Skip to main content
Log in

Crossing the Blood–Brain Barrier: Recent Advances in Drug Delivery to the Brain

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood–brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patel MM, Goyal BR, Bhadada SV, et al. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23:35–58.

    Article  CAS  PubMed  Google Scholar 

  2. Brightman MW. Morphology of blood–brain interfaces. Exp Eye Res. 1977;25(Suppl. 1):1–25.

  3. Schlosshauer B. The blood–brain barrier: morphology, molecules, and neurothelin. Bioassays. 1993;15:341–6.

    Article  CAS  Google Scholar 

  4. Ricci M, Blasi P, Giovagnoli S, Rossi C. Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue? Curr Med Chem. 2006;13:1757–75.

    Article  CAS  PubMed  Google Scholar 

  5. Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol. 2005;25:5–23.

    Article  PubMed  Google Scholar 

  6. Stewart PA. Endothelial vesicles in the blood–brain barrier: are they related to permeability? Cell Mol Neurobiol. 2000;20:149–63.

    Article  CAS  PubMed  Google Scholar 

  7. Marques F, Sousa JC, Sousa N, Palha JA. Blood–brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener. 2013;8:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Reev A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev. 2014;14:19–30.

    Article  CAS  Google Scholar 

  9. Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64:640–65.

    Article  CAS  PubMed  Google Scholar 

  10. Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7:84–96.

    Article  CAS  PubMed  Google Scholar 

  11. Alzheimer’s Association. Alzheimer’s disease facts and figures. http://www.alz.org/facts/. Accessed 29 Aug 2016.

  12. Parkinson’s Disease Foundation. http://www.pdf.org/en/parkinson_statistics. Accessed 29 Aug 2016.

  13. National Cancer Institute, Surveillance, Epidemiology, and End Results (SEER) Program. http://seer.cancer.gov/statfacts/html/brain.html. Accessed 29 Aug 2016.

  14. Lindsley CW. 2014 global prescription medication statistics: strong growth and CNS well represented. ACS Chem Neurosci. 2015;6(4):505–6.

    Article  CAS  PubMed  Google Scholar 

  15. Hottinger AF, Aissa AB, Espeli V, et al. Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma. Br J Cancer. 2014;110(11):2655–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karajannis MA, Legault G, Fisher MJ, et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol. 2014;16(10):1408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor JW, Dietrich J, Gerstner ER, et al. Phase 2 study of bosutinib, a Src inhibitor, in adults with recurrent glioblastoma. J Neurooncol. 2015;121(3):557–63.

    Article  CAS  PubMed  Google Scholar 

  18. Balaña C, Gil MJ, Perez P, et al. Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: results of a phase II study. Target Oncol. 2014;9(4):321–9.

    Article  PubMed  Google Scholar 

  19. Raizer JJ, Grimm SA, Rademaker A, et al. A phase II trial of PTK787/ZK 222584 in recurrent or progressive radiation and surgery refractory meningiomas. J Neurooncol. 2014;117(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  20. Cacciavillano W, Sampor C, Venier C, et al. A phase I study of the anti-idiotype vaccine racotumomab in neuroblastoma and other pediatric refractory malignancies. Pediatr Blood Cancer. 2015;62(12):2120–4.

    Article  CAS  PubMed  Google Scholar 

  21. Curtin F, Perron H, Kromminga A, et al. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. MAbs. 2015;7(1):265–75.

    Article  CAS  PubMed  Google Scholar 

  22. Solomon MT, Miranda N, Jorrín E, et al. Nimotuzumab in combination with radiotherapy in high grade glioma patients: a single institution experience. Cancer Biol Ther. 2014;15(5):504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chheda MG, Wen PY, Hochberg FH, et al. Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study. J Neurooncol. 2015;121(3):627–34.

    Article  CAS  PubMed  Google Scholar 

  24. Nygaard HB, Wagner AF, Bowen GS, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Coric V, Salloway S, van Dyck CH, et al. Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial. JAMA Neurol. 2015;72(11):1324–33.

    Article  PubMed  Google Scholar 

  26. Ryan ML, Falk DE, Fertig JB, et al. A phase 2, double-blind, placebo-controlled randomized trial assessing the efficacy of ABT-436, a novel V1b receptor antagonist, for alcohol dependence. Neuropsychopharmacology. 2016 Oct 19. doi:10.1038/npp.2016.214. (Epub ahead of print).

  27. Chamorro A, Amaro S. Castellanos M; URICO-ICTUS Investigators. Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial. Lancet Neurol. 2014;13(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  28. AmBiosome® (amphotericin B) liposome for injection [product information]. https://www.ambisome.com/. Accessed 18 Nov 2016.

  29. Titan Pharmaceuticals. http://www.titanpharm.com/pipeline/probuphine. Accessed 18 Nov 2016.

  30. Zinbryta™ (dacaluzumab), 150 mg subcutaneous injection [product information]. https://www.zinbryta.com/. Accessed 18 Nov 2016.

  31. Fycompa™ (perampal), tablets, oral suspension [product information]. https://fycompa.com/. Accessed 18 Nov 2016.

  32. Evomela® (melphalan) [product information]. http://www.evomela.com/. Accessed 18 Nov 2016.

  33. Briviact® (brivacetam) [product information]. https://www.briviact.com/. Accessed 18 Nov 2016.

  34. Onzetra® Xsail (sumatriptan nasal powder) 11 mg per nose piece [product information]. https://www.onzetra.com/. Accessed 18 Nov 2016.

