Skip to main content
Log in

Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Neurological diseases share common neuroinflammatory and oxidative stress pathways. Both phenotypic and molecular changes in microglia, astrocytes, and neurons contribute to the progression of disease and present potential targets for disease modification. Src family kinases (SFKs) are present in both neurons and glial cells and are upregulated following neurological insults in both human and animal models. In neurons, SFKs interact with post-synaptic protein domains to mediate hyperexcitability and neurotoxicity. SFKs are upstream of signaling cascades that lead to the modulation of neurotransmitter receptors and the transcription of pro-inflammatory cytokines as well as producers of free radicals through the activation of glia. Inducible nitric oxide synthase (iNOS/NOS-II) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), the major mediators of reactive nitrogen/oxygen species (RNS/ROS) production in the brain, are also upregulated along with the pro-inflammatory cytokines following neurological insult and contribute to disease progression. Persistent neuronal hyperexcitability, RNS/ROS, and cytokines can exacerbate neurodegeneration, a common pathognomonic feature of the most prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and epilepsy. Using a wide variety of preclinical disease models, inhibitors of the SFK-iNOS-NOX2 signaling axis have been tested to cure or modify disease progression. In this review, we discuss the SFK–iNOS–NOX2 signaling pathway and their inhibitors as potential CNS targets for major neurological diseases.

Plain Language Summary

Nerve cell death, oxidative stress, and inflammation of the brain are the most common pathological processes of many neurological diseases. These processes are mediated through changes in glial cells, the supporting cells in the brain, via several molecular pathways. Some of these pathways are potential drug targets for the mitigation of brain pathology. In this review, we focus on pathways involving Src family kinases, inducible nitric oxide synthase and nicotinamide adenine dinucleotide phosphate oxidase, and their inhibitors, which are promising agents for modifying neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. https://doi.org/10.3389/fncel.2018.00072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang Y, Li X, Mao X. Editorial: linking neuroinflammation and glial phenotypic changes in neurological diseases. Front Cell Neurosci. 2019;13:542. https://doi.org/10.3389/fncel.2019.00542.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG. Ramos-Escobar N. neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019;10(SEP):1008. https://doi.org/10.3389/fphar.2019.01008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83. https://doi.org/10.1126/science.aag2590.

    Article  CAS  PubMed  Google Scholar 

  5. Gilhus NE, Deuschl G. Neuroinflammation—a common thread in neurological disorders. Nat Rev Neurol. 2019;15(8):429–30. https://doi.org/10.1038/s41582-019-0227-8.

    Article  PubMed  Google Scholar 

  6. Degan D, Ornello R, Tiseo C, Carolei A, Sacco S, Pistoia F. The role of inflammation in neurological disorders. Curr Pharm Des. 2018;24(14):1485–501. https://doi.org/10.2174/1381612824666180327170632.

    Article  CAS  PubMed  Google Scholar 

  7. Jäkel S, Dimou L. Glial cells and their function in the adult brain: A journey through the history of their ablation. Front Cell Neurosci. 2017. https://doi.org/10.3389/fncel.2017.00024.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018;12:488. https://doi.org/10.3389/fncel.2018.00488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7(JUN):124. https://doi.org/10.3389/fnagi.2015.00124.

    Article  Google Scholar 

  10. Block ML. Neuroinflammation: modulating mighty microglia. Nat Chem Biol. 2014;10(12):988–9. https://doi.org/10.1038/nchembio.1691.

    Article  CAS  PubMed  Google Scholar 

  11. Kaufman AC, Salazar SV, Haas LT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77(6):953–71. https://doi.org/10.1002/ana.24394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma S, Carlson S, Puttachary S, et al. Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiol Dis. 2018;110:102–21. https://doi.org/10.1016/j.nbd.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  13. Nygaard HB. Targeting Fyn Kinase in Alzheimer’s Disease. Biol Psychiatry. 2018;83(4):369–76. https://doi.org/10.1016/j.biopsych.2017.06.004.

    Article  CAS  PubMed  Google Scholar 

  14. Sanz-Blasco S, Bordone MP, Damianich A, et al. The kinase Fyn as a novel intermediate in l-DOPA-induced dyskinesia in Parkinson’s Disease. Mol Neurobiol. 2018;55(6):5125–36. https://doi.org/10.1007/s12035-017-0748-3.

    Article  CAS  PubMed  Google Scholar 

  15. Liu D, Zhang X, Hu B, Ander BP. Src family kinases in brain edema after acute brain injury. In: Acta Neurochirurgica, Supplementum, vol 121. Vienna: Verlag; 2016. pp. 185–90. https://doi.org/10.1007/978-3-319-18497-5_33.

  16. Liu DZ. Repurposing cancer drugs to treat neurological diseases—Src inhibitors as examples. Neural Regen Res. 2017;12(6):910–1. https://doi.org/10.4103/1673-5374.208569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Dyck CH, Nygaard HB, Chen K, et al. Effect of AZD0530 on cerebral metabolic decline in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2019;76(10):1219–29. https://doi.org/10.1001/jamaneurol.2019.2050.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Purcell AL, Carew TJ. Tyrosine kinases, synaptic plasticity and memory: insights from vertebrates and invertebrates. Trends Neurosci. 2003;26(11):625–30. https://doi.org/10.1016/j.tins.2003.09.005.

    Article  CAS  PubMed  Google Scholar 

  19. Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23(48 REV. ISS. 7):7906–9. https://doi.org/10.1038/sj.onc.1208160.

    Article  CAS  PubMed  Google Scholar 

  20. Panicker N, Saminathan H, Jin H, et al. Fyn kinase regulates microglial neuroinflammatory responses in cell culture and animal models of parkinson’s disease. J Neurosci. 2015;35(27):10058–77. https://doi.org/10.1523/JNEUROSCI.0302-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arias-Salvatierra D, Silbergeld EK, Acosta-Saavedra LC, Calderon-Aranda ES. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide. Cell Signal. 2011;23(2):425–35. https://doi.org/10.1016/j.cellsig.2010.10.017.

    Article  CAS  PubMed  Google Scholar 

  22. Dawson VL, Dawson TM. Nitric oxide neurotoxicity. J Chem Neuroanat. 1996;10:179–90. https://doi.org/10.1016/0891-0618(96)00148-2.

    Article  CAS  PubMed  Google Scholar 

  23. Boje KMK. Nitric oxide neurotoxicity in neurodegenerative diseases. Front Biosci. 2004;9:763–76. https://doi.org/10.2741/1268.

    Article  CAS  PubMed  Google Scholar 

  24. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature. 1993;364(6437):535–7. https://doi.org/10.1038/364535a0.

    Article  CAS  PubMed  Google Scholar 

  25. Drechsel DA, Patel M. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med. 2008;44(11):1873–86. https://doi.org/10.1016/j.freeradbiomed.2008.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7(MAR):45. https://doi.org/10.3389/fncel.2013.00045.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Perry VH, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience. 1985;15(2):313–26. https://doi.org/10.1016/0306-4522(85)90215-5.

