Skip to main content
Log in

Sphingosine 1-Phosphate Receptor Modulators for Multiple Sclerosis

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Fingolimod (Gilenya) received regulatory approval from the US FDA in 2010 as the first-in-class sphingosine 1-phosphate (S1P) receptor (S1PR) modulator and was the first oral disease-modifying therapy (DMT) used for the treatment of the relapsing forms of multiple sclerosis (MS). Development of this new class of therapeutic compounds has continued to be a pharmacological goal of high interest in clinical trials for treatment of various autoimmune disorders, including MS. S1P is a physiologic signaling molecule that acts as a ligand for a group of cell surface receptors. S1PRs are expressed on various body tissues and regulate diverse physiological and pathological cellular responses involved in innate and adaptive immune, cardiovascular, and neurological functions. Subtype 1 of the S1PR (S1PR1) is expressed on the cell surface of lymphocytes, which are well known for their major role in MS pathogenesis and play an important regulatory role in the egress of lymphocytes from lymphoid organs to the lymphatic circulation. Thus, S1PR1-directed pharmacological interventions aim to modulate its role in immune cell trafficking through sequestration of autoreactive lymphocytes in the lymphoid organs to reduce their recirculation and subsequent infiltration into the central nervous system. Indeed, receptor subtype selectivity for S1PR1 is theoretically favored to minimize safety concerns related to interaction with other S1PR subtypes. Improved understanding of fingolimod’s mechanism of action has provided strategies for the development of the more selective second-generation S1PR modulators. This selectivity serves to reduce the most important safety concern regarding cardiac-related side effects, such as bradycardia, which requires prolonged first-dose monitoring. It has led to the generation of smaller molecules with shorter half-lives, improved onset of action with no requirement for phosphorylation for activation, and preserved efficacy. The shorter half-lives of the second-generation agents allow for more rapid reversal of their pharmacological effects following treatment discontinuation. This may be beneficial in addressing further treatment-related complications in case of adverse events, managing serious or opportunistic infections such as progressive multifocal leukoencephalopathy, and eliminating the drug in pregnancies. In March 2019, a breakthrough in MS treatment was achieved with the FDA approval for the second S1PR modulator, siponimod (Mayzent), for both active secondary progressive MS and relapsing–remitting MS. This was the first oral DMT specifically approved for active forms of secondary progressive MS. Furthermore, ozanimod received FDA approval in March 2020 for treatment of relapsing forms of MS, followed by subsequent approvals from Health Canada and the European Commission. Other second-generation selective S1PR modulators that have been tested for MS, with statistically significant data from phase II and phase III clinical studies, include ponesimod (ACT-128800), ceralifimod (ONO-4641), and amiselimod (MT-1303). This review covers the available data about the mechanisms of action, pharmacodynamics and kinetics, efficacy, safety, and tolerability of the various S1PR modulators for patients with relapsing–remitting, secondary progressive, and, for fingolimod, primary progressive MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hla T, Brinkmann V. Sphingosine 1-phosphate (S1P): physiology and the effects of S1P receptor modulation. Neurology. 2011;76(8 Suppl 3):S3–8. https://doi.org/10.1212/WNL.0b013e31820d5ec1.

    Article  CAS  PubMed  Google Scholar 

  2. Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther. 2007;115(1):84–105. https://doi.org/10.1016/j.pharmthera.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  3. Pappu R, Schwab SR, Cornelissen I, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316(5822):295–8. https://doi.org/10.1126/science.1139221.

    Article  CAS  PubMed  Google Scholar 

  4. Venkataraman K, Lee YM, Michaud J, et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008;102(6):669–76. https://doi.org/10.1161/CIRCRESAHA.107.165845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant. 2004;4(7):1019–25. https://doi.org/10.1111/j.1600-6143.2004.00476.x.

    Article  CAS  PubMed  Google Scholar 

  6. Payne SG, Milstien S, Spiegel S. Sphingosine-1-phosphate: dual messenger functions. FEBS Lett. 2002;531(1):54–7. https://doi.org/10.1016/s0014-5793(02)03480-4.

    Article  CAS  PubMed  Google Scholar 

  7. Herr DR, Chun J. Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Curr Drug Targets. 2007;8(1):155–67.

    Article  CAS  Google Scholar 

  8. Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33(2):91–101. https://doi.org/10.1097/WNF.0b013e3181cbf825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pebay A, Toutant M, Premont J, et al. Sphingosine-1-phosphate induces proliferation of astrocytes: regulation by intracellular signalling cascades. Eur J Neurosci. 2001;13(12):2067–76.

