Skip to main content
Log in

Clinical Pharmacology Profile of Boceprevir, a Hepatitis C Virus NS3 Protease Inhibitor: Focus on Drug–Drug Interactions

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Boceprevir is a potent, orally administered ketoamide inhibitor that targets the active site of the hepatitis C virus (HCV) non-structural (NS) 3 protease. The addition of boceprevir to peginterferon plus ribavirin resulted in higher rates of sustained virologic response (SVR) than for peginterferon plus ribavirin alone in phase III studies in both previously treated and untreated patients with HCV infection. Because boceprevir is metabolized by metabolic routes common to many other drugs, and is an inhibitor of cytochrome P450 (CYP) 3A4/5, there is a high potential for drug–drug interactions when boceprevir is administered with other therapies, particularly when treating patients with chronic HCV infection who are often receiving other medications concomitantly. Boceprevir is no longer widely used in the US or EU due to the introduction of second-generation treatments for HCV infection. However, in many other geographic regions, first-generation protease inhibitors such as boceprevir continue to form an important treatment option for patients with HCV infection. This review summarizes the interactions between boceprevir and other therapeutic agents commonly used in this patient population, indicating dose adjustment requirements where needed. Most drug interactions do not affect boceprevir plasma concentrations to a clinically meaningful extent, and thus efficacy is likely to be maintained when boceprevir is coadministered with the majority of other therapeutics. Overall, the drug–drug interaction profile of boceprevir suggests that this agent is suitable for use in a wide range of HCV-infected patients receiving concomitant therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venkatraman S, Bogen SL, Arasappan A, et al. Discovery of (1R,5S)-N-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]- 3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection. J Med Chem. 2006;49:6074–86.

    Article  CAS  PubMed  Google Scholar 

  2. Malcolm BA, Liu R, Lahser F, et al. SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of alpha interferon in replicon cells. Antimicrob Agents Chemother. 2006;50:1013–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Poordad F, McCone J, Bacon BR, et al. Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med. 2011;364:1195–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bacon B, Gordon SC, Lawitz E, et al. Boceprevir for previously treated chronic HCV genotype 1 infection. N Engl J Med. 2011;364:1207–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Victrelis® (boceprevir) capsules [prescribing information]. Whitehouse Station: Merck & Co., Inc; 2011.

  6. Chu X, Cai X, Cui D, et al. In vitro assessment of drug-drug interaction potential of boceprevir associated with drug metabolizing enzymes and transporters. Drug Metab Dispos. 2013;41:668–81.

    Article  CAS  PubMed  Google Scholar 

  7. Ghosal A, Yuan Y, Tong W, et al. Characterization of human liver enzymes involved in the biotransformation of boceprevir, a HCV protease inhibitor. Drug Metab Dispos. 2011;39:510–21.

    Article  CAS  PubMed  Google Scholar 

  8. Gordon SC, Yoshida EM, Lawitz EJ, et al. Adherence to assigned dosing regimen and sustained virological response among chronic hepatitis C genotype 1 patients treated with boceprevir plus peginterferon alfa-2b/ribavirin. Aliment Pharmacol Ther. 2013;38:16–27.

    Article  CAS  PubMed  Google Scholar 

  9. Poordad FF, Lawitz E, Gordon SC, et al. Concomitant medication use in patients with hepatitis C genotype 1 treated with boceprevir (BOC) combination therapy. Hepatology. 2011;54:739A.

    Article  Google Scholar 

  10. Kasserra C, Treitel M, Hughes E, et al. Effect of food on the pharmacokinetics of boceprevir in Japanese and Caucasian healthy subjects. Hepatol Int. 2015;5:258–9.

    Google Scholar 

  11. Treitel M, Marbury T, Preston RA, et al. Single-dose pharmacokinetics of boceprevir in subjects with impaired hepatic or renal function. Clin Pharmacokinet. 2012;51:619–28.