    Article  CAS  PubMed  Google Scholar 

  28. Graeber MB. Changing face of microglia. Science. 2010;330(6005):783–8. https://doi.org/10.1126/science.1190929.

    Article  CAS  PubMed  Google Scholar 

  29. Lenz KM, Nelson LH. Microglia and beyond: Innate immune cells as regulators of brain development and behavioral function. Front Immunol. 2018;9(APR):698. https://doi.org/10.3389/fimmu.2018.00698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8. https://doi.org/10.1126/science.1202529.

    Article  CAS  PubMed  Google Scholar 

  31. Sierra A, Paolicelli RC, Kettenmann H. Cien Años de Microglía: milestones in a century of microglial research. Trends Neurosci. 2019;42(11):778–92. https://doi.org/10.1016/j.tins.2019.09.004.

    Article  CAS  PubMed  Google Scholar 

  32. Ehlers MR, Todd RM. Genesis and maintenance of attentional biases: the role of the locus coeruleus-noradrenaline system. Neural Plast. 2017;1(1):2–3. https://doi.org/10.1155/2017.

    Article  Google Scholar 

  33. Eyo UB, Wu LJ. Microglia: lifelong patrolling immune cells of the brain. Prog Neurobiol. 2019;179:101614. https://doi.org/10.1016/j.pneurobio.2019.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Engelhardt B. T cell migration into the central nervous system during health and disease: different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol. 2010;1(2):79–93. https://doi.org/10.1111/j.1759-1961.2010.009.x.

    Article  CAS  Google Scholar 

  35. da Fonseca ACC, Matias D, Garcia C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8(November):1–13. https://doi.org/10.3389/fncel.2014.00362.

    Article  Google Scholar 

  36. Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 2017;107:41–56. https://doi.org/10.1016/j.nbd.2016.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maiuolo J, Gliozzi M, Musolino V, et al. The “frail” brain blood barrier in neurodegenerative diseases: Role of early disruption of endothelial cell-to-cell connections. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19092693.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mendes NF, Pansani AP, Carmanhães ERF, et al. The blood-brain barrier breakdown during acute phase of the Pilocarpine model of epilepsy is dynamic and time-dependent. Front Neurol. 2019;10:382. https://doi.org/10.3389/fneur.2019.00382.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia. 2012;53:1–6. https://doi.org/10.1111/j.1528-1167.2012.03696.x.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci. 2005;25(40):9275–84. https://doi.org/10.1523/JNEUROSCI.2614-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosenberg GA. Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(7):1139–51. https://doi.org/10.1038/jcbfm.2011.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cabezas R, Ávila M, Gonzalez J, et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci. 2014. https://doi.org/10.3389/fncel.2014.00211.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. https://doi.org/10.1038/nrn1824.

    Article  CAS  PubMed  Google Scholar 

  44. Liu CY, Yang Y, Ju WN, Wang X, Zhang HL. Emerging roles of astrocytes in neuro-vascular unit and the tripartite synapse with emphasis on reactive gliosis in the context of Alzheimer’s disease. Front Cell Neurosci. 2018;12:193. https://doi.org/10.3389/fncel.2018.00193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev. 2018;98(1):239–389. https://doi.org/10.1152/physrev.00042.2016.

    Article  CAS  PubMed  Google Scholar 

  46. Olsen ML, Khakh BS, Skatchkov SN, Zhou M, Lee CJ, Rouach N. New insights on astrocyte ion channels: critical for homeostasis and neuron-glia signaling. J Neurosci. 2015;35(41):13827–35. https://doi.org/10.1523/JNEUROSCI.2603-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prebil M, Jensen J, Zorec R, Kreft M. Astrocytes and energy metabolism. Arch Physiol Biochem. 2011;117(2):64–9. https://doi.org/10.3109/13813455.2010.539616.

    Article  CAS  PubMed  Google Scholar 

  48. Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29(8):357–65. https://doi.org/10.1016/j.it.2008.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Phatnani H, Maniatis T. Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol. 2015;7(6):1–18. https://doi.org/10.1101/cshperspect.a020628.

    Article  Google Scholar 

  50. Almad A, Maragakis NJ. A stocked toolbox for understanding the role of astrocytes in disease. Nat Rev Neurol. 2018;14(6):351–62. https://doi.org/10.1038/s41582-018-0010-2.

    Article  PubMed  Google Scholar 

  51. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53(2):1181–94. https://doi.org/10.1007/s12035-014-9070-5.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou T, Huang Z, Sun X, et al. Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal degeneration. Front Neuroanat. 2017;11:77. https://doi.org/10.3389/fnana.2017.00077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354–65. https://doi.org/10.1016/j.nurt.2010.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liddelow SA, Barres BA. Review reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017. https://doi.org/10.1016/j.immuni.2017.06.006.

    Article  PubMed  Google Scholar 

  55. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7. https://doi.org/10.1038/nature21029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yun SP, Kam TI, Panicker N, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24(7):931–8. https://doi.org/10.1038/s41591-018-0051-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Putra M, Gage M, Sharma S, et al. Diapocynin, an NADPH oxidase inhibitor, counteracts diisopropylfluorophosphate-induced long-term neurotoxicity in the rat model. Ann N Y Acad Sci. 2020. https://doi.org/10.1111/nyas.14314.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fernández-Arjona MM, Grondona JM, Granados-Durán P, Fernández-Llebrez P, López-Ávalos MD. Microglia morphological categorization in a rat model of neuroinflammation by hierarchical cluster and principal components analysis. Front Cell Neurosci. 2017;11:235. https://doi.org/10.3389/fncel.2017.00235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol. 2015;131:65–86. https://doi.org/10.1016/j.pneurobio.2015.05.003.

    Article  CAS  PubMed  Google Scholar 

  60. Davis BM, Salinas-Navarro M, Cordeiro MF, Moons L, De GL. Characterizing microglia activation: a spatial statistics approach to maximize information extraction. Sci Rep. 2017;7(1):1–12. https://doi.org/10.1038/s41598-017-01747-8.

    Article  CAS  Google Scholar 

  61. DePaula-Silva AB, Gorbea C, Doty DJ, et al. Differential transcriptional profiles identify microglial- and macrophage-specific gene markers expressed during virus-induced neuroinflammation. J Neuroinflammation. 2019;16(1):152. https://doi.org/10.1186/s12974-019-1545-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Puttachary S, Sharma S, Verma S, et al. 1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy. Neurobiol Dis. 2016;93:184–200. https://doi.org/10.1016/j.nbd.2016.05.013.

    Article  CAS  PubMed  Google Scholar 

  63. Gage M, Golden M, Putra M, Sharma S, Thippeswamy T. Sex as a biological variable in the rat model of diisopropylfluorophosphate-induced long-term neurotoxicity. Ann N Y Acad Sci. 2020. https://doi.org/10.1111/nyas.14315.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Putra M, Sharma S, Gage M, et al. Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiol Dis. 2020. https://doi.org/10.1016/j.nbd.2019.03.031.

    Article  PubMed  Google Scholar 

  65. Gómez-Nicola D, Fransen NL, Suzzi S, Hugh PV. Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci. 2013;33(6):2481–93. https://doi.org/10.1523/JNEUROSCI.4440-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol. 2016;275(3):305–15. https://doi.org/10.1016/j.expneurol.2015.03.020.

