Skip to main content

Advertisement

Log in

Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

In recent years, machine learning (ML) techniques have garnered considerable interest for their potential use in accelerating the rate of drug discovery. With the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the utilization of ML has become even more crucial in the search for effective antiviral medications. The pandemic has presented the scientific community with a unique challenge, and the rapid identification of potential treatments has become an urgent priority. Researchers have been able to accelerate the process of identifying drug candidates, repurposing existing drugs, and designing new compounds with desirable properties using machine learning in drug discovery. To train predictive models, ML techniques in drug discovery rely on the analysis of large datasets, including both experimental and clinical data. These models can be used to predict the biological activities, potential side effects, and interactions with specific target proteins of drug candidates. This strategy has proven to be an effective method for identifying potential coronavirus disease 2019 (COVID-19) and other disease treatments. This paper offers a thorough analysis of the various ML techniques implemented to combat COVID-19, including supervised and unsupervised learning, deep learning, and natural language processing. The paper discusses the impact of these techniques on pandemic drug development, including the identification of potential treatments, the understanding of the disease mechanism, and the creation of effective and safe therapeutics. The lessons learned can be applied to future outbreaks and drug discovery initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022;22(9):1293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Richards F, Kodjamanova P, Chen X, Li N, Atanasov P, Bennetts L, Patterson BJ, Yektashenas B, Mesa-Frias M, Tronczynski K. Economic burden of COVID-19: a systematic review. Clinicoecon Outcomes Res CEOR. 2022;14:293.

    Article  Google Scholar 

  3. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127: 104362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nicholls J, Dong XP, Jiang G, Peiris M. SARS: clinical virology and pathogenesis. Respirology. 2003;8:S6–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 envelope, membrane, nucleocapsid, and spike structural proteins from the beginning of the pandemic to September 2020: a global and regional approach by epidemiological week. Viruses. 2021;13(2):243.

    Article  PubMed  PubMed Central  Google Scholar 

  6. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–70.

    Article  PubMed  Google Scholar 

  7. Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci. 2022;65(2):280–94.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang G-Y, Katsamba PS, Sampson JM, Schön A, Bimela J. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe. 2020;28(6):867.e865-879.e865.

    Article  Google Scholar 

  9. Nguyen HL, Lan PD, Thai NQ, Nissley DA, O’Brien EP, Li MS. Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV? J Phys Chem B. 2020;124(34):7336–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Domingo P, Mur I, Pomar V, Corominas H, Casademont J, de Benito N. The four horsemen of a viral Apocalypse: the pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine. 2020;58: 102887.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Viceconte G, Petrosillo N. COVID-19 R0: magic number or conundrum? Infect Dis Rep. 2020;12(1):8516.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bulut C, Kato Y. Epidemiology of COVID-19. Turk J Med Sci. 2020;50(9):563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J: The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;20(3):318–31.

  14. Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252–60.

    Article  CAS  PubMed  Google Scholar 

  15. Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318–31.

    Article  PubMed  Google Scholar 

  16. Lo Y-C, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim E, Choi A-S, Nam H. Drug repositioning of herbal compounds via a machine-learning approach. BMC Bioinform. 2019;20(10):33–43.

    Google Scholar 

  18. Vo AH, Van Vleet TR, Gupta RR, Liguori MJ, Rao MS. An overview of machine learning and big data for drug toxicity evaluation. Chem Res Toxicol. 2019;33(1):20–37.

    Article  PubMed  Google Scholar 

  19. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kowalewski J, Ray A. Predicting novel drugs for SARS-CoV-2 using machine learning from a > 10 million chemical space. Heliyon. 2020;6(8):e04639.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pham TH, Qiu Y, Zeng JC, Xie L, Zhang P. A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing. Nat Mach Intell. 2021;3(3):247–57.

    Article  PubMed  PubMed Central  Google Scholar 

  22. El-Behery H, Attia AF, El-Feshawy N, Torkey H. Efficient machine learning model for predicting drug-target interactions with case study for Covid-19. Comput Biol Chem. 2021;93:107536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lv H, Shi L, Berkenpas JW, Dao FY, Zulfiqar H, Ding H, Zhang Y, Yang LM, Cao RZ. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief Bioinform. 2021;1–10:bbab320. https://doi.org/10.1093/bib/bbab320.

  24. Liu Y, Gan J, Wang R, Yang X, Xiao Z, Cao Y. DrugDevCovid19: an atlas of anti-COVID-19 compounds derived by computer-aided drug design. Molecules. 2022;27(3):683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G. Generative recurrent networks for de novo drug design. Mol Inf. 2018;37(1–2):1700111.

