sci. 1975;17(8):1331–43.

    Article  CAS  PubMed  Google Scholar 

  19. Janssen PA, Leysen JE, Megens AA, Awouters FH. Does phenylethylamine act as an endogenous amphetamine in some patients? Int J Neuropsychopharmacol. 1999;2(3):229–40.

    Article  CAS  PubMed  Google Scholar 

  20. Sabelli HC, Mosnaim AD. Phenylethylamine hypothesis of affective behavior. Am J Psychiatry. 1974;131(6):695–9.

    Article  CAS  PubMed  Google Scholar 

  21. Tiihonen J, Vilkman H, Rasanen P, Ryynanen OP, Hakko H, Bergman J, et al. Striatal presynaptic dopamine function in type 1 alcoholics measured with positron emission tomography. Mol Psychiatry. 1998;3(2):156–61.

    Article  CAS  PubMed  Google Scholar 

  22. Ma JZ, Beuten J, Payne TJ, Dupont RT, Elston RC, Li MD. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum Mol Genet. 2005;14(12):1691–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wang D, Ma JZ, Li MD. Mapping and verification of susceptibility loci for smoking quantity using permutation linkage analysis. Pharmacogenomics J. 2005;5(3):166–72.

    Article  PubMed  Google Scholar 

  24. Boulton AA. Letter: amines and theories in psychiatry. Lancet. 1974;2(7871):52–3.

    Article  CAS  PubMed  Google Scholar 

  25. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA. 2001;98(16):8966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol. 2001;60(6):1181–8.

    Article  CAS  PubMed  Google Scholar 

  27. Chiellini G, Erba P, Carnicelli V, Manfredi C, Frascarelli S, Ghelardoni S, et al. Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: relationship with trace amine-associated receptors. J Endocrinol. 2012;213(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  28. Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, et al. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry. 2013;18(5):543–56.

    Article  CAS  PubMed  Google Scholar 

  29. Adriaenssens A, Lam BY, Billing L, Skeffington K, Sewing S, Reimann F, et al. A transcriptome-led exploration of molecular mechanisms regulating somatostatin-producing D-cells in the gastric epithelium. Endocrinology. 2015;156(11):3924–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ito J, Ito M, Nambu H, Fujikawa T, Tanaka K, Iwaasa H, et al. Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6J mice. Cell Tissue Res. 2009;338(2):257–69.

    Article  CAS  PubMed  Google Scholar 

  31. Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R. Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol. 2008;295(2):G260–72.

    Article  CAS  PubMed  Google Scholar 

  32. Raab S, Wang H, Uhles S, Cole N, Alvarez-Sanchez R, Kunnecke B, et al. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists. Mol Metab. 2016;5(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  33. Regard JB, Kataoka H, Cano DA, Camerer E, Yin L, Zheng YW, et al. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J Clin Invest. 2007;117(12):4034–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem. 2011;116(2):164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grandy DK, Miller GM, Li JX. “TAARgeting Addiction”–the alamo bears witness to another revolution: an overview of the plenary symposium of the 2015 behavior, biology and chemistry conference. Drug Alcohol Depend. 2016;1(159):9–16.

    Article  Google Scholar 

  36. Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, et al. Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther. 2008;324(3):948–56.

    Article  CAS  PubMed  Google Scholar 

  37. Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, et al. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol. 2011;80(3):416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci USA. 2011;108(20):8485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Espinoza S, Lignani G, Caffino L, Maggi S, Sukhanov I, Leo D, et al. TAAR1 modulates cortical glutamate NMDA receptor function. Neuropsychopharmacology. 2015;40(9):2217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Revel FG, Moreau JL, Gainetdinov RR, Ferragud A, Velazquez-Sanchez C, Sotnikova TD, et al. Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry. 2012;72(11):934–42.

    Article  CAS  PubMed  Google Scholar 

  41. Mantas I, Vallianatou T, Yang Y, Shariatgorji M, Kalomoiri M, Fridjonsdottir E, et al. TAAR1-dependent and -independent actions of tyramine in interaction with glutamate underlie central effects of monoamine oxidase inhibition. Biol Psychiatry. 2021;90(1):16–27.

    Article  CAS  PubMed  Google Scholar 

  42. Gautron S. Trace amine-associated receptor 1 regulates central effects of monoamine oxidase inhibitors: involvement of tyramine and glutamate. Biol Psychiatry. 2021;90(1):2–3.

    Article  CAS  PubMed  Google Scholar 

  43. Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P, et al. The Trace Amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia. Genes Brain Behav. 2007;6(7):628–39.

    Article  CAS  PubMed  Google Scholar 

  44. Revel FG, Meyer CA, Bradaia A, Jeanneau K, Calcagno E, Andre CB, et al. Brain-specific overexpression of trace amine-associated receptor 1 alters monoaminergic neurotransmission and decreases sensitivity to amphetamine. Neuropsychopharmacology. 2012;37(12):2580–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garris PA, Ciolkowski EL, Pastore P, Wightman RM. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci. 1994;14(10):6084–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uhl GR, Johnson PS. Neurotransmitter transporters: three important gene families for neuronal function. J Exp Biol. 1994;196:229–36.

