Skip to main content
Log in

Biomarkers of Response to Smoking Cessation Pharmacotherapies: Progress to Date

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

For the past 30 years, research examining predictors of successful smoking cessation treatment response has focused primarily on clinical variables, such as levels of tobacco dependence, craving, and self-efficacy. However, recent research has begun to determine biomarkers (such as genotype, nicotine and metabolite levels, and brain imaging findings) that may have utility in predicting smoking cessation. For genotype, genes associated with nicotinic acetylcholine receptors (nAChRs) and related proteins have been found to predict response to first-line medications (e.g. nicotine replacement therapy [NRT], bupropion, or varenicline) or quitting over time without a controlled treatment trial. For nicotine and metabolite levels, function of the cytochrome P450 2A6 liver enzyme, which can be assessed with the nicotine metabolite ratio or via genotype, has been found to predict response, with slow nicotine metabolizers having less severe nicotine dependence and a greater likelihood of quitting with NRT than normal metabolizers. For brain imaging, decreased activation of brain regions associated with emotion regulation and increased connectivity in emotion regulation networks, increased responsiveness to pleasant cues, and altered activation with the Stroop effect have been found in smokers who quit with the first-line medications listed above or counseling. In addition, our group recently demonstrated that lower pre-treatment brain nAChR density is associated with a greater chance of quitting smoking with NRT or placebo. Several of these studies found that specific biomarkers may provide additional information for predicting response beyond subjective symptom or rating scale measures, thereby giving an initial indication that biomarkers may, in the future, be useful for guiding smoking cessation treatment intensity, duration, and type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waters AJ, Shiffman S, Sayette MA, Paty JA, Gwaltney CJ, Balabanis MH. Cue-provoked craving and nicotine replacement therapy in smoking cessation. J Consult Clin Psychol. 2004;72(6):1136–43.

    Article  PubMed  Google Scholar 

  2. Berlin I, Singleton EG, Heishman SJ. Predicting smoking relapse with a multidimensional versus a single-item tobacco craving measure. Drug Alcohol Depend. 2013;132(3):513–20.

    Article  PubMed  Google Scholar 

  3. Westman EC, Behm FM, Simel DL, Rose JE. Smoking behavior on the first day of a quit attempt predicts long-term abstinence. Arch Intern Med. 1997;157(3):335–40.

    Article  CAS  PubMed  Google Scholar 

  4. Hymowitz N, Cummings KM, Hyland A, Lynn WR, Pechacek TF, Hartwell TD. Predictors of smoking cessation in a cohort of adult smokers followed for five years. Tob Control. 1997;6(Suppl 2):S57–62.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Dale LC, Glover ED, Sachs DP, Schroeder DR, Offord KP, Croghan IT, et al. Bupropion for smoking cessation: predictors of successful outcome. Chest. 2001;119(5):1357–64.

    Article  CAS  PubMed  Google Scholar 

  6. Paluck EC, McCormack JP, Ensom MH, Levine M, Soon JA, Fielding DW. Outcomes of bupropion therapy for smoking cessation during routine clinical use. Ann Pharmacother. 2006;40(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  7. Kozlowski LT, Porter CQ, Orleans CT, Pope MA, Heatherton T. Predicting smoking cessation with self-reported measures of nicotine dependence: FTQ, FTND, and HSI. Drug Alcohol Depend. 1994;34(3):211–6.

    Article  CAS  PubMed  Google Scholar 

  8. Batra A, Collins SE, Torchalla I, Schroter M, Buchkremer G. Multidimensional smoker profiles and their prediction of smoking following a pharmacobehavioral intervention. J Subst Abuse Treat. 2008;35(1):41–52.

    Article  PubMed  Google Scholar 

  9. Haug S, Schaub MP, Schmid H. Predictors of adolescent smoking cessation and smoking reduction. Patient Educ Couns. 2014;95(3):378–83.

    Article  PubMed  Google Scholar 

  10. Jayakrishnan R, Uutela A, Mathew A, Auvinen A, Mathew PS, Sebastian P. Smoking cessation intervention in rural Kerala, India: findings of a randomised controlled trial. Asia Pac J Cancer Prevent. 2013;14(11):6797–802.

    Article  Google Scholar 

  11. Reid MS, Jiang H, Fallon B, Sonne S, Rinaldi P, Turrigiano E, et al. Smoking cessation treatment among patients in community-based substance abuse rehabilitation programs: exploring predictors of outcome as clues toward treatment improvement. Am J Drug Alcohol Abuse. 2011;37(5):472–8.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dorner TE, Trostl A, Womastek I, Groman E. Predictors of short-term success in smoking cessation in relation to attendance at a smoking cessation program. Nicotine Tob Res. 2011;13(11):1068–75.