    Article  Google Scholar 

  10. Chae SS, Proia RL, Hla T. Constitutive expression of the S1P1 receptor in adult tissues. Prostaglandins Other Lipid Mediat. 2004;73(1–2):141–50.

    Article  CAS  Google Scholar 

  11. Grigorova IL, Panteleev M, Cyster JG. Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc Natl Acad Sci USA. 2010;107(47):20447–52. https://doi.org/10.1073/pnas.1009968107.

    Article  PubMed  Google Scholar 

  12. Matloubian M, Lo CG, Cinamon G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427(6972):355–60. https://doi.org/10.1038/nature02284.

    Article  CAS  PubMed  Google Scholar 

  13. Sallusto F, Mackay CR. Chemoattractants and their receptors in homeostasis and inflammation. Curr Opin Immunol. 2004;16(6):724–31. https://doi.org/10.1016/j.coi.2004.09.012.

    Article  CAS  PubMed  Google Scholar 

  14. Marciniak A, Camp SM, Garcia JGN, et al. An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett. 2018;28(23–24):3585–91. https://doi.org/10.1016/j.bmcl.2018.10.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pinschewer DD, Brinkmann V, Merkler D. Impact of sphingosine 1-phosphate modulation on immune outcomes. Neurology. 2011;76(8 Suppl 3):S15–9. https://doi.org/10.1212/WNL.0b013e31820d9596.

    Article  CAS  PubMed  Google Scholar 

  16. Brinkmann V, Billich A, Baumruker T, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010;9(11):883–97. https://doi.org/10.1038/nrd3248.

    Article  CAS  PubMed  Google Scholar 

  17. Mehling M, Brinkmann V, Antel J, et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology. 2008;71(16):1261–7. https://doi.org/10.1212/01.wnl.0000327609.57688.ea.

    Article  CAS  PubMed  Google Scholar 

  18. Kivisakk P, Mahad DJ, Callahan MK, et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol. 2004;55(5):627–38. https://doi.org/10.1002/ana.20049.

    Article  CAS  PubMed  Google Scholar 

  19. Mehling M, Lindberg R, Raulf F, et al. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology. 2010;75(5):403–10. https://doi.org/10.1212/WNL.0b013e3181ebdd64.

    Article  CAS  PubMed  Google Scholar 

  20. Mazurais D, Robert P, Gout B, et al. Cell type-specific localization of human cardiac S1P receptors. J Histochem Cytochem. 2002;50(5):661–70. https://doi.org/10.1177/002215540205000507.

    Article  CAS  PubMed  Google Scholar 

  21. Forrest M, Sun SY, Hajdu R, et al. Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. J Pharmacol Exp Ther. 2004;309(2):758–68. https://doi.org/10.1124/jpet.103.062828.

    Article  CAS  PubMed  Google Scholar 

  22. Koyrakh L, Roman MI, Brinkmann V, et al. The heart rate decrease caused by acute FTY720 administration is mediated by the G protein-gated potassium channel I. Am J Transplant. 2005;5(3):529–36. https://doi.org/10.1111/j.1600-6143.2005.00754.x.

    Article  CAS  PubMed  Google Scholar 

  23. Camm J, Hla T, Bakshi R, et al. Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am Heart J. 2014;168(5):632–44. https://doi.org/10.1016/j.ahj.2014.06.028.

    Article  CAS  PubMed  Google Scholar 

  24. Tolle M, Levkau B, Keul P, et al. Immunomodulator FTY720 Induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res. 2005;96(8):913–20. https://doi.org/10.1161/01.RES.0000164321.91452.00.

    Article  CAS  PubMed  Google Scholar 

  25. Morales-Ruiz M, Lee MJ, Zollner S, et al. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem. 2001;276(22):19672–7. https://doi.org/10.1074/jbc.M009993200.

    Article  CAS  PubMed  Google Scholar 

  26. Graeler M, Goetzl EJ. Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. FASEB J. (2002);16(14):1874–8. https://doi.org/10.1096/fj.02-0548com.

    Article  CAS  PubMed  Google Scholar 

  27. Cugati S, Chen CS, Lake S, et al. Fingolimod and macular edema: pathophysiology, diagnosis, and management. Neurol Clin Pract. 2014;4(5):402–9. https://doi.org/10.1212/CPJ.0000000000000027.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jaillard C, Harrison S, Stankoff B, et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci. 2005;25(6):1459–69. https://doi.org/10.1523/JNEUROSCI.4645-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Foster CA, Howard LM, Schweitzer A, et al. Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther. 2007;323(2):469–75. https://doi.org/10.1124/jpet.107.127183.