    Article  CAS  PubMed  Google Scholar 

  12. Monga HK, Rodriguez-Barradas MC, Breaux K, et al. Hepatitis C virus infection-related morbidity and mortality among patients with human immunodeficiency virus infection. Clin Infect Dis. 2001;33:240–7.

    Article  CAS  PubMed  Google Scholar 

  13. Graham CS, Baden LR, Yu E, et al. Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. Clin Infect Dis. 2001;33:562–9.

    Article  CAS  PubMed  Google Scholar 

  14. Carrat F, Bani-Sadr F, Pol S, et al. Pegylated interferon alfa-2b vs standard interferon alfa-2b, plus ribavirin, for chronic hepatitis C in HIV-infected patients: a randomized controlled trial. JAMA. 2004;292:2839–48.

    Article  CAS  PubMed  Google Scholar 

  15. Chung RT, Andersen J, Volberding P, et al. Peginterferon alfa-2a plus ribavirin versus interferon alfa-2a plus ribavirin for chronic hepatitis C in HIV-coinfected persons. N Engl J Med. 2004;351:451–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sulkowski MS. Current management of hepatitis C virus infection in patients with HIV co-infection. J Infect Dis. 2013;207(Suppl 1):S26–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hulskotte EG, Feng HP, Xuan F, et al. Pharmacokinetic interactions between the hepatitis C virus protease inhibitor boceprevir and ritonavir-boosted HIV-1 protease inhibitors atazanavir, darunavir, and lopinavir. Clin Infect Dis. 2013;56:718–26.

    Article  CAS  PubMed  Google Scholar 

  18. Vourvahis M, Plotka A, Kantaridis C, et al. The effects of boceprevir and telaprevir on the pharmacokinetics of maraviroc: an open-label, fixed-sequence study in healthy volunteers. J Acquir Immune Defic Syndr. 2014;65:564–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. de Kanter CT, Blonk MI, Colbers AP, et al. Lack of a clinically significant drug-drug interaction in healthy volunteers between the hepatitis C virus protease inhibitor boceprevir and the HIV integrase inhibitor raltegravir. Clin Infect Dis. 2012;56:300–6.

    Article  PubMed  Google Scholar 

  20. Johnson M, Borland J, Chen S, et al. Effects of boceprevir and telaprevir on the pharmacokinetics of dolutegravir. Br J Clin Pharmacol. 2014;78:1043–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hammond KP, Wolfe P, Burton JR Jr, et al. Pharmacokinetic interaction between boceprevir and etravirine in HIV/HCV seronegative volunteers. J Acquir Immune Defic Syndr. 2013;62:67–73.

    Article  CAS  PubMed  Google Scholar 

  22. Kiser JJ, Lu D, Rosenkranz SL, et al. Boceprevir and antiretroviral pharmacokinetic interactions in HIV/HCV co-infected persons. AIDS Clinical Trials Group Study A5309s. Presented at the 15th International Workshop of Clinical Pharmacology of HIV and Hepatitis Therapy; Washington, DC, 19–21 May 2014.

  23. Dolton MJ, Ray JE, McLachlan AJ. Telaprevir and boceprevir: a potential role for therapeutic drug monitoring. Ther Drug Monit. 2013;35:414–5.

    Article  PubMed  Google Scholar 

  24. Hulskotte E, Gupta S, Xuan F, et al. Pharmacokinetic interaction between the HVC protease inhibitor boceprevir and cyclosporine and tacrolimus in healthy volunteers. Hepatology. 2012;56:1622–30.

    Article  CAS  PubMed  Google Scholar 

  25. Sam T, Tichy E, Emre S, et al. Pharmacokinetic effects of boceprevir co-administration on cyclosporine exposure in liver transplant recipients. Am J Transplant. 2012;12:430–1.

    Google Scholar 

  26. Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29:404–30.

    Article  CAS  PubMed  Google Scholar 

  27. Sanabria JA, Sanchez MB, Fabrega E, et al. Management of boceprevir and tacrolimus in a patient with liver transplant and hepatitis c virus recurrence. Basic Clin Pharmacol Toxicol. 2013;113:2.