  35. Zembrace™ Symtouch™ (sumatriptan injection) 3 mg [product information]. http://www.zembrace.com/. Accessed 18 Nov 2016.

  36. Adzenys XR-OD™ (amphetamine) extended-release orally disintegrating tablets [product information]. http://adzenysxrodt.com/. Accessed 18 Nov 2016.

  37. Rytary® (carbidopa and levodopa) extended-release capsules [product information]. https://rytary.com/. Accessed 18 Nov 2016.

  38. Duopa® carbidopa/levodopa enteral suspension 4.63 mg/20 mg per ml [product information]. https://www.duopa.com/. Accessed 18 Nov 2016.

  39. Aptension XR® methylphenidate HCl extended-release capsules [product information]. http://www.aptensioxr.com/. Accessed 18 Nov 2016.

  40. Unitixin (dinuuximab) injection [product information]. https://www.unituxin.com/. Accessed 18 Nov 2016.

  41. Invega Trinza® paliperidone palmitate extended-release injectable suspension [product information]. https://www.invegatrinzahcp.com/. Accessed 18 Nov 2016.

  42. Rexulti® brexpiprazole 2 mg tablets [product information]. https://www.rexulti.com/us/mdd. Accessed 18 Nov 2016.

  43. Spritam® (levetiracetam) tablets for oral suspension [product information]. https://www.spritam.com/. Accessed 18 Nov 2016.

  44. Vraylar® (cariprazine) capsules [product information]. http://www.vraylar.com/. Accessed 18 Nov 2016.

  45. Aristada® aripiprazole lauroxil extended-release injectable suspension [product information]. https://www.aristada.com/. Accessed 18 Nov 2016.

  46. Belbuca™ (buprenorphine) buccal film [product information]. https://www.belbuca.com/patient/. Accessed 18 Nov 2016.

  47. Terasaki T, Tsuji A. Drug delivery to the brain utilizing blood–brain barrier transport systems. J Control Release. 1994;29:163–9.

    Article  CAS  Google Scholar 

  48. Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Cationic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration. Chem Biol Drug Des. 2015;86:1203–14.

    Article  CAS  PubMed  Google Scholar 

  49. Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118:38–53.

    Article  CAS  PubMed  Google Scholar 

  50. Agarwal A, Agrawal H, Tiwari S, et al. Cationic ligand appended nanoconstructs: a prospective strategy for brain targeting. Int J Pharm. 2011;12(421):189–201.

    Article  CAS  Google Scholar 

  51. Stojanov K, Georgieva JV, Brinkhuis RP, et al. In vivo biodistribution of prion- and GM1-targeted polymersomes following intravenous administration in mice. Mol Pharm. 2012;9:1620–7.

    Article  CAS  PubMed  Google Scholar 

  52. Liu L, Guo K, Lu J, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29:1509–17.

    Article  CAS  PubMed  Google Scholar 

  53. Liu L, Venkatraman SS, Yang YY, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier. Biopolymers. 2008;90:617–23.

    Article  CAS  PubMed  Google Scholar 

  54. Chen H, Tang L, Qin Y, et al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci. 2010;40:94–102.

    Article  CAS  PubMed  Google Scholar 

  55. Chen H, Qin Y, Zhang Q, et al. Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci. 2011;44:164–73.

    Article  CAS  PubMed  Google Scholar 

  56. Byeon HJ, le Thao Q, Lee S, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release. 2016;225:301–13.

    Article  CAS  PubMed  Google Scholar 

  57. Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther. 2000;38:69–74.

    Article  CAS  PubMed  Google Scholar 

  58. Becker CM, Oberoi RK, McFarren SJ, et al. Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro Oncol. 2015;17:1210–9.

    PubMed  PubMed Central  Google Scholar 

  59. Cannon RE, Peart JC, Hawkins BT, et al. Targeting blood–brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc Natl Acad Sci USA. 2012;109:15930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang T, Agarwal S, Elmquist WF. Brain distribution of cediranib is limited by active efflux at the blood–brain barrier. J Pharmacol Exp Ther. 2012;341:386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther. 2011;336:223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Batrakova EV, Li S, Miller DW, Kabanov AV. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharm Res. 1999;16:1366–72.

    Article  CAS  PubMed  Google Scholar 

  63. Batrakova EV, Li S, Li Y, et al. Effect of pluronic P85 on ATPase activity of drug efflux transporters. Pharm Res. 2004;21:2226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Batrakova EV, Han HY, Miller DW, Kabanov AV. Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res. 1998;15:1525–32.

    Article  CAS  PubMed  Google Scholar 

  65. Kabanov AV, Batrakova EV, Miller DW. Pluronic block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier. Adv Drug Deliv Rev. 2003;55:151–64.

    Article  CAS  PubMed  Google Scholar 

  66. Sharma AK, Zhang L, Li S, et al. Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant. J Control Release. 2008;131:220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mena I, Cotzias GC. Protein intake and treatment of Parkinson’s disease with levodopa. N Engl J Med. 1975;292:181–4.

    Article  CAS  PubMed  Google Scholar 

  68. Cornford EM, Hyman S, Swartz BE. The human brain glut1 glucose transporter: Ultrastructural localization to the blood–brain barrier endothelia. J Cereb Blood Flow Metab. 1994;14:106–12.