    Article  PubMed  Google Scholar 

  13. Borland R, Yong HH, O’Connor RJ, Hyland A, Thompson ME. The reliability and predictive validity of the Heaviness of Smoking Index and its two components: findings from the International Tobacco Control Four Country study. Nicotine Tob Res. 2010;12(Suppl):S45–50.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Myung SK, Seo HG, Park S, Kim Y, Kim DJ, Lee do H, et al. Sociodemographic and smoking behavioral predictors associated with smoking cessation according to follow-up periods: a randomized, double-blind, placebo-controlled trial of transdermal nicotine patches. J Korean Med Sci. 2007;22(6):1065–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Stolz D, Scherr A, Seiffert B, Kuster M, Meyer A, Fagerstrom KO, et al. Predictors of success for smoking cessation at the workplace: a longitudinal study. Respiration. 2014;87(1):18–25.

    Article  PubMed  Google Scholar 

  16. Kaleta D, Korytkowski P, Makowiec-Dabrowska T, Usidame B, Bak-Romaniszyn L, Fronczak A. Predictors of long-term smoking cessation: results from the global adult tobacco survey in Poland (2009–2010). BMC Public Health. 2012;12:1020.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Haug S, Meyer C, Ulbricht S, Schorr G, Ruge J, Rumpf HJ, et al. Predictors and moderators of outcome in different brief interventions for smoking cessation in general medical practice. Patient Educ Couns. 2010;78(1):57–64.

    Article  PubMed  Google Scholar 

  18. Sheffer CE, Stitzer M, Payne TJ, Applegate BW, Bourne D, Wheeler JG. Treatment for tobacco dependence for rural, lower-income smokers: outcomes, predictors, and measurement considerations. Am J Health Promot. 2009;23(5):328–38.

    Article  PubMed  Google Scholar 

  19. Klein EG, Forster JL, Erickson DJ. Longitudinal predictors of stopping smoking in young adulthood. J Adolesc Health. 2013;53(3):363–7.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bauld L, Ferguson J, McEwen A, Hiscock R. Evaluation of a drop-in rolling-group model of support to stop smoking. Addiction. 2012;107(9):1687–95.

    Article  PubMed  Google Scholar 

  21. Kim YJ. Predictors for successful smoking cessation in Korean adults. Asia Nurs Res. 2014;8(1):1–7.

    Article  CAS  Google Scholar 

  22. Prado GF, Lombardi EM, Bussacos MA, Arrabal-Fernandes FL, Terra-Filho M, Santos Ude P. A real-life study of the effectiveness of different pharmacological approaches to the treatment of smoking cessation: re-discussing the predictors of success. Clinics (Sao Paulo). 2011;66(1):65–71.

    Article  Google Scholar 

  23. Myung SK, Park JG, Bae WK, Lee YJ, Kim Y, Seo HG. Effectiveness of proactive Quitline service and predictors of successful smoking cessation: findings from a preliminary study of Quitline service for smoking cessation in Korea. J Korean Med Sci. 2008;23(5):888–94.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Belleudi V, Bargagli AM, Davoli M, Di Pucchio A, Pacifici R, Pizzi E, et al. Characteristics and effectiveness of smoking cessation programs in Italy. Results of a multicentric longitudinal study [in Italian]. Epidemiol Prev. 2007;31(2–3):148–57.

    PubMed  Google Scholar 

  25. Smit ES, Hoving C, Schelleman-Offermans K, West R, de Vries H. Predictors of successful and unsuccessful quit attempts among smokers motivated to quit. Addict Behav. 2014;39(9):1318–24.

    Article  PubMed  Google Scholar 

  26. Jardin BF, Carpenter MJ. Predictors of quit attempts and abstinence among smokers not currently interested in quitting. Nicotine Tob Res. 2012;14(10):1197–204.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Schnoll RA, Martinez E, Tatum KL, Glass M, Bernath A, Ferris D, et al. Increased self-efficacy to quit and perceived control over withdrawal symptoms predict smoking cessation following nicotine dependence treatment. Addict Behav. 2011;36(1–2):144–7.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Asvat Y, Cao D, Africk JJ, Matthews A, King A. Feasibility and effectiveness of a community-based smoking cessation intervention in a racially diverse, urban smoker cohort. Am J Public Health. 2014;104(Suppl 4):S620–7.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Bock BC, Papandonatos GD, de Dios MA, Abrams DB, Azam MM, Fagan M, et al. Tobacco cessation among low-income smokers: motivational enhancement and nicotine patch treatment. Nicotine Tob Res. 2014;16(4):413–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shiffman S, Balabanis MH, Gwaltney CJ, Paty JA, Gnys M, Kassel JD, et al. Prediction of lapse from associations between smoking and situational antecedents assessed by ecological momentary assessment. Drug Alcohol Depend. 2007;91(2–3):159–68.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Japuntich SJ, Smith SS, Jorenby DE, Piper ME, Fiore MC, Baker TB. Depression predicts smoking early but not late in a quit attempt. Nicotine Tob Res. 2007;9(6):677–86.