    Article  CAS  PubMed  Google Scholar 

  67. McLarnon JG. Microglial chemotactic signaling factors in Alzheimer’s disease. Am J Neurodegener Dis. 2012;1(3):199–204.

    PubMed  PubMed Central  Google Scholar 

  68. Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci. 2018;12:323. https://doi.org/10.3389/fncel.2018.00323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lieu C, Kopetz S. The Src family of protein tyrosine kinases: a new and promising target for colorectal cancer therapy. Clin Colorectal Cancer. 2010;9(2):89–94. https://doi.org/10.3816/CCC.2010.n.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene. 2004;23(48 REV. ISS. 7):7918–27. https://doi.org/10.1038/sj.onc.1208081.

    Article  CAS  PubMed  Google Scholar 

  71. Okada M. Regulation of the Src family kinases by Csk. Int J Biol Sci. 2012;8(10):1385–97. https://doi.org/10.7150/ijbs.5141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kojima N, Ishibashi H, Obata K, Kandel ER. Higher seizure susceptibility and enhanced tyrosine phosphorylation of N-methyl-d-aspartate receptor subunit 2B in fyn transgenic mice. Learn Mem. 1998;5(6):429-45. http://www.ncbi.nlm.nih.gov/pubmed/10489260. Accessed 15 Apr 2020.

  73. Knox R, Jiang X. Fyn in neurodevelopment and ischemic brain injury. Dev Neurosci. 2015;37(4–5):311–20. https://doi.org/10.1159/000369995.

    Article  CAS  PubMed  Google Scholar 

  74. Lu YF, Kojima N, Tomizawa K, et al. Enhanced synaptic transmission and reduced threshold for LTP induction in fyn-transgenic mice. Eur J Neurosci. 1999;11(1):75–82. https://doi.org/10.1046/j.1460-9568.1999.00407.x.

    Article  CAS  PubMed  Google Scholar 

  75. Nygaard HB, Van Dyck CH, Strittmatter SM. Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimer’s Res Ther. 2014. https://doi.org/10.1186/alzrt238.

    Article  Google Scholar 

  76. Salter MW, Kalia LV. SRC kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci. 2004;5(4):317–28. https://doi.org/10.1038/nrn1368.

    Article  CAS  PubMed  Google Scholar 

  77. Arnaud L, Ballif BA, Förster E, Cooper JA. Fyn tyrosine kinase is a critical regulator of Disabled-1 during brain development. Curr Biol. 2003;13(1):9–17. https://doi.org/10.1016/S0960-9822(02)01397-0.

    Article  CAS  PubMed  Google Scholar 

  78. Jin DZ, Mao LM, Wang JQ. An essential role of fyn in the modulation of metabotropic glutamate receptor 1 in neurons. eNeuro. 2017. https://doi.org/10.1523/ENEURO.0096-17.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lu X, Hu X, Song L, et al. The SH2 domain is crucial for function of Fyn in neuronal migration and cortical lamination. BMB Rep. 2015;48(2):97–102. https://doi.org/10.5483/BMBRep.2015.48.2.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suh YH, Chang K, Roche KW. Metabotropic glutamate receptor trafficking. Mol Cell Neurosci. 2018;91:10–24. https://doi.org/10.1016/j.mcn.2018.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trepanier CH, Jackson MF, MacDonald JF. Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J. 2012;279(1):12–9. https://doi.org/10.1111/j.1742-4658.2011.08391.x.

    Article  CAS  PubMed  Google Scholar 

  82. Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci USA. 1999;96(2):435–40. https://doi.org/10.1073/pnas.96.2.435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grant SGN, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science. 1992;258(5090):1903–10. https://doi.org/10.1126/science.1361685.

    Article  CAS  PubMed  Google Scholar 

  84. Lee G, Thangavel R, Sharma VM, et al. Phosphorylation of Tau by Fyn: implications for Alzheimer’s disease. J Neurosci. 2004;24(9):2304–12. https://doi.org/10.1523/JNEUROSCI.4162-03.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–97. https://doi.org/10.1016/j.cell.2010.06.036.

    Article  CAS  PubMed  Google Scholar 

  86. Putra M, Puttachary S, Liu G, Lee G, Thippeswamy T. Fyn-tau ablation modifies PTZ-induced seizures and post-seizure hallmarks of early epileptogenesis. Front Cell Neurosci. 2020;14:592374. https://doi.org/10.3389/fncel.2020.592374.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases-What is the evidence? Front Neurosci. 2015;9(22):469. https://doi.org/10.3389/fnins.2015.00469.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cain DP, Grant SGN, Saucier D, Hargreaves EL, Kandel ER. Fyn tyrosine kinase is required for normal amygdala kindling. Epilepsy Res. 1995;22(2):107–14. https://doi.org/10.1016/0920-1211(95)00029-1.

    Article  CAS  PubMed  Google Scholar 

  89. Moussa RC, Ikeda-Douglas CJ, Thakur V, Milgram NW, Gurd JW. Seizure activity results in increased tyrosine phosphorylation of the N-methyl-d-aspartate receptor in the hippocampus. Mol Brain Res. 2001;95(1–2):36–47. https://doi.org/10.1016/S0169-328X(01)00231-5.

    Article  CAS  PubMed  Google Scholar 

  90. Nakazawa T, Komai S, Tezuka T, et al. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluRε2 (NR2B) subunit of the N-methyl-d-aspartate receptor. J Biol Chem. 2001;276(1):693–9. https://doi.org/10.1074/jbc.M008085200.

    Article  CAS  PubMed  Google Scholar 

  91. Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998;95(11):6448–53. https://doi.org/10.1073/pnas.95.11.6448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boehm SL, Peden L, Harris RA, Blednov YA. Deletion of the fyn-kinase gene alters sensitivity to GABAergic drugs: dependence on β2/β3 GABAA receptor subunits. J Pharmacol Exp Ther. 2004;309(3):1154–9. https://doi.org/10.1124/jpet.103.064444.

    Article  CAS  PubMed  Google Scholar 

  93. Jurd R, Tretter V, Walker J, Brandon NJ, Moss SJ. Fyn kinase contributes to tyrosine phosphorylation of the GABAA receptor γ2 subunit. Mol Cell Neurosci. 2010;44(2):129–34. https://doi.org/10.1016/j.mcn.2010.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hsieh HL, Wang HH, Wu CY, Tung WH, Yang CM. Lipoteichoic acid induces matrix metalloproteinase-9 expression via transactivation of PDGF receptors and NF-kappaB activation in rat brain astrocytes. Neurotox Res. 2010;17(4):344–59. https://doi.org/10.1007/s12640-009-9111-4.

    Article  CAS  PubMed  Google Scholar 

  95. Kaltschmidt B, Kaltschmidt C. NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol. 2009. https://doi.org/10.1101/cshperspect.a001271.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci. 2015. https://doi.org/10.3389/fnmol.2015.00077.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Anrather J, Racchumi G, Iadecola C. NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem. 2006;281(9):5657–67. https://doi.org/10.1074/jbc.M506172200.

