Skip to main content
Log in

Drug–Drug Interaction Potential with Once-Weekly Isoniazid/Rifapentine (3HP) for the Treatment of Latent Tuberculosis Infection

  • Commentary
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13:e1002152.

    Article  Google Scholar 

  2. Comstock GW, Livesay VT, Woolpert SF, et al. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol. 1974;99:131–8.

    Article  CAS  Google Scholar 

  3. Horsburgh CR, Goldberg S, Bethel J, et al. Latent TB infection treatment acceptance and completion in the United States and Canada. Chest. 2010;137:401–9.

    Article  Google Scholar 

  4. Lardizabal A, Passannante M, Kojakali F, et al. Enhancement of treatment completion for latent tuberculosis infection with 4 months of rifampin. Chest. 2006;130:1712–7.

    Article  CAS  Google Scholar 

  5. Sterling TR, Njie G, Zenner D, et al. Guidelines for the treatment of latent tuberculosis infection: recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR. 2020;69:1–11.

    Article  Google Scholar 

  6. WHO consolidated guidelines on tuberculosis. Module 1. Prevention: tuberculosis preventive treatment. World Health Organization 2020.

  7. Svensson EM, Murray S, Karlsson MO, et al. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother. 2015;70:1106–14.

    Article  CAS  Google Scholar 

  8. Seden K, Gibbons S, Marzolini C, et al. Development of an evidence evaluation and synthesis system for drug-drug interactions, and its application to a systematic review of HIV and malaria co-infection. PLoS ONE. 2017;12:e0173509.

    Article  Google Scholar 

  9. Li AP, Reith MK, Rasmussen A, et al. Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in cytochrome P450 induction potential of xenobiotics: evaluation of rifampin, rifapentine and rifabutin. Chem Biol Interact. 1997;107:17–30.

    Article  CAS  Google Scholar 

  10. Giessmann T, Modess C, Hecker U, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther. 2004;75:213–22.

    Article  CAS  Google Scholar 

  11. Williamson B, Dooley KE, Zhang Y, et al. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57:6366–9.

    Article  CAS  Google Scholar 

  12. Desta Z, Soukhova NV, Flockhart DA. Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother. 2001;45:382–92.

    Article  CAS  Google Scholar 

  13. Lam E, Schaefer J, Zheng R, et al. Twice-daily doravirine overcomes the interaction effect from once-weekly rifapentine and isoniazid in healthy volunteers. Clin Transl Sci. 2020;13:1244–50.

    Article  CAS  Google Scholar 

  14. Nolan CM, Sandblom RE, Thummel KE, et al. Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest. 1994;105:408–11.

    Article  CAS  Google Scholar 

  15. Nakajima A, Fukami T, Kobayashi Y, et al. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: rifampicin, rifabutin, and rifapentine. Biochem Pharmacol. 2011;82:1747–56.

    Article  CAS  Google Scholar 

  16. Ellard GA, Gammon PT. Pharmacokinetics of isoniazid metabolism in man. J Pharmacokinet Biopharm. 1976;4:83–113.

    Article  CAS  Google Scholar 

  17. Shimizu M, Fukami T, Nakajima M, et al. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacytylase. Drug Metab Dispos. 2014;42:1103–9.

    Article  Google Scholar 

  18. Rothen JP, Haefeli WE, Meyer UA, et al. Acetaminophen is an inhibitor of hepatic N-acetyltransferase 2 in vitro and in vivo. Pharmacogenetics. 1998;8:553–9.

    Article  CAS  Google Scholar 

  19. Arora P, Collins SE, Martin H, et al. Drug interactions with once-daily B/F/TAF in combination with once-weekly rifapentine. In Virtual conference on retroviruses and opportunistic infections; 2021: abstract 369.

  20. Sun HY, Cheng CN, Lin, et al. Bictegravir concentrations and virologic responses in PLWH receiving 1HP for LTBI. In Virtual conference on retroviruses and opportunistic infections; 2021: abstract 132.

  21. Biktarvy product information label. Gilead Sciences; 2019.

  22. Yee KL, Khalilieh SG, Sanchez RI, et al. The effect of single and multiple doses of rifampin on the pharmacokinetics of doravirine in healthy subjects. Clin Drug Investig. 2017;37:659–67.

    Article  CAS  Google Scholar 

  23. Dooley KE, Savic R, Gupte A, et al. Once-weekly rifapentine and isoniazid for tuberculosis prevention in patients with HIV taking dolutegravir-based antiretroviral therapy: a phase 1/2 trial. Lancet HIV. 2020;7:e401–9.