    Article  PubMed  Google Scholar 

  32. al’ Absi M, Carr SB, Bongard S. Anger and psychobiological changes during smoking abstinence and in response to acute stress: prediction of smoking relapse. Int J Psychophysiol. 2007;66(2):109–15.

    Article  Google Scholar 

  33. Boudrez H, Hoengenaert JP, Nackaerts K, Messig M, Metcalfe M. Predictors of quit success in Belgian participants of a varenicline observational smoking cessation study. Acta Clin Belg. 2013;68(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  34. Yasin SM, Masilamani R, Ming MF, Koh D. Predictors of smoking cessation among staff in public Universities in Klang Valley, Malaysia. Asia Pac J Cancer Prev. 2011;12(3):811–6.

    Google Scholar 

  35. Abdullah AS, Lam TH, Chan SK, Leung GM, Chi I, Ho WW, et al. Effectiveness of a mobile smoking cessation service in reaching elderly smokers and predictors of quitting. BMC Geriatr. 2008;8:25.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kenford SL, Fiore MC, Jorenby DE, Smith SS, Wetter D, Baker TB. Predicting smoking cessation. Who will quit with and without the nicotine patch. JAMA. 1994;271(8):589–94.

    Article  CAS  PubMed  Google Scholar 

  37. Hardie TL, Moss HB, Lynch KG. Genetic correlations between smoking initiation and smoking behaviors in a twin sample. Addict Behav. 2006;31(11):2030–7.

    Article  PubMed  Google Scholar 

  38. Kendler KS, Prescott CA. A population-based twin study of lifetime major depression in men and women. Arch Gen Psychiatry. 1999;56(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  39. Morley KI, Lynskey MT, Madden PA, Treloar SA, Heath AC, Martin NG. Exploring the inter-relationship of smoking age-at-onset, cigarette consumption and smoking persistence: genes or environment? Psychol Med. 2007;37(9):1357–67.

    Article  PubMed  Google Scholar 

  40. Vink JM, Beem AL, Posthuma D, Neale MC, Willemsen G, Kendler KS, et al. Linkage analysis of smoking initiation and quantity in Dutch sibling pairs. Pharmacogenomics J. 2004;4(4):274–82.

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan PF, Kendler KS. The genetic epidemiology of smoking. Nicotine Tob Res. 1999;1(Suppl 2):S51–7 (discussion S69–70).

    Article  PubMed  Google Scholar 

  42. Vink JM, Smit AB, de Geus EJ, Sullivan P, Willemsen G, Hottenga JJ, et al. Genome-wide association study of smoking initiation and current smoking. Am J Hum Genet. 2009;84(3):367–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Goode EL, Badzioch MD, Kim H, Gagnon F, Rozek LS, Edwards KL, et al. Multiple genome-wide analyses of smoking behavior in the Framingham Heart Study. BMC Genet. 2003;4(Suppl 1):S102.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lerman C, Berrettini W. Elucidating the role of genetic factors in smoking behavior and nicotine dependence. Am J Med Genet B Neuropsychiatr Genet. 2003;118B(1):48–54.

    Article  PubMed  Google Scholar 

  45. Lerman CE, Schnoll RA, Munafò MR. Genetics and smoking cessation improving outcomes in smokers at risk. Am J Prevent Med. 2007;33(6 Suppl):S398–405.

    Article  Google Scholar 

  46. Osler M, Holst C, Prescott E, Sorensen TI. Influence of genes and family environment on adult smoking behavior assessed in an adoption study. Genet Epidemiol. 2001;21(3):193–200.

    Article  CAS  PubMed  Google Scholar 

  47. Mayhew KP, Flay BR, Mott JA. Stages in the development of adolescent smoking. Drug Alcohol Depend. 2000;59(Suppl 1):S61–81.

    Article  PubMed  Google Scholar 

  48. Hamilton AS, Lessov-Schlaggar CN, Cockburn MG, Unger JB, Cozen W, Mack TM. Gender differences in determinants of smoking initiation and persistence in California twins. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1189–97.

    Article  PubMed  Google Scholar 

  49. Xian H, Scherrer JF, Madden PA, Lyons MJ, Tsuang M, True WR, et al. The heritability of failed smoking cessation and nicotine withdrawal in twins who smoked and attempted to quit. Nicotine Tob Res. 2003;5(2):245–54.