    Article  CAS  PubMed  Google Scholar 

  99. Socodato R-S, Portugal CC, Domith I, et al. rc function is necessary and sufficient for triggering microglial cell activation. Glia. 2015;63(3):497–511. https://doi.org/10.1002/glia.22767.

    Article  PubMed  Google Scholar 

  100. Dhawan G, Combs CK. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease. J Neuroinflammation. 2012;9(1):563. https://doi.org/10.1186/1742-2094-9-117.

    Article  CAS  Google Scholar 

  101. Li Z, Li W, Li Q, Tang M. Extracellular nucleotides and adenosine regulate microglial motility and their role in cerebral ischemia. Acta Pharm Sin B. 2013;3(4):205–12. https://doi.org/10.1016/j.apsb.2013.06.003.

    Article  Google Scholar 

  102. Fan Y, Xie L, Chung CY. Signaling pathways controlling microglia chemotaxis. Mol Cells. 2017;40(3):163–8. https://doi.org/10.14348/molcells.2017.0011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee SH, Hollingsworth R, Kwon HY, Lee N, Chung CY. β-arrestin 2-dependent activation of ERK1/2 is required for ADP-induced paxillin phosphorylation at Ser83 and microglia chemotaxis. Glia. 2012;60(9):1366–77. https://doi.org/10.1002/glia.22355.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ahluwalia MS, de Groot J, Liu WM, Gladson CL. Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett. 2010;298(2):139–49. https://doi.org/10.1016/j.canlet.2010.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang JYJ. The capable ABL: what is its biological function? Mol Cell Biol. 2014;34(7):1188–97. https://doi.org/10.1128/MCB.01454-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chong YP, Chan AS, Chan KC, et al. C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases. J Biol Chem. 2006;281(44):32988–99. https://doi.org/10.1074/jbc.M602951200.

    Article  CAS  PubMed  Google Scholar 

  107. Chong YP, Mulhern TD, Cheng HC. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)—endogenous negative regulators of Src-family protein kinases. Growth Factors. 2005;23(3):233–44. https://doi.org/10.1080/08977190500178877.

    Article  CAS  PubMed  Google Scholar 

  108. Ölgen S, Isgör YG, Çoban T. Synthesis and activity of novel 5-substituted pyrrolo[2,3-d]pyrimidine analogues as pp60c-Src tyrosine kinase inhibitors. Arch Pharm (Weinheim). 2008;341(2):113–20. https://doi.org/10.1002/ardp.200700141.

    Article  CAS  PubMed  Google Scholar 

  109. Breen ME, Steffey ME, Lachacz EJ, Kwarcinski FE, Fox CC, Soellner MB. Substrate activity screening with kinases: discovery of small-molecule substrate-competitive c-Src inhibitors. Angew Chem Int Ed. 2014;53(27):7010–3. https://doi.org/10.1002/anie.201311096.

    Article  CAS  Google Scholar 

  110. Shim HJ, Kim HI, Lee ST. The associated pyrazolopyrimidines PP1 and PP2 inhibit protein tyrosine kinase 6 activity and suppress breast cancer cell proliferation. Oncol Lett. 2017;13(3):1463–9. https://doi.org/10.3892/ol.2017.5564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Araujo J, Logothetis C. Dasatinib: a potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev. 2010;36(6):492–500. https://doi.org/10.1016/j.ctrv.2010.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kantarjian H, O’Brien S, Cortes J, et al. Analysis of the impact of imatinib mesylate therapy on the prognosis of patients with Philadelphia chromosome-positive chronic myelogenous leukemia treated with interferon-alpha regimens for early chronic phase. Cancer. 2003;98(7):1430–7. https://doi.org/10.1002/cncr.11665.

    Article  CAS  PubMed  Google Scholar 

  113. Lindauer M, Hochhaus A. Dasatinib. Recent Results Cancer Res. 2015;201:27–65. https://doi.org/10.1007/978-3-642-54490-3_2.

    Article  CAS  Google Scholar 

  114. Schiff, D. Jann S. Dasatinib in recurrent glioblastoma: failure as a teacher. Neuro Oncol. 2015;17(7):910–11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762007/. Accessed 27 May 2020.

  115. Shah NP, Wallis N, Farber HW, et al. Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol. 2015;90(11):1060–4. https://doi.org/10.1002/ajh.24174.

    Article  CAS  PubMed  Google Scholar 

  116. Waller CF. Imatinib Mesylate. Recent Results Cancer Res. 2010;184:3–20. https://doi.org/10.1007/978-3-642-01222-8_1.

    Article  CAS  PubMed  Google Scholar 

  117. Mittapalli RK, Chung AH, Parrish KE, et al. ABCG2 and ABCB1 limit the efficacy of dasatinib in a PDGF-B-driven brainstem glioma model. Mol Cancer Ther. 2016;15(5):819–29. https://doi.org/10.1158/1535-7163.MCT-15-0093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kast RE, Focosi D. Three paths to better tyrosine kinase inhibition behind the blood-brain barrier in treating chronic myelogenous leukemia and glioblastoma with imatinib. Transl Oncol. 2010;3(1):13–5. https://doi.org/10.1593/tlo.09280.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tyryshkin A, Bhattacharya A, Eissa NT. Src kinase is a novel therapeutic target in lymphangioleiomyomatosis. Cancer Res. 2014;74(7):1996–2005. https://doi.org/10.1158/0008-5472.CAN-13-1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Minami SS, Clifford TG, Hoe HS, Matsuoka Y, Rebeck GW. Fyn knock-down increases Aβ, decreases phospho-tau, and worsens spatial learning in 3×Tg-AD mice. Neurobiol Aging. 2012;33(4):825.e15-825.e24. https://doi.org/10.1016/j.neurobiolaging.2011.05.014.

    Article  CAS  Google Scholar 

  121. Stein PL, Vogel H, Soriano P. Combined deficiencies of src, fyn, and yes tyrosine kinases in mutant mice. Genes Dev. 1994;8(17):1999–2007. https://doi.org/10.1101/gad.8.17.1999.

    Article  CAS  PubMed  Google Scholar 

  122. Huerta PT, Scearce KA, Farris SM, Empson RM, Prusky GT. Preservation of spatial learning in fyn tyrosine kinase knockout mice. NeuroReport. 1996;7(10):1685–9. https://doi.org/10.1097/00001756-199607080-00032.

    Article  CAS  PubMed  Google Scholar 

  123. Yang H, Wang L, Zang C, et al. Src inhibition attenuates neuroinflammation and protects dopaminergic neurons in Parkinson’s disease models. Front Neurosci. 2020;14:45. https://doi.org/10.3389/fnins.2020.00045.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Galanis E, Anderson SK, Twohy EL, et al. A phase 1 and randomized, placebo-controlled phase 2 trial of bevacizumab plus dasatinib in patients with recurrent glioblastoma: Alliance/North Central Cancer Treatment Group N0872. Cancer. 2019;125(21):3790–800. https://doi.org/10.1002/cncr.32340.