    Article  CAS  PubMed  Google Scholar 

  30. Balatoni B, Storch MK, Swoboda EM, et al. FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis. Brain Res Bull. 2007;74(5):307–16. https://doi.org/10.1016/j.brainresbull.2007.06.023.

    Article  CAS  PubMed  Google Scholar 

  31. Foster CA, Mechtcheriakova D, Storch MK, et al. FTY720 rescue therapy in the dark agouti rat model of experimental autoimmune encephalomyelitis: expression of central nervous system genes and reversal of blood-brain-barrier damage. Brain Pathol. 2009;19(2):254–66. https://doi.org/10.1111/j.1750-3639.2008.00182.x.

    Article  CAS  PubMed  Google Scholar 

  32. Wenlu L, Zhigang C, et al. The role of VE-cadherin in blood-brain bariier integretiy under central nervous system pathological conditions. Curr Neuropharmacol. 2018;16:1375–84. https://doi.org/10.2174/1570159x16666180222164809.

  33. Prager B, Spampinato S, et al. Sphingosine 1 phosphate signalling at the blood brain barrier. Trends in Molecular Medicine. 2015;21(6):354–63. https://doi.org/10.1016/j.molmed.2015.03.006. Accessed 30 Nov 2020.

  34. Rothhammer V, Kenison JE, Tjon E, et al. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc Natl Acad Sci USA. 2017;114(8):2012–7. https://doi.org/10.1073/pnas.1615413114.

    Article  CAS  PubMed  Google Scholar 

  35. Adachi K, Kohara T, Nakao N, et al. Design, synthesis, and structure-activity relationships of 2-substituted-2-amino-1,3-propanediols: discovery of a novel immunosuppressant, FTY720. Bioorg Med Chem Lett. 1995;5:853–6. https://doi.org/10.1016/0960-894X(95)00127-F.

    Article  CAS  Google Scholar 

  36. Suzuki S, Li XK, Enosawa S, et al. A new immunosuppressant, FTY720, induces bcl-2-associated apoptotic cell death in human lymphocytes. Immunology. 1996;89(4):518–23.

    Article  CAS  Google Scholar 

  37. Sung GH, Hywel-Jones NL, Sung JM, et al. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol. 2007;57:5–59. https://doi.org/10.3114/sim.2007.57.01.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chun J, Brinkmann V. A mechanistically novel, first oral therapy for multiple sclerosis: the development of fingolimod (FTY720, Gilenya). Discov Med. 2011;12(64):213–28.

    PubMed  PubMed Central  Google Scholar 

  39. Pinschewer DD, Ochsenbein AF, Odermatt B, et al. FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J Immunol. 2000;164(11):5761–70. https://doi.org/10.4049/jimmunol.164.11.5761.

    Article  CAS  PubMed  Google Scholar 

  40. Paugh SW, Payne SG, Barbour SE, et al. The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett. 2003;554(1–2):189–93. https://doi.org/10.1016/s0014-5793(03)01168-2.

    Article  CAS  PubMed  Google Scholar 

  41. Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401. https://doi.org/10.1056/NEJMoa0909494.

    Article  CAS  PubMed  Google Scholar 

  42. Miron VE, Jung CG, Kim HJ, et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol. 2008;63(1):61–71. https://doi.org/10.1002/ana.21227.

    Article  CAS  PubMed  Google Scholar 

  43. Lucaciu A, Brunkhorst R, et al. The S1P-S1PR axis in neurological disorders-Insights in the current and future therapeutic perspectives. Cells. 2020;9(6)1515(1–37). https://doi.org/10.3390/cells9061515. Accessed 30 Nov 2020.

  44. Cohan S, Lucassen E, et al. Sphingosine-1-phosphate: its pharmacological regulation and the treatment of multiple sclerosis: a review article. Biomedicines. 2020;8(7):227. https://doi.org/10.3390/biomedicines8070227. Accessed 30 Nov 2020.

  45. Coelho RP, Payne SG, Bittman R, et al. The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther. 2007;323(2):626–35. https://doi.org/10.1124/jpet.107.123927.

    Article  CAS  PubMed  Google Scholar 

  46. Mehling M, Johnson TA, Antel J, et al. Clinical immunology of the sphingosine 1-phosphate receptor modulator fingolimod (FTY720) in multiple sclerosis. Neurology. 2011;76(8 Suppl 3):S20–7. https://doi.org/10.1212/WNL.0b013e31820db341.

    Article  CAS  PubMed  Google Scholar 

  47. David OJ, Kovarik JM, Schmouder RL. Clinical pharmacokinetics of fingolimod. Clin Pharmacokinet. 2012;51(1):15–28. https://doi.org/10.2165/11596550-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  48. FDA. Highlights of prescribing information: Gilenya (2019). https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022527s008lbl.pdf. Accessed 30 Nov 2020.