    Article  CAS  PubMed  Google Scholar 

  50. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet. 2010;42(5):441–7.

    Article  CAS  Google Scholar 

  51. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452(7187):638–42.

    Article  CAS  PubMed  Google Scholar 

  52. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42(5):448–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, et al. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry. 2008;13(4):368–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet. 2010;42(5):436–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. David SP, Hamidovic A, Chen GK, Bergen AW, Wessel J, Kasberger JL, et al. Genome-wide meta-analyses of smoking behaviors in African Americans. Transl Psychiatry. 2012;2:e119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Vrieze SI, McGue M, Iacono WG. The interplay of genes and adolescent development in substance use disorders: leveraging findings from GWAS meta-analyses to test developmental hypotheses about nicotine consumption. Hum Genet. 2012;131(6):791–801.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Vrieze SI, McGue M, Miller MB, Hicks BM, Iacono WG. Three mutually informative ways to understand the genetic relationships among behavioral disinhibition, alcohol use, drug use, nicotine use/dependence, and their co-occurrence: twin biometry, GCTA, and genome-wide scoring. Behav Genet. 2013;43(2):97–107.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Vinkhuyzen AA, Wray NR, Yang J, Goddard ME, Visscher PM. Estimation and partition of heritability in human populations using whole-genome analysis methods. Ann Rev Genet. 2013;47:75–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature. 1998;391(6663):173–7.

    Article  CAS  PubMed  Google Scholar 

  60. Ho MK, Tyndale RF. Overview of the pharmacogenomics of cigarette smoking. Pharmacogenomics J. 2007;7(2):81–98.

    Article  CAS  PubMed  Google Scholar 

  61. Conti DV, Lee W, Li D, Liu J, Van Den Berg D, Thomas PD, et al. Nicotinic acetylcholine receptor beta2 subunit gene implicated in a systems-based candidate gene study of smoking cessation. Hum Mol Genet. 2008;17(18):2834–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. King DP, Paciga S, Pickering E, Benowitz NL, Bierut LJ, Conti DV, et al. Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology. 2012;37(3):641–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Bergen AW, Javitz HS, Krasnow R, Michel M, Nishita D, Conti DV, et al. Organic cation transporter variation and response to smoking cessation therapies. Nicotine Tob Res. 2014;16(12):1638–46.

    Article  PubMed  Google Scholar 

  64. Lee W, Bergen AW, Swan GE, Li D, Liu J, Thomas P, et al. Gender-stratified gene and gene-treatment interactions in smoking cessation. Pharmacogenomics J. 2012;12(6):521–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lee W, Ray R, Bergen AW, Swan GE, Thomas P, Tyndale RF, et al. DRD1 associations with smoking abstinence across slow and normal nicotine metabolizers. Pharmacogenet Genomics. 2012;22(7):551–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Leventhal AM, Lee W, Bergen AW, Swan GE, Tyndale RF, Lerman C, et al. Nicotine dependence as a moderator of genetic influences on smoking cessation treatment outcome. Drug Alcohol Depend. 2014;138:109–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. David SP, Johnstone EC, Churchman M, Aveyard P, Murphy MF, Munafò MR. Pharmacogenetics of smoking cessation in general practice: results from the patch II and patch in practice trials. Nicotine Tob Res. 2011;13(3):157–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Heitjan DF, Guo M, Ray R, Wileyto EP, Epstein LH, Lerman C. Identification of pharmacogenetic markers in smoking cessation therapy. Am J Medical Genet B Neuropsychiatr Genet. 2008;147B(6):712–9.

    Article  Google Scholar 

  69. Ray R, Mitra N, Baldwin D, Guo M, Patterson F, Heitjan DF, et al. Convergent evidence that choline acetyltransferase gene variation is associated with prospective smoking cessation and nicotine dependence. Neuropsychopharmacology. 2010;35(6):1374–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE, et al. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch Gen Psychiatry. 2008;65(6):683–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Drgon T, Johnson C, Walther D, Albino AP, Rose JE, Uhl GR. Genome-wide association for smoking cessation success: participants in a trial with adjunctive denicotinized cigarettes. Mol Med. 2009;15(7–8):268–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Uhl GR, Drgon T, Johnson C, Walther D, David SP, Aveyard P, et al. Genome-wide association for smoking cessation success: participants in the Patch in Practice trial of nicotine replacement. Pharmacogenomics. 2010;11(3):357–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. McGeary JE, Knopik VS, Hayes JE, Palmer RH, Monti PM, Kalman D. Predictors of relapse in a bupropion trial for smoking cessation in recently-abstinent alcoholics: preliminary results using an aggregate genetic risk score. Subst Abuse. 2012;6:107–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. David SP, Strong DR, Leventhal AM, Lancaster MA, McGeary JE, Munafò MR, et al. Influence of a dopamine pathway additive genetic efficacy score on smoking cessation: results from two randomized clinical trials of bupropion. Addiction. 2013;108(12):2202–11.