    Article  CAS  PubMed  Google Scholar 

  125. Cortes JE, Jiang Q, Wang J, et al. Dasatinib vs. imatinib in patients with chronic myeloid leukemia in chronic phase (CML-CP) who have not achieved an optimal response to 3 months of imatinib therapy: the DASCERN randomized study. Leukemia. 2020. https://doi.org/10.1038/s41375-020-0805-1.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huang X, Jiang Q, Hu J, et al. Long-term safety of dasatinib in chinese chronic phase chronic myeloid leukemia patients with imatinib-resistance or -intolerance: results from a 6-year follow-up of a multicenter phase II study. Blood. 2016;128(22):1928–1928. https://doi.org/10.1182/blood.v128.22.1928.1928.

    Article  Google Scholar 

  127. Lassman AB, Pugh SL, Gilbert MR, Aldape KD, Geinoz S, Buemer JH, Christner SM, Ritsuko R, DeAngelis LM, Gaur R, Yossef E, Wagner H, Won M, Mehta M. Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro Oncol. 2015;17(7):992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chamoun K, Rabinovich E, Baer L, Fastenau P, de Lima M. A case of neurocognitive deficit strongly related to dasatinib therapy. Hematol Transfus Cell Ther. 2020;42(1):80–2. https://doi.org/10.1016/j.htct.2019.01.003.

    Article  PubMed  Google Scholar 

  129. Baselga J, Cervantes A, Martinelli E, et al. Phase I safety, pharmacokinetics, and inhibition of src activity study of saracatinib in patients with solid tumors. Clin Cancer Res. 2010;16(19):4876–83. https://doi.org/10.1158/1078-0432.CCR-10-0748.

    Article  CAS  PubMed  Google Scholar 

  130. Fujisaka Y, Onozawa Y, Kurata T, et al. First report of the safety, tolerability, and pharmacokinetics of the Src kinase inhibitor saracatinib (AZD0530) in Japanese patients with advanced solid tumours. Invest New Drugs. 2013;31(1):108–14. https://doi.org/10.1007/s10637-012-9809-7.

    Article  CAS  PubMed  Google Scholar 

  131. Nygaard HB, Wagner AF, Bowen GS, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimer’s Res Ther. 2015. https://doi.org/10.1186/s13195-015-0119-0.

    Article  Google Scholar 

  132. Mattson MP, Camandola S. NF-κB in neuronal plasticity and neurodegenerative disorders. J Clin Invest. 2001;107(3):247–54. https://doi.org/10.1172/JCI11916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hatano E, Bennett BL, Manning AM, Qian T, Lemasters JJ, Brenner DA. NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-a. Gastroenterology. 2001;120(5):1251–62.

    Article  CAS  PubMed  Google Scholar 

  134. Srinivasan M, Lahiri DK. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin Ther Targets. 2015;19(4):471–87. https://doi.org/10.1517/14728222.2014.989834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mattson MP, Meffert MK. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ. 2006;13(5):852–60. https://doi.org/10.1038/sj.cdd.4401837.

    Article  CAS  PubMed  Google Scholar 

  136. Sonar SA, Lal G. The iNOS activity during an immune response controls the CNS pathology in experimental autoimmune encephalomyelitis. Front Immunol. 2019;10(APR):710. https://doi.org/10.3389/fimmu.2019.00710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Matrone C, Pignataro G, Molinaro P, et al. HIF-1α reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion. J Neurochem. 2004;90(2):368–78. https://doi.org/10.1111/j.1471-4159.2004.02483.x.

    Article  CAS  PubMed  Google Scholar 

  138. Beest V. Statin users risk heart attacks by dropping treatment or taking l ow doses Doctors must emphasise importance of compl ying with treatment say researchers. Heart. 2006;91(December):250–6. https://doi.org/10.1093/eurheartj.

    Article  Google Scholar 

  139. Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett. 1997;418(3):291–6. https://doi.org/10.1016/s0014-5793(97)01397-5.

    Article  CAS  PubMed  Google Scholar 

  140. Xian M, Fujiwara N, Wen Z, et al. Novel substrates for nitric oxide synthases. Bioorg Med Chem. 2002;10(9):3049–55. https://doi.org/10.1016/s0968-0896(02)00155-4.

    Article  CAS  PubMed  Google Scholar 

  141. Forstermann U, Sessa W. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37. https://doi.org/10.1093/eurheartj/ehr304.

    Article  CAS  PubMed  Google Scholar 

  142. Walker G, Pfeilschifter J, Kunz D. Mechanisms of suppression of inducible nitric-oxide synthase (iNOS) expression in interferon (IFN)-γ-stimulated RAW 264.7 cells by dexamethasone. Evidence for glucocorticoid-induced degradation of iNOS protein by calpain as a key step in post-transcriptional regulation. J Biol Chem. 1997;272(26):16679–87. https://doi.org/10.1074/jbc.272.26.16679.

    Article  CAS  PubMed  Google Scholar 

  143. Knott AB, Bossy-Wetzel E. Nitric oxide in health and disease of the nervous system. Antioxidants Redox Signal. 2009;11(3):541–53. https://doi.org/10.1089/ars.2008.2234.

    Article  CAS  Google Scholar 

  144. Sharma S, Puttachary S, Thippeswamy T. Glial source of nitric oxide in epileptogenesis: a target for disease modification in epilepsy. J Neurosci Res. 2017. https://doi.org/10.1002/jnr.24205.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Fuentes E, Gibbins JM, Holbrook LM, Palomo I. NADPH oxidase 2 (NOX2): a key target of oxidative stress-mediated platelet activation and thrombosis. Trends Cardiovasc Med. 2018;28(7):429–34. https://doi.org/10.1016/j.tcm.2018.03.001.

    Article  CAS  PubMed  Google Scholar 

  146. Sharma S, Puttachary S, Thippeswamy T. Glial source of nitric oxide in epileptogenesis: a target for disease modification in epilepsy. J Neurosci Res. 2019;97(11):1363–77. https://doi.org/10.1002/jnr.24205.

    Article  CAS  PubMed  Google Scholar 

  147. Raad H, Paclet MH, Boussetta T, et al. Regulation of the phagocyte NADPH oxidase activity: phosphorylation of gp91phox/NOX2 by protein kinase C enhances its diaphorase activity and binding to Rac2, p67phox, and p47phox. FASEB J. 2009;23(4):1011–22. https://doi.org/10.1096/fj.08-114553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23. https://doi.org/10.1038/cmi.2014.89.

    Article  CAS  PubMed  Google Scholar 

  149. Cooney SJ, Bermudez-Sabogal SL, Byrnes KR. Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury. J Neuroinflammation. 2013;10(1):155. https://doi.org/10.1186/1742-2094-10-155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang L, Wu J, Duan X, et al. NADPH oxidase: a potential target for treatment of stroke. Oxid Med Cell Longev. 2016. https://doi.org/10.1155/2016/5026984.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ansari MA, Scheff SW. NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med. 2011;51(1):171–8. https://doi.org/10.1016/j.freeradbiomed.2011.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tannich F, Tlili A, Pintard C, et al. Activation of the phagocyte NADPH oxidase/NOX2 and myeloperoxidase in the mouse brain during pilocarpine-induced temporal lobe epilepsy and inhibition by ketamine. Inflammopharmacology. 2020;28(2):487–97. https://doi.org/10.1007/s10787-019-00655-9.