    Article  Google Scholar 

  24. Dooley KE, Sayre P, Borland J, et al. Safety, tolerability, and pharmacokinetics of the HIV integrase inhibitor dolutegravir given twice daily with rifampin or once daily with rifabutin: results of a phase 1 study among healthy subjects. J Acquir Immune Defic Syndr. 2013;62:21–7.

    Article  CAS  Google Scholar 

  25. Farenc C, Doroumian S, Cantalloube C, et al. Rifapentine once-weekly dosing effect on efavirenz, emtricitabine and tenofovir pharmacokinetics. In Conference on retroviruses and opportunistic infections; 3–6 Mar 2014; Boston (MA): abstract 493.

  26. Podany AT, Bao Y, Swindells S, et al. Efavirenz pharmacokinetics and pharmacodynamics in HIV-infected persons receiving rifapentine and isoniazid for tuberculosis prevention. Clin Infect Dis. 2015;61:1322–7.

    Article  CAS  Google Scholar 

  27. University of Liverpool. HIV drug interactions. http://www.hiv-druginteractions.org. Accessed 1 Jul 2021.

  28. Podany AT, Leon-Cruz J, Hakim J, et al. Nevirapine pharmacokinetics in HIV-infected persons receiving rifapentine and isoniazid for TB prevention. J Antimicrob Chemother. 2021;76:718–21.

    Article  CAS  Google Scholar 

  29. Weiner M, Egelund EF, Engle M, et al. Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother. 2014;69:1079–85.

    Article  CAS  Google Scholar 

  30. Wenning LA, Hanley WD, Brainard DM, et al. Effect of rifampin, a potent inducer of drug metabolising enzymes, on the pharmacokinetics of raltegravir. Antimicrob Agents Chemother. 2009;53:2852–6.

    Article  CAS  Google Scholar 

  31. Zvada SP, Denti P, Geldenhuys H, et al. Moxifloxacin population pharmacokinetics in patients with pulmonary tuberculosis and the effect of intermittent high-dose rifapentine. Antimicrob Agents Chemother. 2012;56:4471–3.

    Article  CAS  Google Scholar 

  32. Kinvig H, Stader F, Bunglawala FS, et al. High dose rifampicin for the treatment of leprosy in HIV patients taking dolutegravir. In Virtual conference on retroviruses and opportunistic infections; 2020: abstract 450.

  33. Mirzakhani H, Nozari A, Ehrenfeld J, et al. Profound hypotension after anesthetetic induction with propofol in patients treated with rifampin. Anesth Analg. 2013;117:61–4.

    Article  CAS  Google Scholar 

  34. Fleenor ME, Harden JW, Curtis G. Interaction between carbamazepine and antituberculosis agents. Chest. 1991;99:1554.

    Article  CAS  Google Scholar 

  35. Mngqibisa R, Kendall MA, Dooley K, et al. Pharmacokinetics and pharmacodynamics of depot medroxyprogesterone acetate in African women receiving treatment for human immunodeficiency virus and tuberculosis: potential concern for standard dosing frequency. Clin Infect Dis. 2020;71:517–24.

    Article  CAS  Google Scholar 

  36. The AURUM Institute. 3HP drug-drug interactions, including ART. IMPAACT4TB 2019. https://www.impaact4tb.org/wp-content/uploads/2020/04/5T-eng-DDI-Drugs-Drug-Interactions-Art_RB16.pdf. Accessed 1 Dec 2021.

  37. WHO guidelines for malaria. 16 Feb 2021.

  38. Van Crevel R, Critchley JA. The interaction of diabetes and tuberculosis: translating research to policy and practice. Trop Med Infect Dis. 2021;6:8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catia Marzolini.

Ethics declarations

Funding

None.

Conflicts of interest

CM has received research funding from Gilead Sciences and honoraria for lectures from ViiV and MSD. SK has received educational grants for the Liverpool Drug Interactions website (https://www.hiv-druginteractions.org) from Frontier, Gilead Sciences, MSD, Janssen, and ViiV Healthcare. SK has also received speakers’ honoraria from ViiV Healthcare, Gilead Sciences, and AbbVie; consultancy fees from ViiV Healthcare and Merck; and research funding from Gilead Sciences and ViiV Healthcare. SG and JJvO have no conflicts of interest to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzolini, C., Gibbons, S., van Oosterhout, J.J. et al. Drug–Drug Interaction Potential with Once-Weekly Isoniazid/Rifapentine (3HP) for the Treatment of Latent Tuberculosis Infection. Clin Pharmacokinet 61, 339–346 (2022). https://doi.org/10.1007/s40262-021-01098-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-021-01098-8

Navigation