    Article  Google Scholar 

  26. Zhang L, Zhang H, Ai H, Hu H, Li S, Zhao J, Liu H. Applications of machine learning methods in drug toxicity prediction. Curr Top Med Chem. 2018;18(12):987–97.

    Article  CAS  PubMed  Google Scholar 

  27. White J. PubMed 2.0. Med Ref Serv Q. 2020;39(4):382–7.

    Article  PubMed  Google Scholar 

  28. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW, Pruitt KD, Sherry ST. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20–6. https://doi.org/10.1093/nar/gkab1112.

  29. Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–5.

    Article  PubMed  Google Scholar 

  30. Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater. 2019;18(5):435–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules. 2020;25(22):5277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castillo TJM, Arif M, Niessen WJ, Schoots IG, Veenland JF. Automated classification of significant prostate cancer on MRI: a systematic review on the performance of machine learning applications. Cancers (Basel). 2020;12(6):1606.

    Article  Google Scholar 

  33. Cuocolo R, Cipullo MB, Stanzione A, Romeo V, Green R, Cantoni V, Ponsiglione A, Ugga L, Imbriaco M. Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol. 2020;30:6877–87.

    Article  PubMed  Google Scholar 

  34. Cuocolo R, Cipullo MB, Stanzione A, Ugga L, Romeo V, Radice L, Brunetti A, Imbriaco M. Machine learning applications in prostate cancer magnetic resonance imaging. Eur Radiol Exp. 2019;3(1):1–8.

    Article  Google Scholar 

  35. Yang H, Sun L, Li W, Liu G, Tang Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem. 2018;6:30.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

  37. Sinaga KP, Yang M-S. Unsupervised K-means clustering algorithm. IEEE Access. 2020;8:80716–27.

    Article  Google Scholar 

  38. Kodinariya TM, Makwana PR. Review on determining number of cluster in K-means clustering. Int J. 2013;1(6):90–5.

    Google Scholar 

  39. Pham DT, Dimov SS, Nguyen CD. Selection of K in K-means clustering. Proc Inst Mech Eng C J Mech Eng Sci. 2005;219(1):103–19.

    Article  Google Scholar 

  40. Likas A, Vlassis N, Verbeek JJ. The global k-means clustering algorithm. Pattern Recogn. 2003;36(2):451–61.

    Article  Google Scholar 

  41. Hartigan JA, Wong MA. Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C (Appl Stat). 1979;28(1):100–8.

    Google Scholar 

  42. Golmohammadi H, Dashtbozorgi Z, Acree WE Jr. Quantitative structure–activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Eur J Pharm Sci. 2012;47(2):421–9.

    Article  CAS  PubMed  Google Scholar 

  43. Shar PA, Tao W, Gao S, Huang C, Li B, Zhang W, Shahen M, Zheng C, Bai Y, Wang Y. Pred-binding: large-scale protein–ligand binding affinity prediction. J Enzyme Inhib Med Chem. 2016;31(6):1443–50.

    Article  CAS  PubMed  Google Scholar 

  44. Zsila F, Bikadi Z, Malik D, Hari P, Pechan I, Berces A, Hazai E. Evaluation of drug–human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics. 2011;27(13):1806–13.

    Article  CAS  PubMed  Google Scholar 

  45. Passerini A, Punta M, Ceroni A, Rost B, Frasconi P. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks. Proteins Struct Funct Bioinform. 2006;65(2):305–16.

    Article  CAS  Google Scholar 

  46. Cai Y-D, Lin SL. Support vector machines for predicting rRNA-, RNA-, and DNA-binding proteins from amino acid sequence. Biochim Biophys Acta (BBA) Proteins Proteom. 2003;1648(1–2):127–33.

    Article  CAS  Google Scholar 

  47. Bradford JR, Westhead DR. Improved prediction of protein–protein binding sites using a support vector machines approach. Bioinformatics. 2005;21(8):1487–94.

    Article  CAS  PubMed  Google Scholar 

  48. Ali J, Khan R, Ahmad N, Maqsood I. Random forests and decision trees. Int J Comput Sci Issues (IJCSI). 2012;9(5):272.

    Google Scholar 

  49. Denisko D, Hoffman MM. Classification and interaction in random forests. Proc Natl Acad Sci. 2018;115(8):1690–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fratello M, Tagliaferri R. Decision trees and random forests. Encyclopedia of bioinformatics and computational biology. 2019;1:374–83.

  51. Shi H, Liu S, Chen J, Li X, Ma Q, Yu B. Predicting drug–target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics. 2019;111(6):1839–52.