    Article  CAS  PubMed  Google Scholar 

  153. Belarbi K, Cuvelier E, Destée A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson’s disease: a systematic review. Mol Neurodegener. 2017;12(1):1–18. https://doi.org/10.1186/s13024-017-0225-5.

    Article  CAS  Google Scholar 

  154. Ma MW, Wang J, Dhandapani KM, Wang R, Brann DW. NADPH oxidases in traumatic brain injury—promising therapeutic targets? Redox Biol. 2018;16:285–93. https://doi.org/10.1016/j.redox.2018.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxidants Redox Signal. 2011;15(7):1957–97. https://doi.org/10.1089/ars.2010.3586.

    Article  CAS  Google Scholar 

  156. Zitka O, Skalickova S, Gumulec J, et al. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett. 2012;4(6):1247–53. https://doi.org/10.3892/ol.2012.931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci. 2013;14(10):21021–44. https://doi.org/10.3390/ijms141021021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000;267(16):4904–11. https://doi.org/10.1046/j.1432-1327.2000.01595.x.

    Article  CAS  PubMed  Google Scholar 

  159. Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients. 2012;4(10):1399–440. https://doi.org/10.3390/nu4101399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxidants Redox Signal. 2018;29(17):1727–45. https://doi.org/10.1089/ars.2017.7342.

    Article  CAS  Google Scholar 

  161. Mcwalter GK, Higgins LG, Mclellan LI, Henderson CJ, Song L, Thornalley PJ, Itoh K, Yamamoto M, Hayes JD. Transcription factor Nrf2 is essential for induction of NAD(P)H: quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by Broccoli Seeds and Isothiocyanates. J Nutr. 2004;134(12):3499S-3506S. https://doi.org/10.1093/jn/134.12.3499S.

    Article  CAS  PubMed  Google Scholar 

  162. Branca C, Ferreira E, Nguyen T-V, Doyle K, Caccamo A, Oddo S. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Hum Mol Genet. 2017;26(24):4823–35. https://doi.org/10.1093/hmg/ddx361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53(1):401–26. https://doi.org/10.1146/annurev-pharmtox-011112-140320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kaspar JW, Jaiswal AK. Tyrosine phosphorylation controls nuclear export of Fyn, allowing Nrf2 activation of cytoprotective gene expression. FASEB J. 2011;25(3):1076–87. https://doi.org/10.1096/fj.10-171553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90. https://doi.org/10.1016/j.cellsig.2012.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–9. https://doi.org/10.1016/j.tplants.2016.08.002.

    Article  CAS  PubMed  Google Scholar 

  167. Lind M, Hayes A, Caprnda M, et al. Inducible nitric oxide synthase: good or bad? Biomed Pharmacother. 2017;93:370–5. https://doi.org/10.1016/j.biopha.2017.06.036.

    Article  CAS  PubMed  Google Scholar 

  168. Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol. 2015;263:235–43. https://doi.org/10.1016/j.expneurol.2014.10.017.

    Article  CAS  PubMed  Google Scholar 

  169. Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res. 1999;424(1–2):37–49. https://doi.org/10.1016/s0027-5107(99)00006-8.

    Article  CAS  PubMed  Google Scholar 

  170. Pérez-Asensio FJ, Hurtado O, Burguete MC, et al. Inhibition of iNOS activity by 1400W decreases glutamate release and ameliorates stroke outcome after experimental ischemia. Neurobiol Dis. 2005;18(2):375–84. https://doi.org/10.1016/j.nbd.2004.10.018.

    Article  CAS  PubMed  Google Scholar 

  171. Ahn J-Y. Neuroprotection signaling of nuclear Akt in neuronal cells. Exp Neurobiol. 2014;23(3):200–6. https://doi.org/10.5607/en.2014.23.3.200.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kwak YD, Ma T, Diao S, et al. NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Mol Neurodegener. 2010;5(1):49. https://doi.org/10.1186/1750-1326-5-49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Qu J, Nakamura T, Holland EA, McKercher SR, Lipton SA. S-nitrosylation of Cdk5: potential implications in amyloid-β-related neurotoxicity in Alzheimer disease. Prion. 2012;6(4):364–70. https://doi.org/10.4161/pri.21250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto SI, Lipton SA. Aberrant Protein S-nitrosylation in neurodegenerative diseases. Neuron. 2013;78(4):596–614. https://doi.org/10.1016/j.neuron.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev. 2014;43(19):6814–38. https://doi.org/10.1039/c3cs60467e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Janakiram NB, Rao CV. INOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem. 2012;4(17):2193–204. https://doi.org/10.4155/fmc.12.168.

    Article  CAS  PubMed  Google Scholar 

  177. Víteček J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm. 2012;2012:318087. https://doi.org/10.1155/2012/318087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kopincová J, Púzserová A, Bernátová I. l-NAME in the cardiovascular system—nitric oxide synthase activator? Pharmacol Rep. 2012;64(3):511–20. https://doi.org/10.1016/S1734-1140(12)70846-0.

    Article  PubMed  Google Scholar 

  179. Peterson DA, Peterson DC, Archer S, Weir EK. The non specificity of specific nitric oxide synthase inhibitors. Biochem Biophys Res Commun. 1992;187(2):797–801. https://doi.org/10.1016/0006-291X(92)91266-S.

    Article  CAS  PubMed  Google Scholar 

  180. Liu T, Zhang M, Mukosera GT, et al. l-NAME releases nitric oxide and potentiates subsequent nitroglycerin-mediated vasodilation. Redox Biol. 2019. https://doi.org/10.1016/j.redox.2019.101238.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Corbett JA, McDaniel ML. The use of aminoguanidine, a selective iNOS inhibitor, to evaluate the role of nitric oxide in the development of autoimmune diabetes. Methods A Companion Methods Enzymol. 1996;10(1):21–30. https://doi.org/10.1006/meth.1996.0074.

    Article  CAS  Google Scholar 

  182. Hou FF, Boyce J, Chertow GM, Kay J, Owen WF. Aminoguanidine inhibits advanced glycation end products formation on β2-microglobulin. J Am Soc Nephrol. 1998;9(2):277–83.

    Article  CAS  PubMed  Google Scholar 

  183. Garvey EP, Oplinger JA, Furfine ES, et al. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem. 1997;272(8):4959–63. https://doi.org/10.1074/JBC.272.8.4959.

    Article  CAS  PubMed  Google Scholar 

  184. Dover AR, Chia S, Ferguson JW, et al. Inducible nitric oxide synthase activity does not contribute to the maintenance of peripheral vascular tone in patients with heart failure. Clin Sci. 2006;111(4):275–80. https://doi.org/10.1042/CS20060104.

