Skip to main content
Log in

Physiologically Based Pharmacokinetic Modeling of Meropenem in Preterm and Term Infants

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Meropenem is a broad-spectrum carbapenem antibiotic approved by the US Food and Drug Administration for use in pediatric patients, including treating complicated intra-abdominal infections in infants < 3 months of age. The impact of maturation in glomerular filtration rate and tubular secretion by renal transporters on meropenem pharmacokinetics, and the effect on meropenem dosing, remains unknown. We applied physiologically based pharmacokinetic (PBPK) modeling to characterize the disposition of meropenem in preterm and term infants.

Methods

An adult meropenem PBPK model was developed in PK-Sim® (Version 8) and scaled to infants accounting for renal transporter ontogeny and glomerular filtration rate maturation. The PBPK model was evaluated using 645 plasma concentrations from 181 infants (gestational age 23–40 weeks; postnatal age 1–95 days). The PBPK model-based simulations were performed to evaluate meropenem dosing in the product label for infants < 3 months of age treated for complicated intra-abdominal infections.

Results

Our model predicted plasma concentrations in infants in agreement with the observed data (average fold error of 0.90). The PBPK model-predicted clearance in a virtual infant population was successfully able to capture the post hoc estimated clearance of meropenem in this population, estimated by a previously published model. For 90% of virtual infants, a 4-mg/L target plasma concentration was achieved for > 50% of the dosing interval following product label-recommended dosing.

Conclusions

Our PBPK model supports the meropenem dosing regimens recommended in the product label for infants <3 months of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MERREM(R) IV (meropenem for injection), for intravenous use. 2019. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/050706s041lbl.pdf. Accessed 8 May 2020.

  2. Nicolau DP. Pharmacokinetic and pharmacodynamic properties of meropenem. Clin Infect Dis. 2008;47(Suppl. 1):S32-40.

    Article  CAS  PubMed  Google Scholar 

  3. Turnidge JD. The pharmacodynamics of β-lactams. Clin Infect Dis. 1998;27:10–22.

    Article  CAS  PubMed  Google Scholar 

  4. Thyrum PT, Yeh C, Birmingham B, Lasseter K. Pharmacokinetics of meropenem in patients with liver disease. Clin Infect Dis. 1997;24(Suppl. 2):S184–90.

    Article  CAS  PubMed  Google Scholar 

  5. Burman LÅ, Nilsson-ehle I, Hutchison M, Haworth SJ, Norrby SR. Pharmacokinetics of meropenem and its metabolite ICI 213,689 in healthy subjects with known renal metabolism of imipenem. J Antimicrob Chemother. 1991;27:219–24.

    Article  CAS  PubMed  Google Scholar 

  6. Nilsson-Ehle I, Hutchison M, Haworth SJ, Norrby SR. Pharmacokinetics of meropenem compared to imipenem-cilastatin in young, healthy males. Eur J Clin Microbiol Infect Dis. 1991;10:85–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kelly HC, Hutchison M, Haworth SJ. A comparison of the pharmacokinetics of meropenem after administration by intravenous injection over 5 min and intravenous infusion over 30 min. J Antimicrob Chemother. 1995;36(Suppl. A):35–41.

    Article  CAS  PubMed  Google Scholar 

  8. Bax RP, Bastain W, Featberstone A, Wilkinson DM, Hutchison M, Haworth SJ. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother. 1989;24:311–20.

    Article  CAS  PubMed  Google Scholar 

  9. Shibayama T, Sugiyama D, Kamiyama E, Tokui T, Hirota T, Ikeda T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab Pharmacokinet. 2007;22:41–7.

    Article  CAS  PubMed  Google Scholar 

  10. Blumer JL, Reed MD, Kearns GL, Jacobs RF, Gooch WM, Yogev R, et al. Sequential, single-dose pharmacokinetic evaluation of meropenem in hospitalized infants and children. Antimicrob Agents Chemother. 1995;39:1721–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parker EM, Hutchison M, Blumer JL. The pharmacokinetics of meropenem in infants and children: a population analysis. J Antimicrob Chemother. 1995;36:63–71.