    Article  CAS  PubMed  Google Scholar 

  69. Bonina FP, Arenare L, Palagiano F, et al. Synthesis, stability, and pharmacological evaluation of nipecotic acid prodrugs. J Pharm Sci. 1999;88:561–7.

    Article  CAS  PubMed  Google Scholar 

  70. Bonina FP, Arenare L, Ippolito R, et al. Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs. Int J Pharm. 2000;202:79–88.

    Article  CAS  PubMed  Google Scholar 

  71. Tsuji A, Tamai I. Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 1999;36:277–90.

    Article  CAS  PubMed  Google Scholar 

  72. Sarkar G, Curran GL, Sarkaria JN, et al. Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain. PLoS One. 2014;9:e97655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Johnsen KB, Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release. 2016;222:32–46.

    Article  CAS  PubMed  Google Scholar 

  74. Fishman JB, Rubin JB, Handrahan JV, et al. Receptor-mediated transcytosis of transferrin across the blood–brain barrier. J Neurosci Res. 1987;18:299–304.

    Article  CAS  PubMed  Google Scholar 

  75. Raub TJ, Newton CR. Recycling kinetics and transcytosis of transferrin in primary cultures of bovine brain microvessel endothelial cells. J Cell Physiol. 1991;149:141–51.

    Article  CAS  PubMed  Google Scholar 

  76. Descamps L, Dehouck MP, Torpier G, Cecchelli R. Receptor-mediated transcytosis of transferrin through blood–brain barrier endothelial cells. Am J Physiol. 1996;270(4 Pt 2):H1149–58.

    CAS  PubMed  Google Scholar 

  77. Friden PM, Walus LR, Musso GF, et al. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier. Proc Natl Acad Sci USA. 1991;88:4771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J Pharmacol Exp Ther. 1991;259:66–70.

    CAS  PubMed  Google Scholar 

  79. Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem. 2001;79:119–29.

    Article  CAS  PubMed  Google Scholar 

  80. Gosk S, Vermehren C, Storm G, Moos T. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab. 2004;24:1193–204.

    Article  CAS  PubMed  Google Scholar 

  81. Cabezón I, Manich G, Martín-Venegas R, et al. Trafficking of gold nanoparticles coated with the 8D3 anti-transferrin receptor antibody at the mouse blood–brain barrier. Mol Pharm. 2015;12:4137–45.

    Article  PubMed  CAS  Google Scholar 

  82. Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.

  83. Pardridge WM. Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv. 2015;12:207–22.

    Article  CAS  PubMed  Google Scholar 

  84. Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60.

    Article  CAS  PubMed  Google Scholar 

  85. Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci USA. 2015;112:12486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kang YS, Jung HJ, Oh JS, Song DY. Use of PEGylated immunoliposomes to deliver dopamine across the blood–brain barrier in a rat model of Parkinson’s disease. CNS Neurosci Ther. 2016;22(10):817–23.

    Article  CAS  PubMed  Google Scholar 

  87. Wei L, Guo XY, Yang T, et al. Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles. Int J Pharm. 2016;510:394–405.

    Article  CAS  PubMed  Google Scholar 

  88. Youn P, Chen Y, Furgeson DY. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm. 2014;11:486–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Morales-Cruz M, Cruz-Montañez A, Figueroa CM, et al. Combining stimulus-triggered release and active targeting strategies improves cytotoxicity of cytochrome c nanoparticles in tumor cells. Mol Pharm. 2016;13:2844–54.

    Article  CAS  PubMed  Google Scholar 

  90. Dong S, Cho HJ, Lee YW, Roman M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules. 2014;15:1560–7.

    Article  CAS  PubMed  Google Scholar 

  91. Yamamoto M, Ikeda K, Ohshima K, et al. Increased expression of low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor in human malignant astrocytomas. Cancer Res. 1997;57:2799–805.

    CAS  PubMed  Google Scholar 

  92. Xiao G, Gan LS. Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol. 2013;2013:703545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Peiser L, Gordon S. The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect. 2001;3:149–59.

    Article  CAS  PubMed  Google Scholar 

  94. Srivastava RA. Scavenger receptor class B type I expression in murine brain and regulation by estrogen and dietary cholesterol. J Neurol Sci. 2003;210:11–8.

    Article  CAS  PubMed  Google Scholar 

  95. de Boer AG, van der Sandt IC, Gaillard PJ. The role of drug transporters at the blood–brain barrier. Annu Rev Pharmacol Toxicol. 2003;43:629–56.

    Article  PubMed  CAS  Google Scholar 

  96. Srimanee A, Regberg J, Hällbrink M, et al. Peptide-based delivery of oligonucleotides across blood–brain barrier model. Int J Pept Res Ther. 2014;20:169–78.

    Article  CAS  Google Scholar 

  97. Srimanee A, Regberg J, Hällbrink M, et al. Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood–brain barrier model. Int J Pharm. 2016;500:128–35.

    Article  CAS  PubMed  Google Scholar 

  98. Ribas A, Butterfield LH, Glaspy JA, Economou JS. Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol. 2003;21:2415–32.

    Article  CAS  PubMed  Google Scholar 

  99. Madhankumar AB, Slagle-Webb B, Wang X, et al. Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther. 2009;8:648–54.