    Article  CAS  Google Scholar 

  185. Ferguson JW, Dover AR, Chia S, Cruden NLM, Hayes PC, Newby DE. Inducible nitric oxide synthase activity contributes to the regulation of peripheral vascular tone in patients with cirrhosis and ascites. Gut. 2006;55(4):542–6. https://doi.org/10.1136/gut.2005.076562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhu Y, Nikolic D, Van Breemen RB, Silverman RB. Mechanism of inactivation of inducible nitric oxide synthase by amidines. Irreversible enzyme inactivation without inactivator modification. J Am Chem Soc. 2005;127(3):858–68. https://doi.org/10.1021/ja0445645.

    Article  CAS  PubMed  Google Scholar 

  187. Bretscher LE, Li H, Poulos TL, Griffith OW. Structural characterization and kinetics of nitric-oxide synthase inhibition by novel N5-(Iminoalkyl)- and N 5-(Iminoalkenyl)-ornithines. J Biol Chem. 2003;278(47):46789–97. https://doi.org/10.1074/jbc.M306787200.

    Article  CAS  PubMed  Google Scholar 

  188. Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C. Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia. Proc Natl Acad Sci USA. 1998;95(18):10966–71. https://doi.org/10.1073/pnas.95.18.10966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sharma B, Singh N. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, convalesce behavior and biochemistry of hypertension induced vascular dementia in rats. Pharmacol Biochem Behav. 2013;103(4):821–30. https://doi.org/10.1016/j.pbb.2012.11.011.

    Article  CAS  PubMed  Google Scholar 

  190. Broom L, Marinova-Mutafchieva L, Sadeghian M, Davis JB, Medhurst AD, Dexter DT. Neuroprotection by the selective iNOS inhibitor GW274150 in a model of Parkinson disease. Free Radic Biol Med. 2011;50(5):633–40. https://doi.org/10.1016/j.freeradbiomed.2010.12.026.

    Article  CAS  PubMed  Google Scholar 

  191. Cosgrave AS, McKay JS, Bubb V, Morris R, Quinn JP, Thippeswamy T. Regulation of activity-dependent neuroprotective protein (ADNP) by the NO-cGMP pathway in the hippocampus during kainic acid-induced seizure. Neurobiol Dis. 2008;30(3):281–92. https://doi.org/10.1016/j.nbd.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  192. Beamer E, Otahal J, Sills GJ, Thippeswamy T. N w-Propyl-l-arginine (L-NPA) reduces status epilepticus and early epileptogenic events in a mouse model of epilepsy: behavioural, EEG and immunohistochemical analyses. Eur J Neurosci. 2012;36(9):3194–203. https://doi.org/10.1111/j.1460-9568.2012.08234.x.

    Article  PubMed  Google Scholar 

  193. Rehni AK, Singh TG, Kalra R, Singh N. Pharmacological inhibition of inducible nitric oxide synthase attenuates the development of seizures in mice. Nitric Oxide Biol Chem. 2009;21(2):120–5. https://doi.org/10.1016/j.niox.2009.06.001.

    Article  CAS  Google Scholar 

  194. Tse K, Hammond D, Simpson D, et al. The impact of postsynaptic density 95 blocking peptide (Tat-NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainate-induced epileptogenesis. J Neurosci Res. 2019;97(11):1378–92. https://doi.org/10.1002/jnr.24441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jarvinen K, Vuolteenaho K, Nieminen R, Moilanen T, Knowles RG, Moilanen E. Selective iNOS inhibitor 1400W enhances anti-catabolic IL-10 and reduces destructive MMP-10 in OA cartilage. Survey of the effects of 1400W on inflammatory mediators produced by OA cartilage as detected by protein antibody arra. Clin Exp Rheumatol. 2008;26(2):275–82.

    CAS  PubMed  Google Scholar 

  196. Staunton CA, Barrett-Jolley R, Djouhri L, Thippeswamy T. Inducible nitric oxide synthase inhibition by 1400W limits pain hypersensitivity in a neuropathic pain rat model. Exp Physiol. 2018;103(4):535–44. https://doi.org/10.1113/EP086764.

    Article  CAS  PubMed  Google Scholar 

  197. Putra M, Sharma S, Gage M, et al. Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiol Dis. 2019. https://doi.org/10.1016/J.NBD.2019.03.031.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Barua A, Standen NB, Galĩanes M. Dual role of nNOS in ischemic injury and preconditioning. BMC Physiol. 2010;10(1):15. https://doi.org/10.1186/1472-6793-10-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Talukder MAH, Yang F, Shimokawa H, Zweier JL. eNOS is required for acute in vivo ischemic preconditioning of the heart: effects of ischemic duration and sex. Am J Physiol Circ Physiol. 2010;299(2):H437–45. https://doi.org/10.1152/ajpheart.00384.2010.

    Article  CAS  Google Scholar 

  200. Murillo D, Kamga C, Mo L, Shiva S. Nitrite as a mediator of ischemic preconditioning and cytoprotection. Nitric Oxide Biol Chem. 2011;25:70–80. https://doi.org/10.1016/j.niox.2011.01.003.

    Article  CAS  Google Scholar 

  201. Tegtmeier F, Schinzel R, Beer R, et al. Efficacy of ronopterin (VAS203) in patients with moderate and severe traumatic brain injury (NOSTRA phase III trial): study protocol of a confirmatory, placebo-controlled, randomised, double blind, multi-centre study. Trials. 2020;21(1):80. https://doi.org/10.1186/s13063-019-3965-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Stover JF, Belli A, Boret H, et al. Nitric oxide synthase inhibition with the antipterin VAS203 improves outcome in moderate and severe traumatic brain injury: a placebo-controlled randomized phase iia trial (NOSTRA). J Neurotrauma. 2014;31(19):1599–606. https://doi.org/10.1089/neu.2014.3344.

    Article  PubMed  Google Scholar 

  203. Chen Y, Brennan-Minnella AM, Sheth S, El-Benna J, Swanson RA. Tat-NR2B9c prevents excitotoxic neuronal superoxide production. J Cereb Blood Flow Metab. 2015;35(5):739–42. https://doi.org/10.1038/jcbfm.2015.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hill MD, Martin RH, Mikulis D, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11(11):942–50. https://doi.org/10.1016/S1474-4422(12)70225-9.

    Article  CAS  PubMed  Google Scholar 

  205. Ballarin B, Tymianski M. Discovery and development of NA-1 for the treatment of acute ischemic stroke. Acta Pharmacol Sin. 2018;39(5):661–8. https://doi.org/10.1038/aps.2018.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Prado CM, Martins MA, Tibério IFLC. Nitric Oxide in Asthma Physiopathology. ISRN Allergy. 2011. https://doi.org/10.5402/2011/832560.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Brindicci C, Ito K, Torre O, Barnes PJ, Kharitonov SA. Effects of aminoguanidine, an inhibitor of inducible nitric oxide synthase, on nitric oxide production and its metabolites in healthy control subjects, healthy smokers, and COPD patients. Chest. 2009;135(2):353–67. https://doi.org/10.1378/chest.08-0964.

    Article  CAS  PubMed  Google Scholar 

  208. Hansel TT, Kharitonov SA, Donnelly LE, et al. A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J. 2003;17(10):1298–300. https://doi.org/10.1096/fj.02-0633fje.