    Article  CAS  PubMed  Google Scholar 

  52. Bishop CM. Neural networks and their applications. Rev Sci Instrum. 1994;65(6):1803–32.

    Article  Google Scholar 

  53. Abdi H. A neural network primer. J Biol Syst. 1994;2(03):247–81.

    Article  Google Scholar 

  54. Agostinelli F, Hoffman M, Sadowski P, Baldi P. Learning activation functions to improve deep neural networks. arXiv preprint arXiv:14126830 2014.

  55. Rasamoelina AD, Adjailia F, Sinčák P. A review of activation function for artificial neural network. In: 2020 IEEE 18th World symposium on applied machine intelligence and informatics (SAMI). IEEE. 2020. p. 281–6.

  56. Yuen B, Hoang MT, Dong X, Lu T. Universal activation function for machine learning. Sci Rep. 2021;11(1):18757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Z, Beck MW, Winkler DA, Huang B, Sibanda W, Goyal H. Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Ann Transl Med. 2018;6(11):216.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer Interdiscipl Int J Am Cancer Soc. 2001;91(S8):1615–35.

    CAS  Google Scholar 

  59. Benítez JM, Castro JL, Requena I. Are artificial neural networks black boxes? IEEE Trans Neural Netw. 1997;8(5):1156–64.

    Article  PubMed  Google Scholar 

  60. Temurtas H, Yumusak N, Temurtas F. A comparative study on diabetes disease diagnosis using neural networks. Expert Syst Appl. 2009;36(4):8610–5.

    Article  Google Scholar 

  61. Khemphila A, Boonjing V. Heart disease classification using neural network and feature selection. In: 2011 21st international conference on systems engineering: 16–18 Aug 2011. 2011. p. 406–9.

  62. Sadighpour L, Rezaei S, Paknejad M, Jafary F, Aslani P. The application of an artificial neural network to support decision making in edentulous maxillary implant prostheses. J Res Pract Dent. 2014:2014:369025. https://doi.org/10.5171/2014.369025.

  63. Jung S-K, Kim T-W. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofac Orthop. 2016;149(1):127–33.

    Article  Google Scholar 

  64. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018;36:257–72.

    Article  PubMed  Google Scholar 

  65. de Souza JG, Fernandes MAC, Barbosa RD. A novel deep neural network technique for drug–target interaction. Pharmaceutics. 2022;14(3):625.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Karnati M, Seal A, Sahu G, Yazidi A, Krejcar O. A novel multi-scale based deep convolutional neural network for detecting COVID-19 from X-rays. Appl Soft Comput. 2022;125:109109.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Andrade CH, Pasqualoto KF, Ferreira EI, Hopfinger AJ. 4D-QSAR: perspectives in drug design. Molecules. 2010;15(5):3281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hopfinger A, Wang S, Tokarski JS, Jin B, Albuquerque M, Madhav PJ, Duraiswami C. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc. 1997;119(43):10509–24.

    Article  CAS  Google Scholar 

  69. Potemkin V, Grishina M. Principles for 3D/4D QSAR classification of drugs. Drug Discov Today. 2008;13(21–22):952–9.

    Article  CAS  PubMed  Google Scholar 

  70. Myshkin E, Brennan R, Khasanova T, Sitnik T, Serebriyskaya T, Litvinova E, Guryanov A, Nikolsky Y, Nikolskaya T, Bureeva S. Prediction of organ toxicity endpoints by qsar modeling based on precise chemical-histopathology annotations. Chem Bioogyl Drug Des. 2012;80(3):406–16.

    Article  CAS  Google Scholar 

  71. Yang L, Wang Y, Chang J, Pan Y, Wei R, Li J, Wang H. QSAR modeling the toxicity of pesticides against Americamysis bahia. Chemosphere. 2020;258: 127217.

    Article  CAS  PubMed  Google Scholar 

  72. Klüver N, Vogs C, Altenburger R, Escher BI, Scholz S. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test. Chemosphere. 2016;164:164–73.

    Article  PubMed  Google Scholar 

  73. Pavan M, Netzeva T, Worth A. Validation of a QSAR model for acute toxicity. SAR QSAR Environ Res. 2006;17(02):147–71.

    Article  CAS  PubMed  Google Scholar 

  74. Huang S-H, Tung C-W, Fülöp F, Li J-H. Developing a QSAR model for hepatotoxicity screening of the active compounds in traditional Chinese medicines. Food Chem Toxicol. 2015;78:71–7.