    Article  CAS  PubMed  Google Scholar 

  100. Wang B, Lv L, Wang Z, et al. Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α 2-mediated endocytosis. Biomaterials. 2014;35:5897–907.

    Article  CAS  PubMed  Google Scholar 

  101. Wang B, Lv L, Wang Z, et al. Improved anti-glioblastoma efficacy by IL-13Rα2 mediated copolymer nanoparticles loaded with paclitaxel. Sci Rep. 2015;5:16589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gao X, Qian J, Zheng S, et al. Overcoming the blood–brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano. 2014;8:3678–89.

    Article  CAS  PubMed  Google Scholar 

  103. Liu Y, Mei L, Xu C, et al. Dual receptor recognizing cell penetrating peptide for selective targeting, efficient intratumoral diffusion and synthesized anti-glioma therapy. Theranostics. 2016;6:177–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pardridge WM, Eisenberg J, Yang J. Human blood–brain barrier insulin receptor. J Neurochem. 1985;44:1771–8.

    Article  CAS  PubMed  Google Scholar 

  105. Xie L, Helmerhorst E, Taddei K, et al. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002;22:RC221.

  106. Dieu LH, Wu D, Palivan CG, et al. Polymersomes conjugated to 83-14 monoclonal antibodies: in vitro targeting of brain capillary endothelial cells. Eur J Pharm Biopharm. 2014;88:316–24.

    Article  CAS  PubMed  Google Scholar 

  107. Webster CI, Caram-Salas N, Haqqani AS, et al. Brain penetration, target engagement, and disposition of the blood–brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 2016;30:1927–40.

    Article  CAS  PubMed  Google Scholar 

  108. Vivès E, Schmidt J, Pèlegrin A. Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta. 2008;1786:126–38.

    PubMed  Google Scholar 

  109. Böckenhoff A, Cramer S, Wölte P, et al. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A. J Neurosci. 2014;34:3122–9.

    Article  PubMed  CAS  Google Scholar 

  110. Regina A, Demeule M, Tripathy S, et al. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther. 2015;14:129–40.

    Article  CAS  PubMed  Google Scholar 

  111. Yin T, Yang L, Liu Y, et al. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater. 2015;25:172–83.

    Article  CAS  PubMed  Google Scholar 

  112. Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. Faseb J. 2004;18:998–1000.

    CAS  PubMed  Google Scholar 

  113. Bechmann IL, Goldmann J, Kovac AD, et al. Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. Faseb J. 2005;19:647–9.

    CAS  PubMed  Google Scholar 

  114. Priller J, Flügel A, Wehner T, et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med. 2001;7:1356–61.

    Article  CAS  PubMed  Google Scholar 

  115. Tong HI, Kang W, Davy PM, et al. Monocyte trafficking, engraftment, and delivery of nanoparticles and an exogenous gene into the acutely inflamed brain tissue: evaluations on monocyte-based delivery system for the central nervous system. PLoS One. 2016;11:e0154022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Batrakova EV, Gendelman HE, Kabanov AV. Cell-mediated drug delivery. Expert Opin Drug Deliv. 2011;8:415–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chien CT, Jou MJ, Cheng TY, et al. Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats. J Cereb Blood Flow Metab. 2015;35:1790–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vera M, Barcia E, Negro S, et al. New celecoxib multiparticulate systems to improve glioblastoma treatment. Int J Pharm. 2014;473:518–27.

    Article  CAS  PubMed  Google Scholar 

  119. Shivinsky A, Bronshtein T, Haber T, Machluf M. The effect of AZD2171- or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model. Biomed Microdevices. 2015;17:69.

    Article  PubMed  CAS  Google Scholar 

  120. Floyd JA, Galperin A, Ratner BD. Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy. J Biomed Mater Res A. 2016;104:544–52.

    Article  CAS  PubMed  Google Scholar 

  121. Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J Control Release. 2001;74:63–7.

    Article  CAS  PubMed  Google Scholar 

  122. Newcomb R, Abbruscato TJ, Singh T, et al. Bioavailability of ziconotide in brain: influx from blood, stability and diffusion. Peptides. 2000;21:491–501.

    Article  CAS  PubMed  Google Scholar 

  123. Panigrahi M, Das PK, Parikh PM. Brain tumor and Gliadel wafer treatment. Indian J Cancer. 2011;48:11–7.

    Article  CAS  PubMed  Google Scholar 

  124. Gliadel. http://gliadel.com/patient/how-gliadel-is-used.php. Accessed 18 Nov 2016.

  125. Li X, Tsibouklis J, Weng T, et al. Nano carriers for drug transport across the blood brain barrier. J Drug Target. 2016;19:1–12.

    CAS  Google Scholar 

  126. Elenna B, Alexander VK. Polymers for CNS drug delivery. Pharm Tech Europe 2007;19(5):23–31.

  127. Umezawa F, Eto Y. Liposome targeting to mouse brain: mannose as a recognition marker. Biochem Biophys Res Commun. 1988;153:1038–44.

    Article  CAS  PubMed  Google Scholar 

  128. Aoki H, Kakinuma K, Morita K, et al. Therapeutic efficacy of targeting chemotherapy using local hyperthermia and thermosensitive liposome: evaluation of drug distribution in a rat glioma model. Int J Hyperther. 2004;20:595–605.

