Skip to main content
Log in

A Review of the Methods and Associated Mathematical Models Used in the Measurement of Fat-Free Mass

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Fat-free mass (FFM) represents the lean component of the body devoid of fat. It has been shown to be a useful predictor of drug dose requirements, particularly in obesity where the excess fat mass does not contribute to drug clearance. However, measuring FFM involves complex and/or expensive experimental methodologies that preclude their use in routine clinical practice. Thus, models to predict FFM from readily measurable variables, such as body weight and height, have been developed and are used in both population pharmacokinetic modelling and clinical practice. In this review, methods used to measure FFM are explained and compared in terms of their assumptions, precision, and limitations. These methods are broadly classified into six different principles: densitometry, hydrometry, bioimpedance, whole-body counting, dual energy X-ray absorptiometry, and medical imaging. They vary in their processes and key biological assumptions that are often not applicable in certain populations (e.g. children, elderly, and certain disease states). This review provides a summary of the various methods of FFM measurement and estimation, and links these methods to a scientific framework to help clinicians and researchers understand the usefulness and potential limitations of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Josef Brozek AH, editor. Techniques for measuring body composition. Washington, DC: National Academy of Sciences-National Research Council; 1961. p. 223–44.

    Google Scholar 

  2. Snyder WS, Cook MJ, Karhausen LR, Nasset ES, Howells GP, Tipton IH. Report of the Task Group on Reference Man. The International Commission on Radiological Protection. Pergamon Press. 1974. http://journals.sagepub.com/doi/pdf/10.1016/S0074-2740(75)80015-8. Accessed 10 Aug 2017.

  3. Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Clin Pharmacokinet. 1994;26(4):292–307.

    Article  PubMed  CAS  Google Scholar 

  4. De Baerdemaeker LE, Mortier EP, Struys MM. Pharmacokinetics in obese patients. Contin Educ Anaesth Crit Care Pain. 2004;4(5):152–5.

    Article  Google Scholar 

  5. Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol. 2004;58(2):119–33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Han P, Duffull S, Kirkpatrick C, Green B. Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther. 2007;82(5):505–8.

    Article  PubMed  CAS  Google Scholar 

  7. Eleveld DJ, Proost JH, Absalom AR, Struys MM. Obesity and allometric scaling of pharmacokinetics. Clin Pharmacokinet. 2011;50(11):751–3.

    Article  PubMed  CAS  Google Scholar 

  8. Leykin Y, Miotto L, Pellis T. Pharmacokinetic considerations in the obese. Best Prac Res Clin Anaesthesiol. 2011;25(1):27–36.

    Article  CAS  Google Scholar 

  9. De Baerdemaeker LEC, Van Limmen JGM, Van Nieuwenhove Y. How should obesity be measured and how should anesthetic drug dosage be calculated?  In: Leykin Y, Brodsky JB, editors. Controversies in the anesthetic management of the obese surgical patient. Milan: Springer; 2013. pp. 15–30.

    Chapter  Google Scholar 

  10. Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987;46(4):537–56.

    Article  PubMed  CAS  Google Scholar 

  11. Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17(1):527–58.

    Article  PubMed  CAS  Google Scholar 

  12. Mattsson S, Thomas BJ. Development of methods for body composition studies. Phys Med Biol. 2006;51(13):R203.

    Article  PubMed  CAS  Google Scholar 

  13. Ellis KJ. Human body composition: in vivo methods. Physiol Rev. 2000;80(2):649–80.

    Article  PubMed  CAS  Google Scholar 

  14. Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wells J, Fewtrell M. Measuring body composition. Arch Dis Child. 2006;91(7):612–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fidanza F, Keys A, Anderson JT. Density of body fat in man and other mammals. J Appl Physiol. 1953;6:252–6.

    Article  PubMed  CAS  Google Scholar 

  17. Brožek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110(1):113–40.

    Article  PubMed  Google Scholar 

  18. Siri WE. The gross composition of the body. In: Lawrence JH, editor. Advances in biological and medical physics. New York: Academic Press; 1956. p. 239–80.

    Google Scholar 

  19. Going SB. Hydrodensitometry and air displacement plethysmography. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp. 17–33.

    Google Scholar 

  20. COSMED. Air Displacement Plethysmography (ADP) Body Composition. Rome. 2011. Available at: http://www.cosmed.com/hires/marketing_literature/product_news/Product_News_Air_Displacement_EN_print.pdf. Accessed 10 Aug 2017.

  21. Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Exerc. 1995;27(12):1692–7.

    Article  PubMed  CAS  Google Scholar 

  22. Ruppel GL. Manual of pulmonary function testing. 9th ed. St Louis: Mosby Elsevier; 2009.

    Google Scholar 

  23. Du Bois D, Du Bois E. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5(5):303.

    PubMed  Google Scholar 

  24. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(03):497–504.