  49. Kappos L, Radue EW, et al. A placebo controlled trial of oral fingolimod in relapsing remitting MS. N Engl J Med. 2010;362:387–401. 10.1056/NEJMoa0909494. Accessed 30 Nov 2020.

  50. De Stefano N, Silva G. D, et al. Effect of fingolimod on brain volume loss in patients with multiple sclerosis. CNS Drugs. 2017;31:289–305. https://doi.org/10.1007/s40263-017-0415-2. Accessed 30 Nov 2020.

  51. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15. https://doi.org/10.1056/NEJMoa0907839.

    Article  CAS  PubMed  Google Scholar 

  52. Calabresi PA, Radue EW, Goodin D, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–56. https://doi.org/10.1016/S1474-4422(14)70049-3(Epub 2014 Mar 28).

    Article  CAS  PubMed  Google Scholar 

  53. Kappos L, Radue EW, O’Connor P, et al. Long-term efficacy and safety of fingolimod (FTY720) in relapsing-remitting multiple sclerosis (RRMS): results from the extension of the phase III FREEDOMS study (S41.004). Neurology. 2012;78(1 Supplement):S41.004–S41.004. https://doi.org/10.1212/wnl.78.1.

  54. Kappos L, O’Connor P, Radue EW, et al. Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology. 2015;84(15):1582–91. https://doi.org/10.1212/WNL.0000000000001462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khatri B, Barkhof F, Comi G, et al. Comparison of fingolimod with interferon beta-1a in relapsing-remitting multiple sclerosis: a randomised extension of the TRANSFORMS study. Lancet Neurol. 2011;10(6):520–9. https://doi.org/10.1016/S1474-4422(11)70099-0.

    Article  CAS  PubMed  Google Scholar 

  56. Cohen JA, Khatri B, Barkhof F, et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry. 2016;87(5):468–75. https://doi.org/10.1136/jnnp-2015-310597.

  57. Sorensen PS. New management algorithms in multiple sclerosis. Curr Opin Neurol. 2014;27(3):246–59. https://doi.org/10.1097/WCO.0000000000000096.

    Article  PubMed  Google Scholar 

  58. Tenenbaum N, Cohen J, Bhatt A, et al. A long-term experience with fingolimod: evaluation of safety, disability, and treatment satisfaction in patients with relapsing–remitting multiple sclerosis (P6.377). Neurology. 2018;90 (15 Supplement).

  59. Cohen A. J, Tenenbaum N, et al. Extended treatment with fingolimod for relapsing remitting multiple sclerosis: the 14 year LONGTERMS study results. Therap Adv Neurol Disord. 2019;12:1–16. https://doi.org/10.1177/1756286419878324.

  60. Lublin F, Miller DH, Freedman MS, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10023):1075–84. https://doi.org/10.1016/S0140-6736(15)01314-8.

    Article  CAS  PubMed  Google Scholar 

  61. Chitnis T, Arnold DL, Banwell B, et al. Trial of fingolimod versus interferon beta-1a in pediatric multiple sclerosis. N Engl J Med. 2018;379:1017–1027. https://doi.org/10.1056/nejmoa1800149.

  62. FDA News Release. FDA expands approval of Gilenya to treat multiple sclerosis in pediatric patients. (2018). https://www.fda.gov/news-events/press-announcements/fda-expands-approval-gilenya-treat-multiple-sclerosis-pediatric-patients. Accessed 30 July 2019.

  63. DiMarco JP, O’Connor P, Cohen JA, et al. First-dose effects of fingolimod: pooled safety data from three phase 3 studies. Mult Scler Relat Disord. 2014;3(5):629–38. https://doi.org/10.1016/j.msard.2014.05.005.

    Article  PubMed  Google Scholar 

  64. Laroni A, Brogi D, Morra VB, et al. Safety of the first dose of fingolimod for multiple sclerosis: results of an open-label clinical trial. BMC Neurol. 2014;14:65. https://doi.org/10.1186/1471-2377-14-65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Faber H, Fischer HJ, Weber F. Prolonged and symptomatic bradycardia following a single dose of fingolimod. Multiple Scler. 2013;19(1):126–8. https://doi.org/10.1177/1352458512447596.

    Article  Google Scholar 

  66. Espinosa PS, Berger JR. Delayed fingolimod-associated asystole. Multiple Scler. 2011;17(11):1387–9. https://doi.org/10.1177/1352458511410344.