    Article  CAS  Google Scholar 

  129. Chekhonin VP, Zhirkov YA, Gurina OI, et al. PEGylated immunoliposomes directed against brain astrocytes. Drug Deliv. 2005;12:1–6.

    Article  CAS  PubMed  Google Scholar 

  130. Pardridge WM. Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx. 2005;2:129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chen X, Yuan M, Zhang Q, et al. Synergistic combination of doxorubicin and paclitaxel delivered by blood brain barrier and glioma cells dual targeting liposomes for chemotherapy of brain glioma. Curr Pharm Biotechnol. 2016;17:636–50.

    Article  CAS  PubMed  Google Scholar 

  132. Harbi I, Aljaeid B, El-Say KM, Zidan AS. Glycosylated sertraline-loaded liposomes for brain targeting: QbD study of formulation variabilities and brain transport. AAPS PharmSciTech. 2016;17(6):1404–20.

    Article  CAS  PubMed  Google Scholar 

  133. Wei X, Gao J, Zhan C, et al. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J Control Release. 2015;218:13–21.

    Article  CAS  PubMed  Google Scholar 

  134. Monsalve Y, Tosi G, Ruozi B, et al. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting. Nanomedicine (Lond). 2015;10:1735–50.

    Article  CAS  PubMed  Google Scholar 

  135. Chen B, He XY, Yi XQ, et al. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl Mater Interfaces. 2015;7:15148–53.

    Article  CAS  PubMed  Google Scholar 

  136. Fornaguera C, Dols-Perez A, Calderó G, et al. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. J Control Release. 2015;211:134–43.

    Article  CAS  PubMed  Google Scholar 

  137. Attama AA, Momoh MA, Philip F. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. In: Sezer AD, editor. Recent Advances Novel Drug Carrier Systems. Croatia (European Union): In Tech; 2012. doi:10.5772/50486.

  138. Shah R, Eldridge D, Palombo E, Harding I. Lipid nanoparticle: production, characterization and stability. 1st ed. Geneva: Springer International Publishing; 2015.

    Google Scholar 

  139. Garanti T, Stasik A, Burrow AJ, et al. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int J Pharm. 2016;500(1–2):305–15.

    Article  CAS  PubMed  Google Scholar 

  140. Kuo YC, Wang IH. Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles. J Drug Target. 2016;24:645–54.

    Article  CAS  PubMed  Google Scholar 

  141. Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016;23:1434–43.

    Article  CAS  PubMed  Google Scholar 

  142. Singh I, Swami R, Pooja D, et al. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J Drug Target. 2016;24:212–23.

    Article  CAS  PubMed  Google Scholar 

  143. Wu M, Fan Y, Lv S, et al. Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. Drug Deliv. 2015;27:1–6.

    Article  CAS  Google Scholar 

  144. Yang Hu. Nanoparticle-mediated brain-specific drug delivery, imaging and diagnosis. Pharm Res. 2010;27:1759–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cui Y, Xu Q, Chow PK, et al. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34:8511–20.

    Article  CAS  PubMed  Google Scholar 

  146. Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials. 2012;33:3324–33.

    Article  CAS  PubMed  Google Scholar 

  147. Liu DF, Qian C, An YL, et al. Magnetic resonance imaging of post-ischemic blood–brain barrier damage with PEGylated iron oxide nanoparticles. Nanoscale. 2014;6:15161–7.

    Article  CAS  PubMed  Google Scholar 

  148. Huang Y, Zhang B, Xie S, et al. Superparamagnetic iron oxide nanoparticles modified with Tween 80 pass through the intact blood–brain barrier in rats under magnetic field. ACS Appl Mater Inter. 2016;8:11336–41.

    Article  CAS  Google Scholar 

  149. Shevtsov MA, Nikolaev BP, Yakovleva LY, et al. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int J Nanomed. 2014;9:273–87.

    Article  Google Scholar 

  150. Laurent S, Saei AA, Behzadi S, et al. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11:1449–70.

    Article  CAS  PubMed  Google Scholar 

  151. Picone P, Ditta LA, Sabatino MA, et al. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials. 2016;80:179–94.

    Article  CAS  PubMed  Google Scholar 

  152. Baklaushev VP, Nukolova NN, Khalansky AS, et al. Treatment of glioma by cisplatin-loaded nanogels conjugated with monoclonal antibodies against Cx43 and BSAT1. Drug Deliv. 2015;22:276–85.

    Article  CAS  PubMed  Google Scholar 

  153. Nukolova NV, Baklaushev VP, Abakumova TO, et al. Targeted delivery of cisplatin by connexin 43 vector nanogels to the focus of experimental glioma C6. Bull Exp Biol Med. 2014;157:524–9.

    Article  CAS  PubMed  Google Scholar 

  154. Madaan K, Kumar S, Poonia N, et al. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6(3):139–50.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Noriega-Luna B, Godínez LA, Rodríguez FJ, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomaterials. 2014;2014:Article ID 507273. (19 pages).

  156. Katare YK, Daya RP, Sookram Gray C, et al. Brain targeting of a water insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer. Mol Pharm. 2015;12:3380–8.

    Article  CAS  PubMed  Google Scholar 

  157. Zhao J, Zhang B, Shen S, et al. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J Colloid Interface Sci. 2015;450:396–403.