    Google Scholar 

  28. Sattler M, Guengerich FP, Yun CH, et al. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos. 1992;20:753–61.

    CAS  PubMed  Google Scholar 

  29. Gallant-Haidner HL, Trepanier DJ, Freitag DG, et al. Pharmacokinetics and metabolism of sirolimus. Ther Drug Monit. 2000;22:31–5.

    Article  CAS  PubMed  Google Scholar 

  30. Rapamune (sirolimus) oral solution and tablets [prescribing information]. Philadelphia: Wyeth Pharmaceuticals Inc.; 2010.

  31. Hulskotte EG, Feng HP, Xuan F, et al. Pharmacokinetic interactions between the HCV protease inhibitor boceprevir and sirolimus in healthy subjects. J Hepatol. 2013;58:S190.

    Article  Google Scholar 

  32. Frey BM, Frey FJ. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1990;19:126–46.

    Article  CAS  PubMed  Google Scholar 

  33. Jumes P, Feng HP, Chatterjee M, et al. Pharmacokinetic interaction between the HCV protease inhibitor boceprevir and prednisone in healthy volunteers. Hepatology. 2014;56:1076A.

    Google Scholar 

  34. Bruce RD, Moody DE, Altice FL, et al. A review of pharmacological interactions between HIV or hepatitis C virus medications and opioid agonist therapy: implications and management for clinical practice. Expert Rev Clin Pharmacol. 2013;6:249–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hulskotte EGJ, Bruce RD, Feng HP, et al. Pharmacokinetic interaction between HCV protease inhibitor boceprevir and methadone or buprenorphine in subjects on stable maintenance therapy. Eur J Clin Pharmacol. 2015;71:303–11.

    Article  CAS  PubMed  Google Scholar 

  36. Hulskotte E, Feng HP, Bruce RD, et al. Pharmacokinetic interaction between HCV protease inhibitor boceprevir and methadone or buprenorphine in subjects on stable maintenance therapy. Rev Antiviral Ther Infect Dis. 2012;6:12.

    Google Scholar 

  37. Elkader A, Sproule B. Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin Pharmacokinet. 2005;44:661–80.

    Article  CAS  PubMed  Google Scholar 

  38. Fang WB, Chang Y, Cance-Katz EF, et al. Determination of naloxone and nornaloxone (noroxymorphone) by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. J Anal Toxicol. 2009;33:409–17.

    Article  CAS  PubMed  Google Scholar 

  39. Chiang CN, Hawks RL. Pharmacokinetics of the combination tablet of buprenorphine and naloxone. Drug Alcohol Depend. 2003;70:S39–47.

    Article  CAS  PubMed  Google Scholar 

  40. Yaz (drospirenone and ethinyl estradiol) tablets [prescribing information]. Wayne: Bayer Healthcare Pharmaceuticals Inc; 2010.

  41. Korhonen T, Turpeinen M, Tolonen A, et al. Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone. J Steroid Biochem Mol Biol. 2008;110:56–66.

    Article  CAS  PubMed  Google Scholar 

  42. Lin WH, Feng HP, Chatterjee M, et al. Pharmacokinetic interaction between the HCV protease inhibitor boceprevir and ethinyl estradiol/norethindrone. Hepatology. 2012;56:1078A–9A.

    Google Scholar 

  43. Lin WH, Feng HP, Shadle CR, et al. Pharmacokinetic and pharmacodynamic interactions between the hepatitis C virus protease inhibitor, boceprevir, and the oral contraceptive ethinyl estradiol/norethindrone. Eur J Clin Pharmacol. 2014;70:1107–13.

    Article  CAS  PubMed  Google Scholar 

  44. Lennernas H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42:1141–60.

    Article  PubMed  Google Scholar 

  45. Hulskotte EG, Feng HP, Xuan F, et al. Pharmacokinetic evaluation of the interaction between hepatitis C virus protease inhibitor boceprevir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and pravastatin. Antimicrob Agents Chemother. 2013;57:2582–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet. 2002;41:343–70.