    Article  CAS  PubMed  Google Scholar 

  12. Du X, Li C, Kuti JL, Nightingale CH, Nicolau DP. Population pharmacokinetics and pharmacodynamics of meropenem in pediatric patients. J Clin Pharmacol. 2006;46:69–75.

    Article  CAS  PubMed  Google Scholar 

  13. van den Anker JN, Pokorna P, Kinzig-Schippers M, Martinkova J, de Groot R, Drusano GL, et al. Meropenem pharmacokinetics in the newborn. Antimicrob Agents Chemother. 2009;53:3871–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Van Enk JG, Touw DJ, Lafeber HN. Pharmacokinetics of meropenem in preterm neonates. Ther Drug Monit. 2001;23:198–201.

    Article  PubMed  Google Scholar 

  15. Smith PB, Cohen-Wolkowiez M, Castro LM, Poindexter B, Bidegain M, Weitkamp JH, et al. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr Infect Dis J. 2011;30:844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hsieh E, Hornik C, Clark R, Laughon M, Benjamin D, Smith P. Medication use in the neonatal intensive care unit. Am J Perinatol. 2013;31:811–22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Landwehr C, Richardson J, Bint L, Parsons R, Sunderland B, Czarniak P. Cross-sectional survey of off-label and unlicensed prescribing for inpatients at a paediatric teaching hospital in Western Australia. PLoS ONE. 2019;14(1):e0210237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Magalhães J, Teixeira Rodrigues A, Roque F, Figueiras A, Falcão A, Herdeiro MT. Use of off-label and unlicenced drugs in hospitalised paediatric patients: a systematic review. Eur J Clin Pharmacol. 2015;71(1):1–13.

    Article  PubMed  Google Scholar 

  19. Wagner C, Zhao P, Pan Y, Hsu V, Grillo J, Huang SM, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometr Syst Pharmacol. 2015;4:226–30.

    Article  CAS  Google Scholar 

  20. Salerno SN, Burckart GJ, Huang S, Gonzalez D. Pediatric drug–drug interaction studies: barriers and opportunities. Clin Pharmacol Ther. 2019;105:1067–70.

    Article  PubMed  Google Scholar 

  21. Dallmann A, Ince I, Solodenko J, Meyer M, Willmann S, Eissing T, et al. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women. Clin Pharmacokinet. 2017;56:1525–41.

    Article  CAS  PubMed  Google Scholar 

  22. Ikawa K, Nakashima A, Morikawa N, Ikeda K, Murakami Y, Ohge H, et al. Clinical pharmacokinetics of meropenem and biapenem in bile and dosing considerations for biliary tract infections based on site-specific pharmacodynamic target attainment. Antimicrob Agents Chemother. 2011;55:5609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park SW, We JS, Kim GW, Choi SH, Park HS. Stability of new carbapenem DA-1131 to renal dipeptidase (dehydropeptidase I). Antimicrob Agents Chemother. 2002;46:575–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Milman G. Towards single cell protein analysis of cardiac progenitor cells. Imperial College London; 2015. Available from: http://hdl.handle.net/10044/1/33760.

  25. Leroy A, Fillastre JP, Borsa-Lebas F, Etienne I, Humbert G. Pharmacokinetics of meropenem (ICI 194,660) and its metabolite (ICI 213,689) in healthy subjects and in patients with renal impairment. Antimicrob Agents Chemother. 1992;36:2794–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of meropenem and its metabolite in young and elderly healthy men. Antimicrob Agents Chemother. 1992;36:1437–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wickham H, Averick M, Bryan J, Chang W, Mcgowan A, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.

    Article  Google Scholar 

  28. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45:1013–34.

    Article  CAS  PubMed  Google Scholar 

  29. Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21:5688–98.