    Article  CAS  PubMed  Google Scholar 

  158. Zarebkohan A, Najafi F, Moghimi HR, et al. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. Eur J Pharm Sci. 2015;78:19–30.

    Article  CAS  PubMed  Google Scholar 

  159. Sonali, Agrawal P, Singh RP, et al. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Deliv. 2016;23:1788–98.

    Article  CAS  PubMed  Google Scholar 

  160. Wang G, Wang JJ, Chen XL, et al. Quercetin-loaded freeze-dried nanomicelles: improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release. 2016;235:276–90.

    Article  CAS  PubMed  Google Scholar 

  161. Wang G, Wang JJ, Tang XJ, et al. In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer. Nanomedicine. 2016;12:1263–78.

    CAS  PubMed  Google Scholar 

  162. Wang G, Wang JJ, Li F, To SS. Development and evaluation of a novel drug delivery: Pluronics/SDS mixed micelle loaded with myricetin in vitro and in vivo. J Pharm Sci. 2016;105:1535–43.

    Article  CAS  PubMed  Google Scholar 

  163. Đorđević SM, Cekić ND, Savić MM, et al. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: design, characterization and in vivo pharmacokinetic evaluation. Int J Pharm. 2015;493:40–54.

    Article  PubMed  CAS  Google Scholar 

  164. Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm. 2008;347:93–101.

    Article  CAS  PubMed  Google Scholar 

  165. Discher BM, Won YY, Ege DS, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284:1143–6.

    Article  CAS  PubMed  Google Scholar 

  166. Pang Z, Gao H, Yu Y, et al. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem. 2011;22:1171–80.

    Article  CAS  PubMed  Google Scholar 

  167. Yu Y, Jiang X, Gong S, et al. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood–brain barrier after modification with lactoferrin. Nanoscale. 2014;6:3250–8.

    Article  CAS  PubMed  Google Scholar 

  168. Chen YC, Chiang CF, Chen LF, et al. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials. 2014;35:4066–81.

    Article  CAS  PubMed  Google Scholar 

  169. Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32:2003–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kooijmans SA, Vader P, van Dommelen SM, et al. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomed. 2012;7:1525–41.

    CAS  Google Scholar 

  171. Lai RC, Yeo RW, Tan KH, Lim SK. Exosomes for drug delivery: a novel application for the mesenchymal stem cell. Biotechnol Adv. 2013;31:543–51.

    Article  CAS  PubMed  Google Scholar 

  172. van den Boorn JG, Dassler J, Coch C, et al. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev. 2013;65:331–5.

    Article  PubMed  CAS  Google Scholar 

  173. Lakhaland S, Wood MJ. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays News Rev Mol Cell Dev Biol. 2011;33:737–41.

    Article  CAS  Google Scholar 

  174. Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther J Am Soc Gene Ther. 2011;19:1769–79.

    Article  CAS  Google Scholar 

  175. Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009;20:363–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  PubMed  Google Scholar 

  177. Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7:7698–710.

    Article  CAS  PubMed  Google Scholar 

  178. Yangand J, Aschner M. Developmental aspects of blood–brain barrier (BBB) and rat brain endothelial (RBE4) cells as in vitro model for studies on chlorpyrifos transport. Neurotoxicology. 2003;24:741–5.

    Article  CAS  Google Scholar 

  179. Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther J Am Soc Gene Ther. 2010;18:1606–14.

    Article  CAS  Google Scholar 

  180. Paris-Robidas S, Brouard D, Emond V, et al. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo. J Cereb Blood Flow Metab. 2016;36:731–42.

    Article  PubMed  Google Scholar 

  181. Chaichana KL, Pinheiro L, Brem H. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv. 2015;6:353–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Santini JT Jr, Cima MJ, Langer R. A controlled-release microchip. Nature. 1999;397:335–8.

    Article  CAS  PubMed  Google Scholar 

  183. Richards Grayson AC, Choi IS, Tyler BM, et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater. 2003;2:767–72.

    Article  PubMed  Google Scholar 

  184. Scott AW, Tyler BM, Masi BC, et al. Intracranial microcapsule drug delivery device for the treatment of an experimental gliosarcoma model. Biomaterials. 2011;32:2532–9.

    Article  CAS  PubMed  Google Scholar 

  185. Illum L. Nasal drug delivery: possibilities, problems and solutions. J Control Release. 2003;87:187–98.

    Article  CAS  PubMed  Google Scholar 

  186. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11:1–18.

    Article  CAS  PubMed  Google Scholar 

  187. Quay SC. Successful delivery of apomorphine to the brain following intranasal administration demonstrated in clinical study. New York: PR Newswire; 2001.

    Google Scholar 

  188. Fehm HL, Perras B, Smolnik R, et al. Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology. Eur J Pharmacol. 2000;405:43–54.

    Article  CAS  PubMed  Google Scholar 

  189. Perras B, Pannenborg H, Marshall L, et al. Beneficial treatment of agerelated sleep disturbances with prolonged intranasal vasopressin. J Clin N Psychopharmacol. 1999;19:28–36.

    Article  CAS  Google Scholar 

  190. Perras B, Marshall L, Köhler G, et al. Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuroendocrinology. 1999;24:743–57.

    Article  CAS  PubMed  Google Scholar 

  191. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–28.