    Article  PubMed  Google Scholar 

  75. Rose JE, Behm FM, Drgon T, Johnson C, Uhl GR. Personalized smoking cessation: interactions between nicotine dose, dependence and quit-success genotype score. Mol Med. 2010;16(7–8):247–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Uhl GR, Walther D, Musci R, Fisher C, Anthony JC, Storr CL, et al. Smoking quit success genotype score predicts quit success and distinct patterns of developmental involvement with common addictive substances. Mol Psychiatry. 2014;19(1):50–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Ho MK, Mwenifumbo JC, Al Koudsi N, Okuyemi KS, Ahluwalia JS, Benowitz NL, et al. Association of nicotine metabolite ratio and CYP2A6 genotype with smoking cessation treatment in African-American light smokers. Clin Pharmacol Ther. 2009;85(6):635–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Lerman C, Jepson C, Wileyto EP, Patterson F, Schnoll R, Mroziewicz M, et al. Genetic variation in nicotine metabolism predicts the efficacy of extended-duration transdermal nicotine therapy. Clin Pharmacol Ther. 2010;87(5):553–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Chen LS, Bloom AJ, Baker TB, Smith SS, Piper ME, Martinez M, et al. Pharmacotherapy effects on smoking cessation vary with nicotine metabolism gene (CYP2A6). Addiction. 2014;109(1):128–37.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Lerman C, Shields PG, Wileyto EP, Audrain J, Pinto A, Hawk L, et al. Pharmacogenetic investigation of smoking cessation treatment. Pharmacogenetics. 2002;12(8):627–34.

    Article  CAS  PubMed  Google Scholar 

  81. Lee AM, Jepson C, Hoffmann E, Epstein L, Hawk LW, Lerman C, et al. CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial. Biol Psychiatry. 2007;62(6):635–41.

    Article  CAS  PubMed  Google Scholar 

  82. Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, Cichon S, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010;6(8):e1001053.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Saccone NL, Wang JC, Breslau N, Johnson EO, Hatsukami D, Saccone SF, et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res. 2009;69(17):6848–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet. 2007;16(1):36–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, Matsunami N, et al. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet. 2008;4(7):e1000125.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Greenbaum L, Kanyas K, Karni O, Merbl Y, Olender T, Horowitz A, et al. Why do young women smoke? I: direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes. Mol Psychiatry. 2006;11(3):312–22 (223).

    Article  CAS  PubMed  Google Scholar 

  87. Liang Y, Salas R, Marubio L, Bercovich D, De Biasi M, Beaudet AL, et al. Functional polymorphisms in the human beta4 subunit of nicotinic acetylcholine receptors. Neurogenetics. 2005;6(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  88. Baker TB, Weiss RB, Bolt D, von Niederhausern A, Fiore MC, Dunn DM, et al. Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes. Nicotine Tob Res. 2009;11(7):785–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Sarginson JE, Killen JD, Lazzeroni LC, Fortmann SP, Ryan HS, Schatzberg AF, et al. Markers in the 15q24 nicotinic receptor subunit gene cluster (CHRNA5-A3-B4) predict severity of nicotine addiction and response to smoking cessation therapy. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(3):275–84.

    Article  PubMed  Google Scholar 

  90. Munafò MR, Johnstone EC, Walther D, Uhl GR, Murphy MF, Aveyard P. CHRNA3 rs1051730 genotype and short-term smoking cessation. Nicotine Tob Res. 2011;13(10):982–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Chen LS, Baker TB, Piper ME, Breslau N, Cannon DS, Doheny KF, et al. Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success. Am J Psychiatry. 2012;169(7):735–42.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Bergen AW, Javitz HS, Krasnow R, Nishita D, Michel M, Conti DV, et al. Nicotinic acetylcholine receptor variation and response to smoking cessation therapies. Pharmacogenet Genomics. 2013;23(2):94–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Sarginson JE, Killen JD, Lazzeroni LC, Fortmann SP, Ryan HS, Ameli N, et al. Response to transdermal selegiline smoking cessation therapy and markers in the 15q24 chromosomal region. Nicotine Tob Res. 2015. [Epub ahead of print].