    Article  CAS  Google Scholar 

  67. FDA Drug Safety Communication: Safety review of a reported death after the first dose of Multiple Sclerosis drug Gilenya (fingolimod). (2011). https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-safety-review-reported-death-after-first-dose-multiple-sclerosis-drug. Accessed 30 July 2019.

  68. European Medicine Agency. Questions and answers on the review of Gilenya. (2012). Available at https://www.ema.europa.eu/en/documents/medicine-qa/questions-answers-review-gilenya-outcome-procedure-under-article-20-regulation-ec-no-726/2004_en.pdf. Accessed 30 July 2019.

  69. Lindsey JW, Haden-Pinneri K, Memon NB, et al. Sudden unexpected death on fingolimod. Multiple Scler. 2012;18(10):1507–8. https://doi.org/10.1177/1352458512438456.

    Article  CAS  Google Scholar 

  70. Francis G, Kappos L, O’Connor P, et al. Temporal profile of lymphocyte counts and relationship with infections with fingolimod therapy. Multiple Scler. 2014;20(4):471–80. https://doi.org/10.1177/1352458513500551.

    Article  CAS  Google Scholar 

  71. Ricklin ME, Lorscheider J, Waschbisch A, et al. T-cell response against varicella-zoster virus in fingolimod-treated MS patients. Neurology. 2013;81(2):174–81. https://doi.org/10.1212/WNL.0b013e31829a3311.

    Article  CAS  PubMed  Google Scholar 

  72. Fine AJ, Sorbello A, Kortepeter C, et al. Central nervous system herpes simplex and varicella zoster virus infections in natalizumab-treated patients. Clin Infect Dis. 2013;57(6):849–52. https://doi.org/10.1093/cid/cit376.

    Article  CAS  PubMed  Google Scholar 

  73. Arvin AM, Wolinsky JS, Kappos L, et al. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol. 2015;72(1):31–9. https://doi.org/10.1001/jamaneurol.2014.3065.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schwab N, Schneider-Hohendorf T, Melzer N, et al. Natalizumab-associated PML: challenges with incidence, resulting risk, and risk stratification. Neurology. 2017;88(12):1197–205. https://doi.org/10.1212/WNL.0000000000003739.

    Article  CAS  PubMed  Google Scholar 

  75. FDA Drug Safety Communication: FDA investigating rare brain infection in patient taking Gilenya (fingolimod). (2013). http://wayback.archive-it.org/7993/20170112031628/http://www.fda.gov/Drugs/DrugSafety/ucm366529.htm. Accessed 30 July 2019.

  76. FDA Drug Safety Communication: FDA warns about cases of rare brain infection with MS drug Gilenya (fingolimod) in two patients with no prior exposure to immunosuppressant drugs. 2015. https://www.fda.gov/drugs/drugsafety/ucm456919.htm. Accessed 30 July 2019.

  77. Berger JR, Cree BA, Greenberg B, et al. Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology. 2018;90(20):e1815–21. https://doi.org/10.1212/WNL.0000000000005529.

    Article  PubMed  PubMed Central  Google Scholar 

  78. McGuigan C, Craner M, et al. Stratification and monitoring of natalizumab associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry. 2015;87(2):117–125. Accessed 30 Nov 2020.

  79. Zarbin MA, Jampol LM, Jager RD, et al. Ophthalmic evaluations in clinical studies of fingolimod (FTY720) in multiple sclerosis. Ophthalmology. 2013;120(7):1432–9. https://doi.org/10.1016/j.ophtha.2012.12.040.

    Article  PubMed  Google Scholar 

  80. Jain N, Bhatti MT. Fingolimod-associated macular edema: incidence, detection, and management. Neurology. 2012;78(9):672–80. https://doi.org/10.1212/WNL.0b013e318248deea.

    Article  CAS  PubMed  Google Scholar 

  81. Karlsson G, Francis G, Koren G, et al. Pregnancy outcomes in the clinical development program of fingolimod in multiple sclerosis. Neurology. 2014;82(8):674–80. https://doi.org/10.1212/WNL.0000000000000137.

    Article  PubMed  PubMed Central  Google Scholar 

  82. FDA warns about severe worsening of multiple sclerosis after stopping the medicine Gilenya (fingolimod). 2018. https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-severe-worsening-multiple-sclerosis-after-stopping-medicine-gilenya-fingolimod#:~:text=FDA%20is%20warning%20that%20when,can%20result%20in%20permanent%20disability.