    Article  CAS  PubMed  Google Scholar 

  75. Rodgers AD, Zhu H, Fourches D, Rusyn I, Tropsha A. Modeling liver-related adverse effects of drugs using k nearest neighbor quantitative structure–activity relationship method. Chem Res Toxicol. 2010;23(4):724–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fjodorova N, Vračko M, Novič M, Roncaglioni A, Benfenati E. New public QSAR model for carcinogenicity. In: Chemistry central journal: 2010. Springer. p. 1–15.

  77. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010;50(5):742–54.

    Article  CAS  PubMed  Google Scholar 

  78. Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58–63.

    Article  PubMed  Google Scholar 

  79. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des. 2016;30:595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pattanaik L, Coley CW. Molecular representation: going long on fingerprints. Chemistry. 2020;6(6):1204–7.

    Article  CAS  Google Scholar 

  81. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. March-Vila E, Pinzi L, Sturm N, Tinivella A, Engkvist O, Chen HM, Rastelli G: On the integration of in silico drug design methods for drug repurposing. Front Pharmacol. 2017;8:298. https://doi.org/10.3389/fphar.2017.00298.

  83. Wen M, Zhang ZM, Niu SY, Sha HZ, Yang RH, Yun YH, Lu HM. Deep-learning-based drug–target interaction prediction. J Proteome Res. 2017;16(4):1401–9.

    Article  CAS  PubMed  Google Scholar 

  84. Chang Y, Park H, Yang HJ, Lee S, Lee KY, Kim TS, Jung J, Shin JM. Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep. 2018;8(1):8857. https://doi.org/10.1038/s41598-018-27214-6.

  85. Wan FP, Hong LX, Xiao A, Jiang T, Zeng JY. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions. Bioinformatics. 2019;35(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  86. Zeng XX, Zhu SY, Liu XR, Zhou YD, Nussinov R, Cheng FX. DeepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics. 2019;35(24):5191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zeng XX, Song X, Ma TF, Pan XQ, Zhou YD, Hou Y, Zhang Z, Li KL, Karypis G, Cheng FX. Repurpose open data to discover therapeutics for COVID-19 using deep learning. J Proteome Res. 2020;19(11):4624–36.

    Article  CAS  PubMed  Google Scholar 

  88. Gysi DM, do Valle I, Zitnik M, Ameli A, Gan X, Varol O, Ghiassian SD, Patten JJ, Davey RA, Loscalzo J et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proced Natl Acad Sci USA 2021;118(19):e2025581118.

  89. Santos SD, Torres M, Galeano D, Sanchez MD, Cernuzzi L, Paccanaro A. Machine learning and network medicine approaches for drug repositioning for COVID-19. Patterns. 2022;3(1):100396.

    Article  CAS  PubMed  Google Scholar 

  90. Ge YY, Tian TZ, Huang SL, Wan FP, Li JX, Li SY, Wang XT, Yang H, Hong LX, Wu N et al: An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. Signal Transduct Target Ther. 2021;6(1):165.

  91. Smith DP, Oechsle O, Rawling MJ, Savory E, Lacoste A, Richardson PJ. Expert-augmented computational drug repurposing identified baricitinib as a treatment for COVID-19. Front Pharmacol. 2021;12:1699.

  92. Kumar A, Loharch S, Kumar S, Ringe RP, Parkesh R. Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2. Comput Struct Biotechnol J. 2021;19:424–38.

    Article  CAS  PubMed  Google Scholar 

  93. Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J. 2020;18:784–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gawriljuk VO, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, et al. Machine learning models identify inhibitors of SARS-CoV-2. J Chem Inf Model. 2021;61(9):4224–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kadioglu O, Saeed M, Greten HJ, Efferth T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med. 2021;133:104359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiang X, Neapolitan RE. Mining pure, strict epistatic interactions from high-dimensional datasets: ameliorating the curse of dimensionality. PLoS One. 2012; 7(10):e467712012.

  97. Chattopadhyay A, Lu T-P. Gene-gene interaction: the curse of dimensionality. Ann Transl Med. 2019;7(24):813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carse B, Fogarty TC: Tackling the “curse of dimensionality” of radial basis functional neural networks using a genetic algorithm. In: Parallel Problem solving from nature—PPSN IV: international conference on evolutionary computation—the 4th international conference on parallel problem solving from Nature Berlin, Germany, September 22–26, 1996 Proceedings 4: 1996. Springer. p. 707–19.

  99. Fakoor R, Ladhak F, Nazi A, Huber M. using deep learning to enhance cancer diagnosis and classification. In: Proceedings of the ICML workshop on the role of machine learning in transforming healthcare (WHEALTH). Atlanta, GA. 2013.