  94. McCarthy DE, Piasecki TM, Lawrence DL, Jorenby DE, Shiffman S, Fiore MC, et al. A randomized controlled clinical trial of bupropion SR and individual smoking cessation counseling. Nicotine Tob Res. 2008;10(4):717–29.

    Article  CAS  PubMed  Google Scholar 

  95. Piper ME, Federman EB, McCarthy DE, Bolt DM, Smith SS, Fiore MC, et al. Efficacy of bupropion alone and in combination with nicotine gum. Nicotine Tob Res. 2007;9(9):947–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Yudkin P, Munafò M, Hey K, Roberts S, Welch S, Johnstone E, et al. Effectiveness of nicotine patches in relation to genotype in women versus men: randomised controlled trial. BMJ. 2004;328(7446):989–90.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Aveyard P, Brown K, Saunders C, Alexander A, Johnstone E, Munafò MR, et al. Weekly versus basic smoking cessation support in primary care: a randomised controlled trial. Thorax. 2007;62(10):898–903.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Piper ME, Smith SS, Schlam TR, Fiore MC, Jorenby DE, Fraser D, et al. A randomized placebo-controlled clinical trial of 5 smoking cessation pharmacotherapies. Arch Gen Psychiatry. 2009;66(11):1253–62.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Lerman C, Jepson C, Wileyto EP, Epstein LH, Rukstalis M, Patterson F, et al. Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials. Neuropsychopharmacology. 2006;31(1):231–42.

    CAS  PubMed  Google Scholar 

  100. Swan GE, McClure JB, Jack LM, Zbikowski SM, Javitz HS, Catz SL, et al. Behavioral counseling and varenicline treatment for smoking cessation. Am J Prevent Med. 2010;38(5):482–90.

    Article  Google Scholar 

  101. Hall SM, Humfleet GL, Gorecki JA, Munoz RF, Reus VI, Prochaska JJ. Older versus younger treatment-seeking smokers: differences in smoking behavior, drug and alcohol use, and psychosocial and physical functioning. Nicotine Tob Res. 2008;10(3):463–70.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Killen JD, Fortmann SP, Murphy GM Jr, Hayward C, Fong D, Lowenthal K, et al. Failure to improve cigarette smoking abstinence with transdermal selegiline + cognitive behavior therapy. Addiction. 2010;105(9):1660–8.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Messina ES, Tyndale RF, Sellers EM. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther. 1997;282(3):1608–14.

    CAS  PubMed  Google Scholar 

  104. Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM, et al. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos. 2000;28(10):1222–30.

    CAS  PubMed  Google Scholar 

  105. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116(3):496–526.

    Article  CAS  PubMed  Google Scholar 

  106. Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 2013;13(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  107. Malaiyandi V, Lerman C, Benowitz NL, Jepson C, Patterson F, Tyndale RF. Impact of CYP2A6 genotype on pretreatment smoking behaviour and nicotine levels from and usage of nicotine replacement therapy. Mol Psychiatry. 2006;11(4):400–9.

    Article  CAS  PubMed  Google Scholar 

  108. Bloom J, Hinrichs AL, Wang JC, von Weymarn LB, Kharasch ED, Bierut LJ, et al. The contribution of common CYP2A6 alleles to variation in nicotine metabolism among European-Americans. Pharmacogenet Genomics. 2011;21(7):403–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Biochemical verification of tobacco use and cessation. Nicotine Tob Res. 2002;4(2):149–59.

    Article  Google Scholar 

  110. Benowitz NL, Jacob P 3rd. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther. 1994;56(5):483–93.

    Article  CAS  PubMed  Google Scholar 

  111. Hukkanen J, Jacob P III, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79–115.

    Article  CAS  PubMed  Google Scholar 

  112. Benowitz NL. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol Rev. 1996;18(2):188–204.

    Article  CAS  PubMed  Google Scholar 

  113. Davis RA, Curvall M. Determination of nicotine and its metabolites in biological fluids: in vivo studies. In: Jacob JWG, editor. Analytical determination of nicotine and related compounds and their metabolites. Amsterdam: Elsevier Science; 1999. p. 583–643.

    Chapter  Google Scholar 

  114. Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF. Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol. 2010;66(3):239–51.

    Article  PubMed  CAS  Google Scholar 

  115. Dempsey D, Tutka P, Jacob P 3rd, Allen F, Schoedel K, Tyndale RF, et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther. 2004;76(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  116. Binnington MJ, Zhu AZ, Renner CC, Lanier AP, Hatsukami DK, Benowitz NL, et al. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people. Pharmacogenet Genomics. 2012;22(6):429–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Benowitz NL, Pomerleau OF, Pomerleau CS, Jacob P 3rd. Nicotine metabolite ratio as a predictor of cigarette consumption. Nicotine Tob Res. 2003;5(5):621–4.