  83. Pan S, Gray NS, Gao W, et al. Discovery of BAF312 (siponimod), a potent and selective S1P receptor modulator. ACS Med Chem Lett. 2013;4(3):333–7. https://doi.org/10.1021/ml300396r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gergely P, Nuesslein-Hildesheim B, Guerini D, et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol. 2012;167(5):1035–47. https://doi.org/10.1111/j.1476-5381.2012.02061.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gentile A, Musella A, Bullitta S, et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflamm. 2016;13(1):207. https://doi.org/10.1186/s12974-016-0686-4.

    Article  CAS  Google Scholar 

  86. Behrangi N, Felix F, Kipp M. Mechanism of siponimod: anti-inflammatory and neuroprotective mode of action. Cells. 2019;8(1):24. https://doi.org/10.3390/cells8010024.

    Article  CAS  PubMed Central  Google Scholar 

  87. Novgorodov AS, El-Alwani M, Bielawski J, et al. Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J. 2007;21(7):1503–14. https://doi.org/10.1096/fj.06-7420com.

    Article  CAS  PubMed  Google Scholar 

  88. Novartis Pharmaceuticals Corporation. Mayzent product monograph. 2019. https://www.novartis.ca/sites/www.novartis.ca/files/mayzent_scrip_e.pdf. Accessed 30 July 2019.

  89. Selmaj K, Li DK, Hartung HP, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013;12(8):756–67. https://doi.org/10.1016/S1474-4422(13)70102-9.

    Article  CAS  PubMed  Google Scholar 

  90. Kappos L, Li DK, Stuve O, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 2016;73(9):1089–98. https://doi.org/10.1001/jamaneurol.2016.1451.

    Article  PubMed  Google Scholar 

  91. Kappos L, Bar-Or A, Cree BAC, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391(10127):1263–73. https://doi.org/10.1016/S0140-6736(18)30475-6.

    Article  CAS  Google Scholar 

  92. Novartis: Novartis receives FDA approval for Mayzent (siponimod), the first oral drug to treat secondary progressive MS with active disease. 2019. https://novartis.gcs-web.com/Novartis-receives-FDA-approval-for-Mayzent-siponimod-the-first-oral-drug-to-treat-secondary-progressive-MS-with-active-disease. Accessed 30 July 2019.

  93. Novartis: Novartis announces EU approval for Mayzent (Siponimod) for adult patients with secondary progressive multiple sclerosis and active disease. 2020. https://www.novartis.com/news/media-releases/novartis-announces-eu-approval-mayzent-siponimod-adult-patients-secondary-progressive-multiple-sclerosis-spms-active-disease. Accessed 30 Nov 2020.

  94. Novartis: Novartis receives Health Canada approval for MayzentTM (siponimod) to treat secondary progressive multiple sclerosis with active disease. 2020. https://www.novartis.ca/en/news/media-releases/novartis-receives-health-canada-approval-mayzenttm-siponimod-treat-secondary. Accessed 30 Nov 2020.

  95. Novartis Pharmaceuticals. 2019. Mayzent: Highlights of prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209884s000lbl.pdf. Accessed 15 Dec 2020.

  96. Scott F, Timony G, Brooks J, et al. Metabolites of RPC1063 contribute to in vivo efficacy. Neurology. 2013; 80(7 Supplement):P05.157.

  97. Scott FL, Clemons B, Brooks J, et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br J Pharmacol. 2016;173(11):1778–92. https://doi.org/10.1111/bph.13476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cohen JA, Comi G, Arnold DL, et al. Efficacy and safety of ozanimod in multiple sclerosis: dose-blinded extension of a randomized phase II study. Multiple Scler. 2018;1352458518789884. https://doi.org/10.1177/1352458518789884.

  99. Cohen JA, Arnold DL, Comi G, et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(4):373–81. https://doi.org/10.1016/S1474-4422(16)00018-1.

    Article  CAS  PubMed  Google Scholar 

  100. Koscielny V, Phase III. SUNBEAM and RADIANCE PART B trials for Ozanimod in relapsing multiple sclerosis demonstrate superiority versus interferon-β-1a (Avonex) in reducing annualized relapse rates and MRI brain lesions. Neurodegener Dis Manag. 2018;8(3):141–2. https://doi.org/10.2217/nmt-2018-0012.

    Article  PubMed  Google Scholar 

  101. Comi G, Arnold D, Cree B, et al. Ozanimod demonstrates efficacy and safety in a multicenter, randomized, double-blind, double-dummy, active-controlled phase 3 trial of relapsing multiple sclerosis (SUNBEAM). Neurology. 2018;90(15 Supplement):P3.396.

  102. FDA. Highlights of prescribing information: ZEPOSIA (2020). https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209899s000lbl.pdf. Accessed 30 Nov 2020.