  100. Levine AB, Schlosser C, Grewal J, Coope R, Jones SJ, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer. 2019;5(3):157–69.

    Article  PubMed  Google Scholar 

  101. Sun W, Zheng B, Qian W. Computer aided lung cancer diagnosis with deep learning algorithms. In: Medical imaging 2016: computer-aided diagnosis: 2016. SPIE: 241-248.

  102. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021;13(1):1–17.

    Article  Google Scholar 

  103. Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE, Larson DB, Langlotz CP, Amrhein TJ, Lungren MP. Deep learning to classify radiology free-text reports. Radiology. 2018;286(3):845–52.

    Article  PubMed  Google Scholar 

  104. Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019;49(4):939–54.

    Article  PubMed  Google Scholar 

  105. Wu R, Ding F, Wang R, Shen R, Zhang X, Luo S, Su C, Wu Z, Xie Q, Berger B. High-resolution de novo structure prediction from primary sequence. BioRxiv 2022:2022.2007. 2021.500999.

  106. Wei L, Zou Q. Recent progress in machine learning-based methods for protein fold recognition. Int J Mol Sci. 2016;17(12):2118.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wei G-W. Protein structure prediction beyond AlphaFold. Nat Mach Intell. 2019;1(8):336–7.

    Article  Google Scholar 

  108. Noé F, De Fabritiis G, Clementi C. Machine learning for protein folding and dynamics. Curr Opin Struct Biol. 2020;60:77–84.

    Article  PubMed  Google Scholar 

  109. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Heo L, Feig M. High-accuracy protein structures by combining machine-learning with physics-based refinement. Proteins Struct Funct Bioinform. 2020;88(5):637–42.

    Article  CAS  Google Scholar 

  111. Cheng J, Baldi P. A machine learning information retrieval approach to protein fold recognition. Bioinformatics. 2006;22(12):1456–63.

    Article  CAS  PubMed  Google Scholar 

  112. AlQuraishi M. Machine learning in protein structure prediction. Curr Opin Chem Biol. 2021;65:1–8.

    Article  CAS  PubMed  Google Scholar 

  113. Wang Z, Clark NR, Ma’ayan A. Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics. 2016;32(15):2338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Duan Q, Flynn C, Niepel M, Hafner M, Muhlich JL, Fernandez NF, Rouillard AD, Tan CM, Chen EY, Golub TR. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 2014;42(W1):W449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang PL, Wei ZQ, Che C, Jin B. DeepMGT-DTI: transformer network incorporating multilayer graph information for drug–target interaction prediction. Comput Biol Med. 2022;142:105214.

    Article  CAS  PubMed  Google Scholar 

  116. Yazdani-Jahromi M, Yousefi N, Tayebi A, Kolanthai E, Neal CJ, Seal S, Garibay OO. AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification. Brief Bioinform. 2022;23(4):bbac272. https://doi.org/10.1093/bib/bbac272.

  117. Yang YQ, Zhou DS, Zhang XB, Shi YL, Han JX, Zhou LP, Wu LY, Ma MF, Li JT, Peng SL et al. D3AI-CoV: a deep learning platform for predicting drug targets and for virtual screening against COVID-19. Brief Bioinform. 2022;23(3):bbac147. https://doi.org/10.1093/bib/bbac147.

  118. Wei BM, Zhang Y, Gong X. DeepLPI: a novel deep learning-based model for protein–ligand interaction prediction for drug repurposing. Sci Rep. 2022;12(1):18200.

  119. Wang SW, Sun Q, Xu YJ, Pei JF, Lai LH. A transferable deep learning approach to fast screen potential antiviral drugs against SARS-CoV-2. Brief Bioinform. 2021;22(6):bbab211.

  120. Wang JJ, Wen NF, Wang CY, Zhao LL, Cheng L. ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding. J Cheminform. 2022;14(1):1–14.

  121. Timmons JA, Anighoro A, Brogan RJ, Stahl J, Wahlestedt C, Farquhar DG, Taylor-King J, Volmar CH, Kraus WE, Phillips SM. A human-based multi-gene signature enables quantitative drug repurposing for metabolic disease. Elife 2022;11:e68832.

  122. Surianarayanan C, Chelliah PR. Leveraging artificial intelligence (AI) capabilities for COVID-19 containment. New Gener Comput. 2021;39(3–4):717–41.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Su XR, Hu L, You ZH, Hu PW, Wang L, Zhao BW. A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2. Brief Bioinform. 2022;23(1):bbab526.

  124. Silveira EC. Screening anti-inflammatory, anticoagulant, and respiratory agents for SARS-CoV-2 3CL(Pro) inhibition from chemical fingerprints through a deep learning approach. Clin Transl Investig. 2022;74(1):31–9.