    Article  CAS  PubMed  Google Scholar 

  30. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24:67–76.

    Article  PubMed  Google Scholar 

  31. Cheung KWK, van Groen BD, Spaans E, van Borselen MD, de Bruijn ACJM, Simons-Oosterhuis Y, et al. A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics, and localization. Clin Pharmacol Ther. 2019;106:1083–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020. Available from: https://www.r-project.org/.

  33. Hayton WL. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS J. 2000;2:1–7.

    Article  Google Scholar 

  34. Thompson EJ, Wu H, Maharaj A, Edginton AN, Balevic SJ, Cobbaert M, et al. Physiologically based pharmacokinetic modeling for trimethoprim and sulfamethoxazole in children. Clin Pharmacokinet. 2019;58:887–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45:683–704.

    Article  CAS  PubMed  Google Scholar 

  36. Cohen-Wolkowiez M, Poindexter B, Bidegain M, Weitkamp JH, Schelonka RL, Randolph DA, et al. Safety and effectiveness of meropenem in infants with suspected or complicated intra-abdominal infections. Clin Infect Dis. 2012;55:1495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Germovsek E, Lutsar I, Kipper K, Karlsson MO, Planche T, Chazallon C, et al. Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: results from the NeoMero studies. J Antimicrob Chemother. 2018;73:1908–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lomaestro BM, Drusano GL. Pharmacodynamic evaluation of extending the administration time of meropenem using a Monte Carlo simulation. Antimicrob Agents Chemother. 2005;49:461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Z-M, Chen X-Y, Bi J, Wang M-Y, Xu B-P, Tang B-H, et al. Reappraisal of the optimal dose of meropenem in critically ill infants and children: a developmental pharmacokinetic-pharmacodynamic analysis. Antimicrob Agents Chemother. 2020;64(8):e00760–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou W, Johnson T, Xu H, Cheung S, Bui K, Li J, et al. Predictive performance of physiologically based pharmacokinetic and population pharmacokinetic modeling of renally cleared drugs in children. CPT Pharmacometr Syst Pharmacol. 2016;5:475–83.

    Article  CAS  Google Scholar 

  41. Martins FS, Zhu P, Heinrichs MT, Sy SKB. Physiologically based pharmacokinetic-pharmacodynamic evaluation of meropenem plus fosfomycin in paediatrics. Br J Clin Pharmacol. 2021;87(3):1012–23.

    Article  CAS  PubMed  Google Scholar 

  42. Saito T, Sawazaki R, Ujiie K, Oda M, Saitoh H. Possible factors involved in oral inactivity of meropenem, a carbapenem antibiotic. Pharmacol Pharm. 2012;3:201–6.

    Article  CAS  Google Scholar 

  43. Rubin MI, Bruck E, Rapoport M, Snively M, McKay H, Baumler A. Maturation of renal function in childhood: clearance studies. J Clin Invest. 1949;28(5 Pt 2):1144–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Al-Shaer MH, Alghamdi WA, Graham E, Peloquin CA. Meropenem, cefepime, and piperacillin protein binding in patient samples. Ther Drug Monit. 2020;42:129–32.

    Article  CAS  PubMed  Google Scholar 

  45. Liebchen U, Dorn C, Kees M, Schiesser S, Hitzenbichler F, Kees F, et al. Comment on “Meropenem, cefepime, and piperacillin protein binding in patient samples.” Ther Drug Monit. 2020;42:909–10.

    Article  PubMed  Google Scholar 

  46. Sánchez C, García MA, Valdés BD. Acute kidney injury in newborns with necrotizing enterocolitis: risk factors and mortality. Bol Med Hosp Infant Mex. 2019;76(5):210–4.

    PubMed  Google Scholar 

  47. Garg PM, Tatum R, Ravisankar S, Shekhawat PS, Chen Y-H. Necrotizing enterocolitis in a mouse model leads to widespread renal inflammation, acute kidney injury, and disruption of renal tight junction proteins. Pediatr Res. 2015;78(5):527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, et al. Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Ther. 2004;308:1021–9.