    Article  CAS  PubMed  Google Scholar 

  192. Zheng X, Shao X, Zhang C, et al. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res. 2015;32:3837–49.

    Article  CAS  PubMed  Google Scholar 

  193. Rassu G, Soddu E, Cossu M, et al. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release. 2015;201:68–77.

    Article  CAS  PubMed  Google Scholar 

  194. Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104:3544–56.

    Article  CAS  PubMed  Google Scholar 

  195. Muntimadugu E, Dhommati R, Jain A, et al. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci. 2016;92:224–34.

    Article  CAS  PubMed  Google Scholar 

  196. Krauze MT, Saito R, Noble C, et al. Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp Neurol. 2005;196:104–11.

    Article  CAS  PubMed  Google Scholar 

  197. Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 2015;17(Suppl. 2):ii3–8.

  198. Bernal GM, LaRiviere MJ, Mansour N, et al. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine. 2014;10:149–57.

    CAS  PubMed  Google Scholar 

  199. Corem-Salkmon E, Ram Z, Daniels D, et al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomed. 2011;6:1595–602.

    CAS  Google Scholar 

  200. Hadjipanayis CG, Machaidze R, Kaluzova M, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 2010;70:6303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sawyer AJ, Saucier-Sawyer JK, Booth CJ, et al. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv Transl Res. 2011;1:34–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Voges J, Reszka R, Gossmann A, et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol. 2003;54:479–87.

    Article  CAS  PubMed  Google Scholar 

  203. Dickinson PJ, LeCouteur RA, Higgins RJ, et al. Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation. J Neurosurg. 2008;108:989–98.

    Article  CAS  PubMed  Google Scholar 

  204. MacKay JA, Deen DF, Szoka FC Jr. Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res. 2005;1035:139–53.

    Article  CAS  PubMed  Google Scholar 

  205. White E, Bienemann A, Pugh J, et al. An evaluation of the safety and feasibility of convection-enhanced delivery of carboplatin into the white matter as a potential treatment for high-grade glioma. J Neurooncol. 2012;108:77–88.

    Article  CAS  PubMed  Google Scholar 

  206. Barua NU, Woolley M, Bienemann AS, et al. Convection-enhanced delivery of AAV2 in white matter: a novel method for gene delivery to cerebral cortex. J Neurosci Methods. 2013;220:1–8.

    Article  CAS  PubMed  Google Scholar 

  207. Bogdahn U, Hau P, Stockhammer G, et al. Trabedersen Glioma Study Group. Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 2011;13(1):132–42.

    Article  CAS  PubMed  Google Scholar 

  208. Bogdahn U, Hau P, Stockhammer G, Trabedersen Glioma Study Group, et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol. 2010;12:401–8.

    Article  CAS  Google Scholar 

  209. Crawford L, Rosch J, Putnam D. Concepts, technologies, and practices for drug delivery past the blood–brain barrier to the central nervous system. J Control Release. 2016;240:251–6.

    Article  CAS  PubMed  Google Scholar 

  210. Borlongan CV, Glover LE, Sanberg PR, Hess DC. Permeating the blood brain barrier and abrogating the inflammation in stroke: implications for stroke therapy. Curr Pharm Des. 2012;18:3670–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sun Z, Worden M, Wroczynskyj Y, et al. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood–brain barrier. Int J Nanomed. 2014;9:3013–26.

    Article  CAS  Google Scholar 

  212. Okuma Y, Wang F, Toyoshima A, et al. Mannitol enhances therapeutic effects of intra-arterial transplantation of mesenchymal stem cells into the brain after traumatic brain injury. Neurosci Lett. 2013;554:156–61.

    Article  CAS  PubMed  Google Scholar 

  213. Yao ST, May CN. Intra-carotid angiotensin II activates tyrosine hydroxylase expressing rostral ventrolateral medulla neurons following blood–brain barrier disruption in rats. Neuroscience. 2013;24:148–56.

    Article  CAS  Google Scholar 

  214. Foley CP, Rubin DG, Santillan A, et al. Intraarterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J Control Release. 2014;196:71–8.

    Article  CAS  PubMed  Google Scholar 

  215. Hwang DW, Son S, Jang J, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials. 2011;32:4968–75.

    Article  CAS  PubMed  Google Scholar 

  216. Salahuddin TS, Johansson BB, Kalimo H, Olsson Y. Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: an electron microscopic study. Acta Neuropathol. 1988;77:5–13.

    Article  CAS  PubMed  Google Scholar 

  217. Salahuddin TS, Johansson BB, Kalimo H, Olsson Y. Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: a light microscopic and immunohistochemical study. Neuropathol Appl Neurobiol Neuropept. 1988;14:467–82.

    Article  CAS  Google Scholar 

  218. Miller G. Drug targeting: breaking down barriers. Science. 2002;297:1116–8.

    Article  CAS  PubMed  Google Scholar 

  219. Yan-Yu X, Qi-Neng P, Zhi-Peng C. The enhancing effect of synthetical borneol on the absorption of tetramethylpyrazine phosphate in mouse. Int J Pharm. 2007;337:74–9.

    Article  PubMed  CAS  Google Scholar 

  220. Garg P, Pandey S, Seonwoo H, et al. Hyperosmotic polydixylitol for crossing the blood brain barrier and efficient nucleic acid delivery. Chem Commun. 2015;51:3645–8.