    Article  CAS  PubMed  Google Scholar 

  47. Neuvonen PJ, Backman JT, Niemi M. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin, and pravastatin. Clin Pharmacokinet. 2008;47:463–74.

    Article  CAS  PubMed  Google Scholar 

  48. Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112:71–105.

    Article  CAS  PubMed  Google Scholar 

  49. Mayer U, Wagenaar E, Beijnen JH, et al. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br J Pharmacol. 1996;119:1038–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Jumes P, Feng HP, Xuan F, et al. Pharmacokinetic interaction between the HCV protease inhibitor boceprevir and digoxin in healthy adult volunteers. Rev Antiviral Ther Infect Dis. 2012;6:8.

    Google Scholar 

  51. LEXAPRO (escitalopram oxalate) tablets and oral solution [prescribing information]. St Louis: Forest Pharmaceuticals, Inc.; 2011 May.

  52. Hulskotte EGJ, Gupta S, Xuan F, et al. Coadministration of the HCV protease inhibitor boceprevir has no clinically meaningful effect on the pharmacokinetics of the selective serotonin reuptake inhibitor escitalopram in healthy volunteers. Presented at the 16th Annual Meeting of HEP DART; Koloa (HI), 4–8 Dec 2011.

  53. de Kanter CT, Colbers AP, Blonk MI, et al. Lack of a clinically significant drug-drug interaction in healthy volunteers between the HCV protease inhibitor boceprevir and the proton pump inhibitor omeprazole. J Antimicrob Agents Chemother. 2013;68:1415–22.

    Article  Google Scholar 

  54. Jackson A, D’Avolio A, Moyle G, et al. Pharmacokinetics of the co-administration of boceprevir and St John’s wort to male and female healthy volunteers. J Antimicrob Chemother. 2014;69:1911–5.

    Article  CAS  PubMed  Google Scholar 

  55. Wire MB, Fang L, Hussaini A, et al. Lack of clinically significant pharmacokinetic interaction between the thrombopoietin receptor agonist eltrombopag and hepatitis C virus protease inhibitors boceprevir and telaprevir. Antimicrob Agents Chemother. 2014;58:6704–9.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Kasserra C, Treitel M, Hughes EA, et al. Effect of boceprevir on red blood cells and markers of anemia in healthy volunteers. Gastroenterology. 2015;140:s945.

    Google Scholar 

  57. Wenning LA, Flexner C, Liu R, et al. Assessment of boceprevir (VICTRELIS™) pharmacokinetic/pharmacodynamic relationships for sustained viral response (SVR) and occurrence of anemia results in HCV/HIV co-infected patients and in combined mono-and co-infected patients. Hepatology. 2015;56:564A.

    Google Scholar 

  58. American Association for the Study of Liver Diseases, Infectious Diseases Society of North America. Recommendations for testing, managing, and treating hepatitis C. Available at: http://www.hcvguidelines.org. Accessed 26 May 2014.

  59. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatitis C virus infection. J Hepatol. 2014;60:392–420.

    Article  Google Scholar 

Download references

Acknowledgments

Medical writing and editorial assistance were provided by Tim Ibbotson, PhD, and Beth McMahon-Wise, PhD, of ApotheCom (San Francisco, CA, USA). This assistance was funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA. We thank Victoria Enwemadu, PharmD, of Merck for managing the publication process.

Financial interest disclosures

Sauzanne Khalilieh, Hwa-Ping Feng, Ellen G. J. Hulskotte, Larissa A. Wenning, and Joan R. Butterton are all current or former employees of Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan R. Butterton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilieh, S., Feng, HP., Hulskotte, E.G.J. et al. Clinical Pharmacology Profile of Boceprevir, a Hepatitis C Virus NS3 Protease Inhibitor: Focus on Drug–Drug Interactions. Clin Pharmacokinet 54, 599–614 (2015). https://doi.org/10.1007/s40262-015-0260-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0260-8

Keywords

Navigation