    Article  CAS  PubMed  Google Scholar 

  47. Azzaro AJ, Rutledge CO. Selectivity of release of norepinephrine, dopamine and 5-hydroxytryptamine by amphetamine in various regions of rat brain. Biochem Pharmacol. 1973;22(22):2801–13.

    Article  CAS  PubMed  Google Scholar 

  48. Fischer JF, Cho AK. Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther. 1979;208(2):203–9.

    CAS  PubMed  Google Scholar 

  49. Xie Z, Westmoreland SV, Bahn ME, Chen GL, Yang H, Vallender EJ, et al. Rhesus monkey trace amine-associated receptor 1 signaling: enhancement by monoamine transporters and attenuation by the D2 autoreceptor in vitro. J Pharmacol Exp Ther. 2007;321(1):116–27.

    Article  CAS  PubMed  Google Scholar 

  50. Sen K, Nandi P, Mishra AK. Transformation of nutritionally deficient mutants of Aspergillus niger. J Gen Microbiol. 1969;55(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  51. Xie Z, Miller GM. Trace amine-associated receptor 1 is a modulator of the dopamine transporter. J Pharmacol Exp Ther. 2007;321(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  52. Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR. Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors. Neuropharmacology. 2014;81:283–91.

    Article  CAS  PubMed  Google Scholar 

  53. Leo D, Sukhanov I, Zoratto F, Illiano P, Caffino L, Sanna F, et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats. J Neurosci. 2018;38(8):1959–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asif-Malik A, Hoener MC, Canales JJ. Interaction between the trace amine-associated receptor 1 and the dopamine d2 receptor controls cocaine’s neurochemical actions. Sci Rep. 2017;7(1):13901.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther. 2017;180:161–80.

    Article  CAS  PubMed  Google Scholar 

  56. Liu JF, Li JX. TAAR1 in addiction: looking beyond the tip of the iceberg. Front Pharmacol. 2018;9:279.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Achat-Mendes C, Lynch LJ, Sullivan KA, Vallender EJ, Miller GM. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol Biochem Behav. 2012;101(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  58. Sukhanov I, Caffino L, Efimova EV, Espinoza S, Sotnikova TD, Cervo L, et al. Increased context-dependent conditioning to amphetamine in mice lacking TAAR1. Pharmacol Res. 2016;103:206–14.

    Article  CAS  PubMed  Google Scholar 

  59. Harkness JH, Shi X, Janowsky A, Phillips TJ. Trace amine-associated receptor 1 regulation of methamphetamine intake and related traits. Neuropsychopharmacology. 2015;40(9):2175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miner NB, Elmore JS, Baumann MH, Phillips TJ, Janowsky A. Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity. Neurotoxicology. 2017;63:57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reed C, Baba H, Zhu Z, Erk J, Mootz JR, Varra NM, et al. A spontaneous mutation in Taar1 impacts methamphetamine-related traits exclusively in DBA/2 mice from a single vendor. Front Pharmacol. 2017;8:993.

    Article  PubMed  Google Scholar 

  62. Loftis JM, Lasarev M, Shi X, Lapidus J, Janowsky A, Hoffman WF, et al. Trace amine-associated receptor gene polymorphism increases drug craving in individuals with methamphetamine dependence. PLoS ONE. 2019;14(10):e0220270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stafford AM, Reed C, Baba H, Walter NA, Mootz JR, Williams RW, et al. Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1. Elife. 2019;9:8.

    Google Scholar 

  64. Reed C, Stafford AM, Mootz JRK, Baba H, Erk J, Phillips TJ. A breeding strategy to identify modifiers of high genetic risk for methamphetamine intake. Genes Brain Behav. 2021;20(2):e12667.

    Article  CAS  PubMed  Google Scholar 

  65. Liu JF, Seaman R Jr, Siemian JN, Bhimani R, Johnson B, Zhang Y, et al. Role of trace amine-associated receptor 1 in nicotine’s behavioral and neurochemical effects. Neuropsychopharmacology. 2018;43(12):2435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sukhanov I, Dorofeikova M, Dolgorukova A, Dorotenko A, Gainetdinov RR. Trace amine-associated receptor 1 modulates the locomotor and sensitization effects of nicotine. Front Pharmacol. 2018;9:329.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wu R, Liu J, Johnson B, Huang Y, Zhang Y, Li JX. Activation of trace amine-associated receptor 1 attenuates nicotine withdrawal-related effects. Addict Biol. 2021;25:e13075.

    Google Scholar 

  68. Liu J, Johnson B, Wu R, Seaman R Jr, Vu J, Zhu Q, et al. TAAR1 agonists attenuate extended-access cocaine self-administration and yohimbine-induced reinstatement of cocaine-seeking. Br J Pharmacol. 2020;177(15):3403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pei Y, Lee J, Leo D, Gainetdinov RR, Hoener MC, Canales JJ. Activation of the trace amine-associated receptor 1 prevents relapse to cocaine seeking. Neuropsychopharmacology. 2014;39(10):2299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu J, Seaman R Jr, Johnson B, Wu R, Vu J, Tian J, et al. Activation of trace amine-associated receptor 1 selectively attenuates the reinforcing effects of morphine. Br J Pharmacol. 2021;178(4):933–45.