  103. Celgene. Press Releases. US FDA and EMA accept applications for ozanimod for the treatment of relapsing forms of multiple sclerosis. 2019. https://s24.q4cdn.com/483522778/files/doc_news/2019/06/Press-Release-Ozanimod-MS-FDA-EMA-Filing-Acceptance_6.5.pdf. Accessed 30 July 2019.

  104. Lamb YN. Ozanimod: first approval. Drugs. 2020;80:841–848.

  105. Cision Canada. Health Canada approves ZEPOSIA, an oral treatment for relapsing remitting multiple sclerosis. 2020. https://www.newswire.ca/news-releases/health-canada-approves-zeposia-r-an-oral-treatment-for-relapsing-remitting-multiple-sclerosis-841561848.html#: ~ :text = Bristol%2DMyers%20Squibb&text = 7%2C%202020%20%2FCNW%2F%20%2D,the%20frequency%20of%20clinical%20exacerbations. Accessed 30 Nov 2020.

  106. Bristol Myers Squibb. Bristol Myers Squibb Receives European Commission Approval for zeposia (ozanimod) for the treatment of adult patients with relapsing remitting multiple sclerosis with active disease. 2020. https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Receives-European-Commission-Approval-for-Zeposia-ozanimod-for-the-Treatment-of-Adult-Patients-with-Relapsing-Remitting-Multiple-Sclerosis-with-Active-Disease/default.aspx. Accessed 30 Nov 2020.

  107. D’Ambrosio D, Freedman MS, Prinz J. Ponesimod, a selective S1P1 receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases. Ther Adv Chronic Dis. 2016;7(1):18–33. https://doi.org/10.1177/2040622315617354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Brossard P, Derendorf H, Xu J, et al. Pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator, in the first-in-human study. Br J Clin Pharmacol. 2013;76(6):888–96. https://doi.org/10.1111/bcp.12129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Olsson T, Boster A, Fernandez O, et al. Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J Neurol Neurosurg Psychiatry. 2014;85(11):1198–208. https://doi.org/10.1136/jnnp-2013-307282.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Freedman M, Boster A, Fernandez O, et al. Long-term efficacy, safety and tolerability of ponesimod in patients with relapsing–remitting multiple sclerosis (P01.156). Neurology. 2013;80 (7 Supplement).

  111. Havrdova E, Achiron A, Coyle P, et al. Efficacy and safety of 2 doses of ponesimod (10 and 20 mg o.d.): interim analysis of a phase II extension trial in relapsing-remitting multiple sclerosis (P3.398). Neurology. 2018;90(15 Supplement).

  112. ClinicalTrials.gov. Oral ponesimod versus teriflunomide in relapsing MUltiple Sclerosis (OPTIMUM). (2015). https://clinicaltrials.gov/ct2/show/NCT02425644. Accessed 30 July 2019.

  113. Johnson&Johnson. Janssen reports positive top-line Phase 3 results for ponesimod in adults with relapsing multiple sclerosis. 2019. https://www.jnj.com/janssen-reports-positive-top-line-phase-3-results-for-ponesimod-in-adults-with-relapsing-multiple-sclerosis. Accessed 30 July 2019.

  114. ClinicalTrials.gov. Clinical study to compare the efficacy and safety of ponesimod to placebo in subjects with active relapsing multiple sclerosis who are treated with dimethyl fumarate (tecfidera) (POINT). 2016. https://clinicaltrials.gov/ct2/show/NCT02907177. Accessed 30 Nov 2020.

  115. Janssen Press Release. Janssen Submits Ponesimod New Drug Application to the U.S. FDA for Treatment of Adults with Relapsing Multiple Sclerosis. 2020. https://www.janssen.com/janssen-submits-ponesimod-new-drug-application-us-fda-treatment-adults-relapsing-multiple-sclerosis. Accessed 30 Nov 2020.

  116. Kappos L, Burcklen M, Freedman MS, et al. Efficacy and safety of ponesimod compared to teriflunomide in patients with relapsing multiple sclerosis: results of the randomized, active-controlled, double-blind, parallel-group phase 3 OPTIMUM study. Findings from unpublished paper presented at ECTRIMS; Stockholm, Sweden; 2019 Sept 11–13. https://onlinelibrary.ectrims-congress.eu/ectrims/2019/stockholm/279416/ludwig.kappos.efficacy.and.safety.of.ponesimod.compared.to.teriflunomide.in.html.