    Article  CAS  PubMed  Google Scholar 

  118. Swan GE, Lessov-Schlaggar CN, Bergen AW, He Y, Tyndale RF, Benowitz NL. Genetic and environmental influences on the ratio of 3′hydroxycotinine to cotinine in plasma and urine. Pharmacogenet Genomics. 2009;19(5):388–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Johnstone E, Benowitz N, Cargill A, Jacob R, Hinks L, Day I, et al. Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin Pharmacol Ther. 2006;80(4):319–30.

    Article  CAS  PubMed  Google Scholar 

  120. Chenoweth MJ, Novalen M, Hawk LW Jr, Schnoll RA, George TP, Cinciripini PM, et al. Known and novel sources of variability in the nicotine metabolite ratio in a large sample of treatment-seeking smokers. Cancer Epidemiol Biomarkers Prev. 2014;23(9):1773–82.

    Article  CAS  PubMed  Google Scholar 

  121. Sofuoglu M, Herman AI, Nadim H, Jatlow P. Rapid nicotine clearance is associated with greater reward and heart rate increases from intravenous nicotine. Neuropsychopharmacology. 2012;37(6):1509–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Rubinstein ML, Benowitz NL, Auerback GM, Moscicki AB. Rate of nicotine metabolism and withdrawal symptoms in adolescent light smokers. Pediatrics. 2008;122(3):e643–7.

    Article  PubMed Central  PubMed  Google Scholar 

  123. St Helen G, Novalen M, Heitjan DF, Dempsey D, Jacob P 3rd, Aziziyeh A, et al. Reproducibility of the nicotine metabolite ratio in cigarette smokers. Cancer Epidemiol Biomarkers Prev. 2012;21(7):1105–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Malaiyandi V, Goodz SD, Sellers EM, Tyndale RF. CYP2A6 genotype, phenotype, and the use of nicotine metabolites as biomarkers during ad libitum smoking. Cancer Epidemiol Biomarkers Prev. 2006;15(10):1812–9.

    Article  CAS  PubMed  Google Scholar 

  125. Nakajima M, Kwon JT, Tanaka N, Zenta T, Yamamoto Y, Yamamoto H, et al. Relationship between interindividual differences in nicotine metabolism and CYP2A6 genetic polymorphism in humans. Clin Pharmacol Ther. 2001;69(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  126. Bloom AJ, Harari O, Martinez M, Madden PA, Martin NG, Montgomery GW, et al. Use of a predictive model derived from in vivo endophenotype measurements to demonstrate associations with a complex locus, CYP2A6. Hum Mol Genet. 2012;21(13):3050–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Patterson F, Schnoll RA, Wileyto EP, Pinto A, Epstein LH, Shields PG, et al. Toward personalized therapy for smoking cessation: a randomized placebo-controlled trial of bupropion. Clin Pharmacol Therap. 2008;84(3):320–5.

    Article  CAS  Google Scholar 

  128. Lerman C, Schnoll RA, Hawk LW Jr, Cinciripini P, George TP, Wileyto EP, et al. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2015;3(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  129. Lerman C, Tyndale R, Patterson F, Wileyto EP, Shields PG, Pinto A, et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther. 2006;79(6):600–8.

    Article  CAS  PubMed  Google Scholar 

  130. Schnoll RA, Patterson F, Wileyto EP, Tyndale RF, Benowitz N, Lerman C. Nicotine metabolic rate predicts successful smoking cessation with transdermal nicotine: a validation study. Pharmacol Biochem Behav. 2009;92(1):6–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Liu T, David SP, Tyndale RF, Wang H, Zhou Q, Ding P, et al. Associations of CYP2A6 genotype with smoking behaviors in southern China. Addiction. 2011;106(5):985–94.

    Article  PubMed Central  PubMed  Google Scholar 

  132. Kubota T, Nakajima-Taniguchi C, Fukuda T, Funamoto M, Maeda M, Tange E, et al. CYP2A6 polymorphisms are associated with nicotine dependence and influence withdrawal symptoms in smoking cessation. Pharmacogenomics J. 2006;6(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  133. Tang DW, Hello B, Mroziewicz M, Fellows LK, Tyndale RF, Dagher A. Genetic variation in CYP2A6 predicts neural reactivity to smoking cues as measured using fMRI. Neuroimage. 2012;60(4):2136–43.