    CAS  Google Scholar 

  125. Shorten C, Khoshgoftaar TM, Furht B. Deep learning applications for COVID-19. J Big Data. 2021;8:18.

  126. Ray S, Lall S, Bandyopadhyay S. A deep integrated framework for predicting SARS-CoV2-human protein–protein interaction. IEEE Trans Emerg Top Comput Intell. 2022;6(6):1463–72.

    Article  Google Scholar 

  127. Rajput A, Thakur A, Mukhopadhyay A, Kamboj S, Rastogi A, Gautam S, Jassal H, Kumar M. Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning. Comput Struct Biotechnol J. 2021;19:3133–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pan XQ, Lin X, Cao DS, Zeng XX, Yu PS, He LF, Nussinov R, Cheng FX. Deep learning for drug repurposing: methods, databases, and applications. Wiley Interdiscip Rev Comput Mol Sci. 2022;12(4):e1597.

  129. Moovarkumudalvan B, Geethakumari AM, Ramadoss R, Biswas KH, Mifsud B. Structure-based virtual screening and functional validation of potential hit molecules targeting the SARS-CoV-2 main protease. Biomolecules. 2022;12(12):1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li ZR, Zhong Q, Yang J, Duan YJ, Wang WJ, Wu CK, He KL. DeepKG: an end-to-end deep learning-based workflow for biomedical knowledge graph extraction, optimization and applications. Bioinformatics. 2022;38(5):1477–9.

    Article  CAS  PubMed  Google Scholar 

  131. Lee CY, Chen YPP. New insights into drug repurposing for COVID-19 using deep learning. IEEE Trans Neural Netw Learn Syst. 2021;32(11):4770–80.

    Article  PubMed  Google Scholar 

  132. Kanapeckaite A, Mazeikiene A, Geris L, Burokiene N, Cottrell GS, Widera D. Computational pharmacology: new avenues for COVID-19 therapeutics search and better preparedness for future pandemic crises. Biophys Chem. 2022;290:106891.

  133. Joshi T, Sharma P, Mathpal S, Joshi T, Maiti P, Nand M, Pande V, Chandra S. Computational investigation of drug bank compounds against 3C-like protease (3CL(pro)) of SARS-CoV-2 using deep learning and molecular dynamics simulation. Mol Divers. 2022;26(4):2243–56.

    Article  CAS  PubMed  Google Scholar 

  134. Hooshmand SA, Ghobadi MZ, Hooshmand SE, Jamalkandi SA, Alavi SM, Masoudi-Nejad A. A multimodal deep learning-based drug repurposing approach for treatment of COVID-19. Mol Divers. 2021;25(3):1717–30.

    Article  CAS  PubMed  Google Scholar 

  135. Harigua-Souiai E, Heinhane MM, Abdelkrim YZ, Souiai O, Abdeljaoued-Tej I, Guizani I. Deep learning algorithms achieved satisfactory predictions when trained on a novel collection of anticoronavirus molecules. Front Genet. 2021;12:744170.

  136. Deepthi K, Jereesh AS, Liu YS. A deep learning ensemble approach to prioritize antiviral drugs against novel coronavirus SARS-CoV-2 for COVID-19 drug repurposing. Appl Soft Comput. 2021;113:107945.

    Article  Google Scholar 

  137. Choi Y, Shin B, Kang K, Park S, Beck BR. Target-centered drug repurposing predictions of human angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2) interacting approved drugs for coronavirus disease 2019 (COVID-19) treatment through a drug–target interaction deep learning model. Viruses-Basel 2020;12(11):1325.

  138. Anwaar MUU, Adnan F, Abro A, Khan RAA, Rehman AUU, Osama M, Rainville C, Kumar S, Sterner DEE, Javed S, et al. Combined deep learning and molecular docking simulations approach identifies potentially effective FDA approved drugs for repurposing against SARS-CoV-2. Comput Biol Med. 2022;141:105049.

    Article  CAS  PubMed  Google Scholar 

  139. Abdel-Basset M, Hawash H, Elhoseny M, Chakrabortty RK, Ryan M. DeepH-DTA: deep learning for predicting drug-target interactions: a case study of COVID-19 drug repurposing. IEEE Access. 2020;8:170433–51.

    Article  PubMed  Google Scholar 

  140. Percha B, Altman RB. A global network of biomedical relationships derived from text. Bioinformatics. 2018;34(15):2614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(1):D1091-1097.