    Article  CAS  PubMed  Google Scholar 

  49. McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol. 2017;32:2015–25.

    Article  PubMed  Google Scholar 

  50. Cies JJ, Moore WS, Enache A, Chopra A. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children. J Pediatr Pharmacol Ther. 2017;22:276–85.

    PubMed  PubMed Central  Google Scholar 

  51. DrugBank. Meropenem (DB00760). Available from: https://go.drugbank.com/drugs/DB00760.

  52. AstraZeneca. Environmental risk assessment data: meropenem. 2017. Available from: https://www.astrazeneca.com/content/dam/az/our-company/sustainability/2017/Meropenem.pdf.

  53. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95:1238–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Pediatric Trials Network (PTN) Steering Committee Members: Daniel K. Benjamin Jr, Christoph Hornik, Kanecia Zimmerman, Phyllis Kennel, and Rose Beci, Duke Clinical Research Institute, Durham, NC; Chi Dang Hornik, Duke University Medical Center, Durham, NC; Gregory L. Kearns, Scottsdale, AZ; Matthew Laughon, University of North Carolina at Chapel Hill, Chapel Hill, NC; Ian M. Paul, Penn State College of Medicine, Hershey, PA; Janice Sullivan, University of Louisville, Louisville, KY; Kelly Wade, Children’s Hospital of Philadelphia, Philadelphia, PA; Paula Delmore, Wichita Medical Research and Education Foundation, Wichita, KS. The Eunice Kennedy Shriver National Institute of Child Health and Human Development: Perdita Taylor-Zapata and June Lee. The Emmes Company, LLC (Data Coordinating Center): Ravinder Anand, Gaurav Sharma, Gina Simone, Kim Kaneshige, and Lawrence Taylor. PTN Publications Committee: chaired by Thomas Green, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL. Pediatric Trials Network Meropenem Study Team: Akron Children’s Hospital: Anand Kantak, MD and Judy Ohlinger, RN; Albany Medical Center: Mike Horgan, MD and Susan Boynton, RN, BSN; Baylor College of Medicine: Eric C. Eichenwald, MD and Karen Jones, RN, CCRC; Children’s Hospital of Oakland: David J. Durand, MD and Jeanette Asselin, RRT, MS; Children’s Hospital of Orange County: Antonio Arrieta, MD and Kathy Shea, BA; Children’s Hospital of Philadelphia: Kelly Wade, MD, PhD, MSCE and Tonia Morrison, BA, CCRC; Children’s Hospital of Pittsburgh of UPMC: Beverly S. Brozanski, MD and Robyn Baker, BSN, NNP; Children’s Hospital at Vanderbilt: Joern-Hendrik Weitkamp, MD and Millie Nannie, RN, BA, BS, CCRN, CLNC; Children’s Medical Center of Dallas: Pablo Sanchez, MD and Shirley Montanye, RN, ADN, CCRC; Children’s National Medical Center: John van den Anker, MD and Elaine Williams, RN, MSN; Duke University: P. Brian Smith, MD, MPH, MHS, Michael Cohen-Wolkowiez, MD, PhD, Margarita Bidegain, MD, MHS, Daniel K. Benjamin Jr, MD, PhD, MPH, and Sandy Grimes, RN, BSN; Evanston Northwestern Healthcare: William MacKendrick, MD and Sue Wolf, RNC-NIC, CCRP; Indiana University, James W. Riley Hospital for Children: Brenda Poindexter, MD, MS and Leslie Dawn Wilson, BSN, CCRC; Kansas City Children’s Mercy Hospital: Lisa M. Castro, MD and Ann Harris, RN, BSN, MBA; Kapiolani Medical Center for Women and Children: Venkataraman Balaraman, MD and Robyn Morse, BA, CCRC; Sharp Mary Birch Hospital for Women: Maynard Rasmussen, MD and Kathy Arnell, RNC; SUNY Downstate Medical Center: Gloria Valencia, MD and Sara Higgerson, BA; University Hospitals (Cleveland, OH): Michele Walsh, MD and Arlene Zadell, RN, BSN; University of Alabama at Birmingham: Claire M. Roane, RN, MSN; University of California–San Diego: Neil Finer, MD, Edmund V. Capparelli, PharmD, and Wade Rich, BSHS, RRT, CCRC; University of Florida: David Burchfield, MD and Cindy Miller, RN; University of Louisville and Kosair Children’s Hospital: Janice E. Sullivan, MD and Gwendolyn Pierce, RN, CCRC; University of Michigan–Ann Arbor: Varsha Bhatt-Mehta, MS, PharmD, FCCP and Ron Dechert, DPH, MS, RRT, FAARC; University of Utah, Primary Children’s Medical Center: Robert M. Ward, MD and JoAnn Narus, MS, JD, MD; Yale University: Mathew Bizzaro, MD and Monica Konstantino, RN, BSN. Certara Academic Center of Excellence Program: Phoenix® WinNonlin® is generously provided to the authors by Certara through the Academic Center of Excellence Program.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Daniel Gonzalez.