    Article  CAS  PubMed  Google Scholar 

  209. Singh D, Richards D, Knowles RG, et al. Selective inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma. Am J Respir Crit Care Med. 2007;176(10):988–93. https://doi.org/10.1164/rccm.200704-588OC.

    Article  CAS  PubMed  Google Scholar 

  210. Barua S, Kim JY, Yenari MA, Lee JE. The role of NOX inhibitors in neurodegenerative diseases. IBRO Rep. 2019;7:59–69. https://doi.org/10.1016/j.ibror.2019.07.1721.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Diebold BA, Smith SME, Li Y, Lambeth JD. NOX2 as a target for drug development: Indications, possible complications, and progress. Antioxidants Redox Signal. 2015;23(5):375–405. https://doi.org/10.1089/ars.2014.5862.

    Article  CAS  Google Scholar 

  212. Beukelman CJ, van den Worm E, Henriette C, van Ufford Q, Kroes BH, van den Berg AJJ. Discovery of new anti-inflammatory drugs from plant origins. Ann Gastroenterol. 2002;15(4):320–3.

    Google Scholar 

  213. Wang Q, Smith RE, Luchtefeld R, et al. Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine. 2008;15(6–7):496–503. https://doi.org/10.1016/j.phymed.2007.09.019.

    Article  CAS  PubMed  Google Scholar 

  214. Marín M, Gimeno C, Giner RM, Ríos JL, Máñez S, Recio MC. Influence of dimerization of apocynin on its effects in experimental colitis. J Agric Food Chem. 2017;65(20):4083–91. https://doi.org/10.1021/acs.jafc.7b00872.

    Article  CAS  PubMed  Google Scholar 

  215. Macías-Pérez ME, Martínez-Ramos F, Padilla-Martínez II, et al. Ethers and esters derived from apocynin avoid the interaction between p47phox and p22phox subunits of NADPH oxidase: evaluation in vitro and in silico. Biosci Rep. 2013;33(4):605–16. https://doi.org/10.1042/BSR20130029.

    Article  CAS  Google Scholar 

  216. Ghosh A, Kanthasamy A, Joseph J, et al. Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease. J Neuroinflammation. 2012;9(1):711. https://doi.org/10.1186/1742-2094-9-241.

    Article  CAS  Google Scholar 

  217. Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta Mol Basis Dis. 2014;1842(8):1282–94. https://doi.org/10.1016/j.bbadis.2013.09.007.

    Article  CAS  Google Scholar 

  218. Ghosh A, Langley MR, Harischandra DS, et al. Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s Disease. J Neuroimmune Pharmacol. 2016;11(2):259–78. https://doi.org/10.1007/s11481-016-9650-4.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Langley M, Ghosh A, Charli A, et al. Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in mitopark transgenic mice. Antioxidants Redox Signal. 2017;27(14):1048–66. https://doi.org/10.1089/ars.2016.6905.

    Article  CAS  Google Scholar 

  220. Lambert AJ, Buckingham JA, Boysen HM, Brand MD. Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim Biophys Acta Bioenerg. 2008;1777(5):397–403. https://doi.org/10.1016/j.bbabio.2008.03.005.

    Article  CAS  Google Scholar 

  221. Augsburger F, Filippova A, Rasti D, et al. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol. 2019. https://doi.org/10.1016/j.redox.2019.101272.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Huang WY, Lin S, Chen HY, et al. NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation. J Neuroinflammation. 2018. https://doi.org/10.1186/s12974-018-1186-5.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Shekh-Ahmad T, Lieb A, Kovac S, et al. Combination antioxidant therapy prevents epileptogenesis and modifies chronic epilepsy. Redox Biol. 2019;26:101278. https://doi.org/10.1016/j.redox.2019.101278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Stefanska J, Sarniak A, Wlodarczyk A, et al. Apocynin reduces reactive oxygen species concentrations in exhaled breath condensate in asthmatics. Exp Lung Res. 2012;38(2):90–9. https://doi.org/10.3109/01902148.2011.649823.

    Article  CAS  PubMed  Google Scholar 

  225. Peters EA, Hiltermann JTN, Stolk J. Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radic Biol Med. 2001;31(11):1442–7. https://doi.org/10.1016/S0891-5849(01)00725-0.

    Article  CAS  PubMed  Google Scholar 

  226. DuPont JJ, Ramick MG, Farquhar WB, Townsend RR, Edwards DG. NADPH oxidase-derived reactive oxygen species contribute to impaired cutaneous microvascular function in chronic kidney disease. Am J Physiol Ren Physiol. 2014;306(12):F1499. https://doi.org/10.1152/ajprenal.00058.2014.

    Article  CAS  Google Scholar 

  227. Dalekos G, Invernizzi P, Nevens F, et al. GS-02-Efficacy of GKT831 in patients with primary biliary cholangitis and inadequate response to ursodeoxycholic acid: Interim efficacy results of a phase 2 clinical trial. J Hepatol. 2019;70(1):e1–2. https://doi.org/10.1016/s0618-8278(19)30002-7.

    Article  Google Scholar 

  228. Kim JY, Park J, Lee JE, Yenari MA. NOX inhibitors—a promising avenue for ischemic stroke. Exp Neurobiol. 2017;26(4):195–205. https://doi.org/10.5607/en.2017.26.4.195.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Cotgreave IA, Duddy SK, Kass GEN, Thompson D, Moldéus P. Studies on the anti-inflammatory activity of ebselen. Ebselen interferes with granulocyte oxidative burst by dual inhibition of nadph oxidase and protein kinase C? Biochem Pharmacol. 1989;38(4):649–56. https://doi.org/10.1016/0006-2952(89)90211-6.

    Article  CAS  PubMed  Google Scholar 

  230. Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke. 1998;29(1):12–7. https://doi.org/10.1161/01.STR.29.1.12.

    Article  CAS  PubMed  Google Scholar 

  231. Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: Mechanisms of action and targets of biological pathways. Mol Biol Rep. 2014;41(8):4865–79. https://doi.org/10.1007/s11033-014-3417-x.

    Article  CAS  PubMed  Google Scholar 

  232. Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–80. https://doi.org/10.1016/S1474-4422(18)30499-X.

    Article  Google Scholar 

  233. Dagdeviren M. Role of nitric oxide synthase in normal brain function and pathophysiology of neural diseases. In: Nitric oxide synthase simple enzyme complex roles. InTech; 2017. https://doi.org/10.5772/67267.

  234. Thippeswamy T, McKay JS, Quinn JP, Morris R. Nitric oxide, a biological double-faced janus—Is this good or bad? Histol Histopathol. 2006;21(4–6):445–58. https://doi.org/10.14670/HH-21.445.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Mica Post (Medical Illustrators, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA) who drew Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimmasettappa Thippeswamy.

Ethics declarations

Funding

Support to TT is from the National Institute of Health, NINDS/CounterACT program (NS099007, NS110648, and NS112779).

Conflict of Interest

The authors report no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Author Contributions

MG drafted the manuscript. TT edited the manuscript. Both have approved the revised version of the manuscript and agree to publish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gage, M.C., Thippeswamy, T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs 35, 1–20 (2021). https://doi.org/10.1007/s40263-020-00787-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00787-5

Navigation