    Article  CAS  PubMed  Google Scholar 

  142. Wang MY. Deep graph library: towards efficient and scalable deep learning on graphs. In: ICLR workshop on representation learning on graphs and manifolds. 2019.

  143. Reis G, Silva EA, Silva DC, Thabane L, Milagres AC, Ferreira TS, Dos Santos CV, Campos VH, Nogueira AM, de Almeida AP. Effect of early treatment with ivermectin among patients with Covid-19. N Engl J Med. 2022;386(18):1721–31.

    Article  CAS  PubMed  Google Scholar 

  144. Popp M, Stegemann M, Metzendorf M-I, Gould S, Kranke P, Meybohm P, Skoetz N, Weibel S. Ivermectin for preventing and treating COVID‐19. Cochrane Database Syst Rev. 2021;2021(7):CD015017. https://doi.org/10.1002/14651858.CD015017.pub2.

  145. Torjesen I: Covid-19. Hydroxychloroquine does not benefit hospitalised patients, UK trial finds. BMJ Br Med J (Online). 2020;369:m2263.

  146. Hassanipour S, Arab-Zozani M, Amani B, Heidarzad F, Fathalipour M, Martinez-de-Hoyo R. The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep. 2021;11(1):11022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. De Wilde AH, Falzarano D, Zevenhoven-Dobbe JC, Beugeling C, Fett C, Martellaro C, Posthuma CC, Feldmann H, Perlman S, Snijder EJ. Alisporivir inhibits MERS-and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Res. 2017;228:7–13.

    Article  PubMed  Google Scholar 

  148. Softic L, Brillet R, Berry F, Ahnou N, Nevers Q, Morin-Dewaele M, Hamadat S, Bruscella P, Fourati S, Pawlotsky J-M. Inhibition of SARS-CoV-2 infection by the cyclophilin inhibitor alisporivir (Debio 025). Antimicrob Agents Chemother. 2020;64(7):e00876-e1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pawlotsky J-M. COVID-19 pandemic: time to revive the cyclophilin inhibitor alisporivir. Clin Infect Dis. 2020;71(16):2191–4.

    Article  CAS  PubMed  Google Scholar 

  150. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, Marconi VC, Ruiz-Palacios GM, Hsieh L, Kline S. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N Engl J Med. 2021;384(9):795–807.

    Article  CAS  PubMed  Google Scholar 

  151. Rubin R. Baricitinib is first approved COVID-19 immunomodulatory treatment. JAMA. 2022;327(23):2281–2281.

    CAS  PubMed  Google Scholar 

  152. Dunnivant FM, Elzerman AW, Jurs PC, Hasan MN. Quantitative structure property relationships for aqueous solubilities and henrys law constants of polychlorinated-biphenyls. Environ Sci Technol. 1992;26(8):1567–73.

    Article  CAS  Google Scholar 

  153. Fisher SW, Lydy MJ, Barger J, Landrum PF. Quantitative structure–activity-relationships for predicting the toxicity of pesticides in aquatic systems with sediment. Environ Toxicol Chem. 1993;12(7):1307–18.

    Article  CAS  Google Scholar 

  154. Karickhoff SW, McDaniel VK, Melton C, Vellino AN, Nute DE, Carreira LA. Predicting chemical-reactivity by computer. Environ Toxicol Chem. 1991;10(11):1405–16.

    Article  CAS  Google Scholar 

  155. Moriguchi I, Hirono S, Liu Q, Matsushita Y, Nakagawa T. Fuzzy adaptive least-squares and its use in quantitative structure-activity-relationships. Chem Pharm Bull. 1990;38(12):3373–9.

    Article  CAS  Google Scholar 

  156. Nabivach VM, Dmitrikov VP. Use of the correlation equations for the prediction of the retention data in gas–liquid-chromatography. Usp Khim. 1993;62(1):27–38.

    Article  Google Scholar 

  157. Narayszabo G, Balogh T. The average molecular electrostatic-field as a QSAR descriptor. 4. hydrophobicity scales for amino-acid residues-alpha. J Mol Struct Theochem. 1993;103(3):243–8.

    Article  Google Scholar 

  158. Stanton DT, Egolf LM, Jurs PC, Hicks MG. Computer-assisted prediction of normal boiling points of pyrans and pyrroles. J Chem Inf Comput Sci. 1992;32(4):306–16.

    Article  CAS  Google Scholar 

  159. Suzuki T, Ohtaguchi K, Koide K. Correlation and prediction of autoignition temperatures of hydrocarbons using molecular-properties. J Chem Eng Jpn. 1992;25(5):606–8.

    Article  CAS  Google Scholar 

  160. Cereto-Massague A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallve S, Pujadas G. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58–63.