    Article  PubMed  CAS  Google Scholar 

  25. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1979;12(3):175–81.

    Google Scholar 

  26. Schoeller DA. Hydrometry. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human kinetics; 2005. pp. 35–49.

    Google Scholar 

  27. Vaisman N, Pencharz PB, Koren G, Johnson JK. Comparison of oral and intravenous administration of sodium bromide for extracellular water measurements. Am J Clin Nutr. 1987;46(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  28. Bell E, Ziegler E, Forbes G. Corrected bromide space. Pediatr Res. 1984;18(4):392–3.

    Article  PubMed  CAS  Google Scholar 

  29. Miller ME, Cosgriff J, Forbes GB. Bromide space determination using anion-exchange chromatography for measurement of bromide. Am J Clin Nutr. 1989;50(1):168–71.

    Article  PubMed  CAS  Google Scholar 

  30. Brodie BB, Brand E, Leshin S. The use of bromide as a measure of extracellular fluid. J Biol Chem. 1939;130(2):555–63.

    CAS  Google Scholar 

  31. Kim J, Wang Z, Gallagher D, Kotler DP, Ma K, Heymsfield SB. Extracellular water: sodium bromide dilution estimates compared with other markers in patients with acquired immunodeficiency syndrome. J Parenter Enter Nutr. 1999;23(2):61–6.

    Article  CAS  Google Scholar 

  32. Moore FD, Lister J, Boyden CM, Ball MR, Sullivan N, Dagher FJ. The skeleton as a feature of body composition: values predicted by isotope dilution and observed by cadaver dissection in an adult human female. Hum Biol. 1968;40(2):135–88.

    PubMed  CAS  Google Scholar 

  33. Barnes BA, Gordon EB, Cope O. Skeletal muscle analyses in health and in certain metabolic disorders. I. The method of analysis and the values in normal muscle. J Clin Investig. 1957;36(8):1239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Maffy R. The body fluids: volume, composition, and physical chemistry. In: Brenner BM, Rector FC, editors. The kidney. Philadelphia: WB Saunders; 1976. p. 65–103.

    Google Scholar 

  35. Kushner RF. Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr. 1992;11(2):199–209.

    PubMed  CAS  Google Scholar 

  36. Aroom KR, Harting MT, Cox CS, Radharkrishnan RS, Smith C, Gill BS. Bioimpedance analysis: a guide to simple design and implementation. J Surg Res. 2009;153(1):23–30.

    Article  PubMed  Google Scholar 

  37. Lukaski H, Bolonchuk W. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat Space Environ Med. 1988;59(12):1163–9.

    PubMed  CAS  Google Scholar 

  38. Lukaski HC, Johnson PE, Bolonchuk W, Lykken G. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American journal of clinical nutrition. 1985;41(4):810–7.

    Article  PubMed  CAS  Google Scholar 

  39. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43.

    Article  PubMed  Google Scholar 

  40. Wu C-S, Chen Y-Y, Chuang C-L, Chiang L-M, Dwyer GB, Hsu Y-L, et al. Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy Asian individuals. Nutr J. 2015;14(1):1.

    Article  CAS  Google Scholar 

  41. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.

    Article  PubMed  Google Scholar 

  42. Ellis KJ. Whole-body counting and neutron activation analysis. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human Body Composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp. 51–62.

    Google Scholar 

  43. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.

    Article  PubMed  PubMed Central  Google Scholar 

  44. IAEA. Dual energy X ray absorptiometry for bone mineral density and body composition assessment. In: IAEA human health series. Vienna. 2010. Available at: http://www-pub.iaea.org/MTCD/publications/PDF/Pub1479_web.pdf. Accessed 10 Aug 2017.

  45. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol Endocrinol Metab. 1996;271(6):E941–51.

    Article  CAS  Google Scholar 

  46. Lohman TG, Chen Z. Dual-energy X-ray absorptiometry. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. pp 63–77.

    Google Scholar 

  47. Ross R, Janssen I. Computed tomography and magnetic resonance imaging. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human kinetics; 2005. pp 89–108.

    Google Scholar 

  48. Kvist H, Chowdhury B, Grangård U, Tylen U, Sjöström L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr. 1988;48(6):1351–61.

    Article  PubMed  CAS  Google Scholar 

  49. Kim CG, Kim WH, Kim MH, Kim D-W. Direct determination of lean body mass by CT in F-18 FDG PET/CT studies: comparison with estimates using predictive equations. Nucl Med Mol Imaging. 2013;47(2):98–103.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Snijder M, Visser M, Dekker J, Seidell J, Fuerst T, Tylavsky F, et al. The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry. Int J Obes. 2002;26(7):984.