    Article  CAS  Google Scholar 

  221. On NH, Savant S, Toews M, Miller DW. Rapid and reversible enhancement of blood–brain barrier permeability using lysophosphatidic acid. J Cereb Blood Flow Metab. 2013;33:1944–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Matsukado K, Inamura T, Nakano S, et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of the bradykinin analog, RMP-7. Neurosurgery. 1996;39:125–33.

    Article  CAS  PubMed  Google Scholar 

  223. Côté J, Savard M, Neugebauer W, et al. Dual kinin B1 and B2 receptor activation provides enhanced blood–brain barrier permeability and anticancer drug delivery into brain tumors. Cancer Biol Ther. 2013;14:806–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Kuo YC, Chou PR. Neuroprotection against degeneration of SK-N-MC cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci. 2014;103:2484–97.

    Article  CAS  PubMed  Google Scholar 

  225. Kim DG, Bynoe MS. A2A adenosine receptor regulates the human blood–brain barrier permeability. Mol Neurobiol. 2015;52:664–78.

    Article  CAS  PubMed  Google Scholar 

  226. Gao H, Xiong Y, Zhang S, et al. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharm. 2014;11:1042–52.

    Article  CAS  PubMed  Google Scholar 

  227. Zheng S, Bai YY, Liu Y, et al. Salvaging brain ischemia by increasing neuroprotectant uptake via nanoagonist mediated blood brain barrier permeability enhancement. Biomaterials. 2015;66:9–20.

    Article  CAS  PubMed  Google Scholar 

  228. Zhang Y, Miller DW. Pathways for drug delivery to the central nervous system. In: Wang B, Siahaan T, Soltero RA, editors. Drug delivery: principles and applications. Hoboken: Wiley Interscience; 2005. p. 29–56.

    Chapter  Google Scholar 

  229. Erdlenbruch B, Alipour M, Fricker G, et al. Alkylglycerol opening of the blood–brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol. 2003;140:1201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Erdlenbruch B, Jendrossek V, Eibl H, Lakomek M. Transient and controllable opening of the blood–brain barrier to cytostatic and antibiotic agents by alkylglycerols in rats. Exp Brain Res. 2000;135:417–22.

    Article  CAS  PubMed  Google Scholar 

  231. Hülper P, Veszelka S, Walter FR, et al. Acute effects of short-chain alkylglycerols on blood–brain barrier properties of cultured brain endothelial cells. Br J Pharmacol. 2013;169:1561–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imagingguided focal opening of the blood–brain barrier in rabbits. Radiology. 2001;220(3):640–6.

    Article  CAS  PubMed  Google Scholar 

  233. Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev. 2014;72:94–109.

    Article  CAS  PubMed  Google Scholar 

  234. Yang FY, Lin YL, Chou FI, et al. Pharmacokinetics of BPA in gliomas with ultrasound induced blood–brain barrier disruption as measured by microdialysis. PLoS One. 2014;9:e100104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Park J, Zhang Y, Vykhodtseva N, et al. The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Control Release. 2012;162:134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Choi JJ, Selert K, Gao Z, et al. Noninvasive and localized blood–brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies. J Cereb Blood Flow Metab. 2011;31:725–37.

    Article  PubMed  Google Scholar 

  237. Huang Q, Deng J, Wang F, et al. Targeted gene delivery to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Exp Neurol. 2012;233:350–6.

    Article  CAS  PubMed  Google Scholar 

  238. Huang Q, Deng J, Xie Z, et al. Effective gene transfer into central nervous system following ultrasound-microbubbles-induced opening of the blood–brain barrier. Ultrasound Med Biol. 2012;38:1234–43.

    Article  PubMed  Google Scholar 

  239. Burgess A, Huang Y, Querbes W, et al. Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression. J Control Release. 2012;163:125–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Alonso A, Reinz E, Leuchs B, et al. Focal delivery of AAV2/1-transgenes into the rat brain by localized ultrasound-induced BBB Opening. Mol Ther Nucleic Acids. 2013;2:e73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Hsu PH, Wei KC, Huang CY, et al. Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PLoS One. 2013;8:e57682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. O’Reilly MA, Waspe AC, Ganguly M, Hynynen K. Focused-ultrasound disruption of the blood–brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate. Ultrasound Med Biol. 2011;37:587–94.

    Article  PubMed  PubMed Central  Google Scholar 

  243. O’Reilly MA, Huang Y, Hynynen K. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood–brain barrier in a rat model. Phys Med Biol. 2010;55:5251–67.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Samiotaki G, Konofagou EE. Dependence of the reversibility of focused ultrasound induced blood–brain barrier opening on pressure and pulse length in vivo. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:2257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Yang FY, Lin GL, Horng SC, et al. Pulsed high intensity focused ultrasound enhances the relative permeability of the blood tumor barrier in a glioma-bearing rat model. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58:964–70.

    Article  PubMed  Google Scholar 

  246. Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6:268–86.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Aryal M, Vykhodtseva N, Zhang YZ, McDannold N. Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood–brain barrier disruption: a safety study. J Control Release. 2015;204:60–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics. 2008;48(4):279–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayur M. Patel.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

Mayur M. Patel and Bhoomika M. Patel declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.M., Patel, B.M. Crossing the Blood–Brain Barrier: Recent Advances in Drug Delivery to the Brain. CNS Drugs 31, 109–133 (2017). https://doi.org/10.1007/s40263-016-0405-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-016-0405-9

Keywords

Navigation