    Article  CAS  PubMed  Google Scholar 

  71. Wu R, Liu J, Wang K, Huang Y, Zhang Y, Li JX. Effects of a trace amine-associated receptor 1 agonist RO 5263397 on ethanol-induced behavioral sensitization. Behav Brain Res. 2020;390:112641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu JF, Thorn DA, Zhang Y, Li JX. Effects of trace amine-associated receptor 1 agonists on the expression, reconsolidation, and extinction of cocaine reward memory. Int J Neuropsychopharmacol. 2016;19(7).

  73. Liu JF, Siemian JN, Seaman R Jr, Zhang Y, Li JX. Role of TAAR1 within the subregions of the mesocorticolimbic dopaminergic system in cocaine-seeking behavior. J Neurosci. 2017;37(4):882–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pei Y, Mortas P, Hoener MC, Canales JJ. Selective activation of the trace amine-associated receptor 1 decreases cocaine’s reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds. Prog Neuropsychopharmacol Biol Psychiatry. 2015;3(63):70–5.

    Article  Google Scholar 

  75. Berg KA, Clarke WP. Making sense of pharmacology: inverse agonism and functional selectivity. Int J Neuropsychopharmacol. 2018;21(10):962–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jing L, Zhang Y, Li JX. Effects of the trace amine associated receptor 1 agonist RO5263397 on abuse-related behavioral indices of methamphetamine in rats. Int J Neuropsychopharmacol. 2014;18(4).

  77. Pei Y, Asif-Malik A, Hoener M, Canales JJ. A partial trace amine-associated receptor 1 agonist exhibits properties consistent with a methamphetamine substitution treatment. Addict Biol. 2017;22(5):1246–56.

    Article  CAS  PubMed  Google Scholar 

  78. Xue Z, Siemian JN, Johnson BN, Zhang Y, Li JX. Methamphetamine-induced impulsivity during chronic methamphetamine treatment in rats: Effects of the TAAR 1 agonist RO5263397. Neuropharmacology. 2018;129:36–46.

    Article  CAS  PubMed  Google Scholar 

  79. Thorn DA, Jing L, Qiu Y, Gancarz-Kausch AM, Galuska CM, Dietz DM, et al. Effects of the trace amine-associated receptor 1 agonist RO5263397 on abuse-related effects of cocaine in rats. Neuropsychopharmacology. 2014;39(10):2309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thorn DA, Zhang C, Zhang Y, Li JX. The trace amine associated receptor 1 agonist RO5263397 attenuates the induction of cocaine behavioral sensitization in rats. Neurosci Lett. 2014;30(566):67–71.

    Article  Google Scholar 

  81. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, et al. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci USA. 2009;106(47):20081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Koblan KS, Kent J, Hopkins SC, Krystal JH, Cheng H, Goldman R, et al. A non-D2-receptor-binding drug for the treatment of schizophrenia. N Engl J Med. 2020;382(16):1497–506.

    Article  CAS  PubMed  Google Scholar 

  83. Fowler S, Kletzl H, Finel M, Manevski N, Schmid P, Tuerck D, et al. A UGT2B10 splicing polymorphism common in african populations may greatly increase drug exposure. J Pharmacol Exp Ther. 2015;352(2):358–67.

    Article  PubMed  Google Scholar 

  84. Tonelli M, Cichero E. Trace amine associated receptor 1 (TAAR1) modulators: a patent review (2010-present). Expert Opin Ther Pat. 2020;30(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  85. Rutigliano G, Accorroni A, Zucchi R. The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol. 2017;8:987.

    Article  PubMed  Google Scholar 

  86. Guariento S, Tonelli M, Espinoza S, Gerasimov AS, Gainetdinov RR, Cichero E. Rational design, chemical synthesis and biological evaluation of novel biguanides exploring species-specificity responsiveness of TAAR1 agonists. Eur J Med Chem. 2018;25(146):171–84.

    Article  Google Scholar 

  87. Francesconi V, Cichero E, Kanov EV, Laurini E, Pricl S, Gainetdinov RR, et al. Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human TAAR1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals (Basel). 2020;13(11).

Download references

Acknowledgements

This work was supported by the National Institutes of Health National Institute on Drug Abuse (Grant Number R01DA047967 to J-X.L.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank our colleague Kristen Woodhouse for proofreading this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Xu Li.

Ethics declarations

Funding

This work was supported by the National Institutes of Health National Institute on Drug Abuse (Grant number R01DA047967 to J-X.L.).

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

RW and J-XL planned and prepared the manuscript. Both authors agreed on the finalized version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Li, JX. Potential of Ligands for Trace Amine-Associated Receptor 1 (TAAR1) in the Management of Substance Use Disorders. CNS Drugs 35, 1239–1248 (2021). https://doi.org/10.1007/s40263-021-00871-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-021-00871-4

Navigation