  117. Komiya T, Sato K, Shioya H, et al. Efficacy and immunomodulatory actions of ONO-4641, a novel selective agonist for sphingosine 1-phosphate receptors 1 and 5, in preclinical models of multiple sclerosis. Clin Exp Immunol. 2013;171(1):54–62. https://doi.org/10.1111/j.1365-2249.2012.04669.x.

    Article  CAS  PubMed  Google Scholar 

  118. Krosser S, Wolna P, Fischer TZ, et al. Effect of ceralifimod (ONO-4641) on lymphocytes and cardiac function: randomized, double-blind, placebo-controlled trial with an open-label fingolimod arm. J Clin Pharmacol. 2015;55(9):1051–60. https://doi.org/10.1002/jcph.513.

    Article  CAS  PubMed  Google Scholar 

  119. Bar-Or A, Zipp A, Krzysztof S, et al. Effect of the sphingosine 1-phosphate receptor agonist ONO-4641 on circulating lymphocytes in patients with relapsing–remitting multiple sclerosis: results from the phase 2 DreaMS trial (P05.153) Neurology. 2013,80(7 Supplement).

  120. ClinicalTrials.gov. A study of the safety and efficacy of ONO-4641 in patients with relapsing-remitting multiple sclerosis (DreaMS). 2010. https://clinicaltrials.gov/ct2/show/NCT01081782. Accessed 30 July 2019.

  121. Chaudhry BZ, Cohen JA, Conway DS. Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics. 2017;14:859–73. https://doi.org/10.1007/s13311-017-0565-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. ClinicalTrials.gov. Phase 2 Extension Trial in Patients With Relapsing-Remitting Multiple Sclerosis (RRMS) (DreaMS). (2010). Available at https://clinicaltrials.gov/ct2/show/NCT01226745. Accessed 30 July 2019.

  123. Bar-Or A, Zipp F, Scaramozza, et al. Effect of ceralifimod (ONO-4641), a sphingosine-1-phosphate receptor-1 and -5 agonist, on magnetic resonance imaging outcomes in patients with multiple sclerosis: interim results from the extension of the DreaMS study (P3.161). Neurology. 2014;82(10 Supplement).

  124. Sugahara K, Maeda Y, Shimano K, et al. Amiselimod, a novel sphingosine 1-phosphate receptor-1 modulator, has potent therapeutic efficacy for autoimmune diseases, with low bradycardia risk. Br J Pharmacol. 2017;174(1):15–27. https://doi.org/10.1111/bph.13641.

    Article  CAS  PubMed  Google Scholar 

  125. Kappos L, Arnold DL, Bar-Or A, et al. Safety and efficacy of amiselimod in relapsing multiple sclerosis (MOMENTUM): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15(11):1148–59. https://doi.org/10.1016/S1474-4422(16)30192-2.

    Article  CAS  PubMed  Google Scholar 

  126. Kappos L, Arnold DL, Bar-Or A, et al. Two-year results from a phase 2 extension study of oral amiselimod in relapsing multiple sclerosis. Multiple Scler. 2018;24(12):1605–16. https://doi.org/10.1177/1352458517728343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshmi Roy.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflicts of interest

Mark S. Freedman has received research or educational grants and consultation fees from Sanofi-Genzyme Canada, Hoffmann-La Roche, and EMD Inc. (Canada), Actelion (Janssen/J&J), Alexion, Biogen Idec, Celgene (BMS), Merck Serono, Novartis, and Teva Canada Innovation; is a member of a company advisory board, board of directors, or other similar group for Actelion (Janssen/J&J), Alexion, Atara Biotherapeutics, Bayer Healthcare, Biogen Idec, Celgene (BMS), Clene Nanomedicine, GRI Bio, Hoffman-La Roche, Magenta Therapeutics, Merck Serono, MedDay, Novartis, Sanofi-Genzyme, and Teva Canada Innovation; and has participated in a company-sponsored speaker’s bureau for Sanofi-Genzyme and EMD Serono. Reshmi Roy and Alaa A. Alotaibi have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Author contributions

All authors contributed equally to the conception of this work, the interpretation of the literature, and the drafting of the manuscript. The original version of the article was written by Alaa A. Alotaibi and was further edited and expanded upon by Reshmi Roy, who submitted the final draft of the article. All versions were reviewed with Mark S. Freedman. All authors critically revised the review and approved the final manuscript for publication.

Additional information

Alaa A. Alotaibi is currently employed at King Abdulaziz University Hospital, Jeddah, Saudi Arabia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R., Alotaibi, A.A. & Freedman, M.S. Sphingosine 1-Phosphate Receptor Modulators for Multiple Sclerosis. CNS Drugs 35, 385–402 (2021). https://doi.org/10.1007/s40263-021-00798-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-021-00798-w

Navigation