Ethics declarations

Funding

This work was funded under the National Institute of Child Health and Human Development contract (HHSN275201000003I) for the Pediatric Trials Network (principal investigator Danny Benjamin). JGG received research support from a National Institute of General Medical Sciences funded T32 program (T32GM122741), as well as the American Foundation for Pharmaceutical Education. DG received research support from the National Institute of Child Health and Human Development (K23HD083465, R01HD096435, and HHSN275201000003I). The Best Pharmaceuticals for Children Act Data Coordinating Center was funded under HHSN275201700002C (principal investigator: Ravinder Anand). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

Michael Cohen-Wolkowiez receives support for research from the National Institutes of Health (1U24-MD016258), National Institute of Allergy and Infectious Diseases (HHSN272201500006I, HHSN272201300017I, 1K24-AI143971), National Institute of Child Health and Human Development (HHSN275201000003I), US Food and Drug Administration (5U18-FD006298), and industry for drug development in adults and children. Samit Ganguly, Andrea N. Edginton, Jacqueline G. Gerhart, Rachel G. Greenberg, and Daniel Gonzalez have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

For the study protocol that allowed the collection of the PK data from infants with a suspected or confirmed intra-abdominal infection (ClinicalTrials.gov #NCT00621192), institutional review board approval was obtained at each participating site. For the PBPK analyses described in this publication, the Office of Human Research Ethics at the University of North Carolina at Chapel Hill determined that the research did not constitute human subjects research as defined under federal regulations [45 CFR 46.102 (d or f) and 21 CFR 56.102(c)(e)(l)] and did not require institutional review board approval.

Consent to participate

For the original study in infants with a suspected or confirmed intra-abdominal infection (ClinicalTrials.gov #NCT00621192), written permission (informed consent) was obtained from the parent or legal guardian.

Consent for publication

Not applicable.

Availability of data and material

Meropenem infant PK data were accessed through the Eunice Kennedy Shriver National Institute of Child Health and Human Development Data and Specimen Hub (https://dash.nichd.nih.gov/).

Code availability

Not applicable.

Author contributions

SG and DG designed and performed the research; SG and JGG analyzed the data; SG, ANE, JGG, MC-W, RGG, and DG wrote or contributed to the writing of the manuscript.

Additional information

The members of on behalf of the Best Pharmaceuticals for Children Act-Pediatric Trials Network Steering Committee is present in the Acknowledgements section.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, S., Edginton, A.N., Gerhart, J.G. et al. Physiologically Based Pharmacokinetic Modeling of Meropenem in Preterm and Term Infants. Clin Pharmacokinet 60, 1591–1604 (2021). https://doi.org/10.1007/s40262-021-01046-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-021-01046-6

Navigation