    Article  CAS  Google Scholar 

  51. Hume R. Prediction of lean body mass from height and weight. J Clin Pathol. 1966;19(4):389–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. James WPT, Waterlow JC. Research on obesity: a report of the DHSS/MRC Group. London: Her Majesty’s Stationery Office: UK Department of Health and Social Security/Medical Research Council Group on Obesity Research; 1976.

  53. Boer P. Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol Renal Physiol. 1984;247(4):F632–6.

    Article  CAS  Google Scholar 

  54. Garrow JS, Webster J. Quetelet’s index (W/H2) as a measure of fatness. International journal of obesity. 1984;9(2):147–53.

    Google Scholar 

  55. Heitmann BL. Evaluation of body fat estimated from body mass index, skinfolds and impedance. A comparative study. Eur J Clin Nutr. 1990;44(11):831–7.

    PubMed  CAS  Google Scholar 

  56. Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age-and sex-specific prediction formulas. Br J Nutr. 1991;65(02):105–14.

    Article  PubMed  CAS  Google Scholar 

  57. Cheymol G. Effects of obesity on pharmacokinetics. Clin Pharmacokinet. 2000;39(3):215–31.

    Article  PubMed  CAS  Google Scholar 

  58. Bucaloiu ID, Wood GC, Norfolk ER, Still CD, Hartle JE, Perkins RM. Fat-free weight prediction in morbidly obese females. Int J Nephrol Renovasc Dis. 2011;4:149.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Al-Sallami HS, Goulding A, Grant A, Taylor R, Holford N, Duffull SB. Prediction of fat-free mass in children. Clin Pharmacokinet. 2015;54(11):1169–78.

    Article  PubMed  CAS  Google Scholar 

  60. La Colla L, Albertin A, La Colla G, Porta A, Aldegheri G, Di Candia D, et al. Predictive performance of the ‘Minto’ remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass. Clin Pharmacokinet. 2010;49(2):131–9.

    Article  PubMed  Google Scholar 

  61. Lohman TG. Assessment of body composition in children. Pediatr Exerc Sci. 1989;1(1):19–30.

    Article  Google Scholar 

  62. Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5):1169–75.

    Article  PubMed  CAS  Google Scholar 

  63. Werdein EJ, Kyle LH. Estimation of the constancy of density of the fat-free body. J Clin Investig. 1960;39(4):626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Cohn S, Vartsky D, Yasumura S, Vaswani A, Ellis K. Indexes of body cell mass: nitrogen versus potassium. Am J Physiol Endocrinol Metab. 1983;244(3):E305–10.

    Article  CAS  Google Scholar 

  65. Cleroux J, Van Nguyen P, Taylor A, Leenen F. Effects of beta 1-vs. beta 1+ beta 2-blockade on exercise endurance and muscle metabolism in humans. J Appl Physiol. 1989;66(2):548–54.

    Article  PubMed  CAS  Google Scholar 

  66. Sica DA. Antihypertensive therapy and its effects on potassium homeostasis. J Clin Hypertens. 2006;8(1):67–73.

    Article  CAS  Google Scholar 

  67. Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. The Lancet. 2016;387(10026):1377–96.

    Article  Google Scholar 

  68. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. The Lancet. 2011;378(9793):815–25.

    Article  Google Scholar 

  69. McLeay SC, Morrish GA, Kirkpatrick CM, Green B. The relationship between drug clearance and body size. Clin Pharmacokinet. 2012;51(5):319–30.

    Article  PubMed  CAS  Google Scholar 

  70. Bhavnani SM, Rubino CM, Ambrose PG, Drusano GL. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis. 2010;50(12):1568–74.

    Article  PubMed  CAS  Google Scholar 

  71. Ingrande J, Brodsky JB, Lemmens HJ. Lean body weight scalar for the anesthetic induction dose of propofol in morbidly obese subjects. Anesth Analg. 2011;113(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  72. Cortinez LI, Anderson BJ, Holford NH, Puga V, de la Fuente N, Auad H, et al. Dexmedetomidine pharmacokinetics in the obese. Eur J Clin Pharmacol. 2015;71(12):1501–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydeep Sinha.

Ethics declarations

Conflicts of interest

Jaydeep Sinha, Stephen B. Duffull, and Hesham S. Al-Sallami declare no conflicts of interest.

Ethics Approval

No ethical approval was required for this literature review.

Funding

This review required no specific funding. Jaydeep Sinha received a doctoral scholarship from the School of Pharmacy, University of Otago, New Zealand, during this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, J., Duffull, S.B. & Al-Sallami, H.S. A Review of the Methods and Associated Mathematical Models Used in the Measurement of Fat-Free Mass. Clin Pharmacokinet 57, 781–795 (2018). https://doi.org/10.1007/s40262-017-0622-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0622-5

Navigation