    Article  CAS  PubMed  Google Scholar 

  134. Bloom AJ, Martinez M, Chen LS, Bierut LJ, Murphy SE, Goate A. CYP2B6 non-coding variation associated with smoking cessation is also associated with differences in allelic expression, splicing, and nicotine metabolism independent of common amino-acid changes. PLoS One. 2013;8(11):e79700.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Zhu AZ, Cox LS, Nollen N, Faseru B, Okuyemi KS, Ahluwalia JS, et al. CYP2B6 and bupropion’s smoking-cessation pharmacology: the role of hydroxybupropion. Clin Pharmacol Ther. 2012;92(6):771–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Froeliger B, Kozink RV, Rose JE, Behm FM, Salley AN, McClernon FJ. Hippocampal and striatal gray matter volume are associated with a smoking cessation treatment outcome: results of an exploratory voxel-based morphometric analysis. Psychopharmacology. 2010;210(4):577–83.

    Article  CAS  PubMed  Google Scholar 

  137. McClernon FJ, Hiott FB, Liu J, Salley AN, Behm FM, Rose JE. Selectively reduced responses to smoking cues in amygdala following extinction-based smoking cessation: results of a preliminary functional magnetic resonance imaging study. Addict Biol. 2007;12(3–4):503–12.

    Article  CAS  PubMed  Google Scholar 

  138. Janes AC, Pizzagalli DA, Richardt S, deB Frederick B, Chuzi S, Pachas G, et al. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry. 2010;67(8):722–9.

    Article  PubMed Central  PubMed  Google Scholar 

  139. Hartwell KJ, Lematty T, McRae-Clark AL, Gray KM, George MS, Brady KT. Resisting the urge to smoke and craving during a smoking quit attempt on varenicline: results from a pilot fMRI study. Am J Drug Alcohol Abuse. 2013;39(2):92–8.

    Article  PubMed  Google Scholar 

  140. Versace F, Engelmann JM, Robinson JD, Jackson EF, Green CE, Lam CY, et al. Prequit FMRI responses to pleasant cues and cigarette-related cues predict smoking cessation outcome. Nicotine Tob Res. 2014;16(6):697–708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Krishnan-Sarin S, Balodis IM, Kober H, Worhunsky PD, Liss T, Xu J, et al. An exploratory pilot study of the relationship between neural correlates of cognitive control and reduction in cigarette use among treatment-seeking adolescent smokers. Psychol Addict Behav. 2013;27(2):526–32.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Wheelock MD, Reid MA, To H, White DM, Cropsey KL, Lahti AC. Open label smoking cessation with varenicline is associated with decreased glutamate levels and functional changes in anterior cingulate cortex: preliminary findings. Front Pharmacol. 2014;5:158.

    Article  PubMed Central  PubMed  Google Scholar 

  143. Loughead J, Wileyto EP, Ruparel K, Falcone M, Hopson R, Gur R, et al. Working memory-related neural activity predicts future smoking relapse. Neuropsychopharmacology. 2015;40(6):1311–20.

    Article  PubMed  Google Scholar 

  144. Mashhoon Y, Janes AC, Jensen JE, Prescot AP, Pachas G, Renshaw PF, et al. Anterior cingulate proton spectroscopy glutamate levels differ as a function of smoking cessation outcome. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(7):1709–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Brody AL, Mukhin AG, Shulenberger S, Mamoun MS, Kozman M, Phuong J, et al. Treatment for tobacco dependence: effect on brain nicotinic acetylcholine receptor density. Neuropsychopharmacology. 2013;38(8):1548–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Brody AL, Mukhin AG, Mamoun MS, Luu T, Neary M, Liang L, et al. Brain nicotinic acetylcholine receptor availability and response to smoking cessation treatment: a randomized trial. JAMA Psychiatry. 2014;71(7):797–805.

    Article  PubMed  CAS  Google Scholar 

  147. Bough KJ, Lerman C, Rose JE, McClernon FJ, Kenny PJ, Tyndale RF, et al. Biomarkers for smoking cessation. Clin Pharmacol Ther. 2013;93(6):526–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute on Drug Abuse (R01 DA20872), the Department of Veterans Affairs, Office of Research and Development (CSR&D Merit Review Award I01 CX000412), and the Tobacco-Related Disease Research Program (#23XT-0002) to Arthur L. Brody, and a grant from the National Institute on Drug Abuse (R21 DA33813) to Andrew W. Bergen. Michael Mamoun, Andrew W. Bergen, Arthur L. Brody, Jennifer Shieh and Anna Wiggins report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur L. Brody.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamoun, M., Bergen, A.W., Shieh, J. et al. Biomarkers of Response to Smoking Cessation Pharmacotherapies: Progress to Date. CNS Drugs 29, 359–369 (2015). https://doi.org/10.1007/s40263-015-0243-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-015-0243-1

Keywords

Navigation