    Article  CAS  PubMed  Google Scholar 

  161. Dong J, Cao DS, Miao HY, Liu S, Deng BC, Yun YH, Wang NN, Lu AP, Zeng WB, Chen AF. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation. J Cheminform. 2015;7:1–10.

  162. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des. 2016;30(8):595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011;32(7):1466–74.

    Article  CAS  PubMed  Google Scholar 

  164. Russo DP, Zorn KM, Clark AM, Zhu H, Ekins S. Comparing multiple machine learning algorithms and metrics for estrogen receptor binding prediction. Mol Pharm. 2018;15(10):4361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen B, Sheridan RP, Hornak V, Voigt JH. Comparison of random forest and pipeline pilot Naive Bayes in prospective QSAR predictions. J Chem Inf Model. 2012;52(3):792–803.

    Article  CAS  PubMed  Google Scholar 

  166. Lane TR, Foil DH, Minerali E, Urbina F, Zorn KM, Ekins S. Bioactivity comparison across multiple machine learning algorithms using over 5000 datasets for drug discovery. Mol Pharm. 2020;18(1):403–15.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Minerali E, Foil DH, Zorn KM, Ekins S. Evaluation of assay central machine learning models for rat acute oral toxicity prediction. ACS Sustain Chem Eng. 2020;8(42):16020–7.

    Article  CAS  Google Scholar 

  168. Rosenke K, Jarvis MA, Feldmann F, Schwarz B, Okumura A, Lovaglio J, Saturday G, Hanley PW, Meade-White K, Williamson BN. Hydroxychloroquine proves ineffective in hamsters and macaques infected with SARS-CoV-2. BioRxiv. 2020.

  169. Wang LL, Lo K, Chandrasekhar Y, Reas R, Yang J, Eide D, Funk K, Kinney R, Liu Z, Merrill W. Cord-19: the covid-19 open research dataset. arXiv. 2020.

  170. Lo HS, Hui KPY, Lai H-M, He X, Khan KS, Kaur S, Huang J, Li Z, Chan AK, Cheung HH-Y. Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with remdesivir. ACS Cent Sci. 2021;7(5):792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Muturi E, Hong W, Li J, Yang W, He J, Wei H, Yang H. Effects of simeprevir on the replication of SARS-CoV-2 in vitro and in transgenic hACE2 mice. Int J Antimicrob Agents. 2022;59(1): 106499.

    Article  CAS  PubMed  Google Scholar 

  172. Rahman MM, Saha T, Islam KJ, Suman RH, Biswas S, Rahat EU, Hossen MR, Islam R, Hossain MN, Mamun AA. Virtual screening, molecular dynamics and structure–activity relationship studies to identify potent approved drugs for Covid-19 treatment. J Biomol Struct Dyn. 2021;39(16):6231–41.

    Article  CAS  PubMed  Google Scholar 

  173. Abhithaj J, Dileep F, Sharanya C, Arun K, Sadasivan C, Jayadevi V. Repurposing simeprevir, calpain inhibitor IV and a cathepsin F inhibitor against SARS-CoV-2 and insights into their interactions with Mpro. J Biomol Struct Dyn. 2020;1:23–35.

    Google Scholar 

  174. Ahmed S, Mahtarin R, Ahmed SS, Akter S, Islam MS, Mamun AA, Islam R, Hossain MN, Ali MA, Sultana MU. Investigating the binding affinity, interaction, and structure–activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2. J Biomol Struct Dyn. 2021;39(16):6290–305.

    Article  CAS  PubMed  Google Scholar 

  175. Shin B, Park S, Kang K, Ho JC: Self-attention based molecule representation for predicting drug-target interaction. In: Machine learning for healthcare conference: 2019. PMLR. p. 230–48.

  176. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28(1):31–6.

    Article  CAS  Google Scholar 

  177. Pearson WR. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith–Waterman and FASTA algorithms. Genomics. 1991;11(3):635–50.

    Article  CAS  PubMed  Google Scholar 

  178. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 2007;35(suppl_1):D198–201.

    Article  CAS  PubMed  Google Scholar 

  179. Tanoli Z, Alam Z, Vähä-Koskela M, Ravikumar B, Malyutina A, Jaiswal A, Tang J, Wennerberg K, Aittokallio T: Drug Target Commons 2.0: a community platform for systematic analysis of drug–target interaction profiles. Database. 2018;2018:bay083. https://doi.org/10.1093/database/bay083.

  180. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787–99.

  182. Kupferschmidt K, Wadman M: Delta variant triggers new phase in the pandemic. In: American Association for the Advancement of Science; 2021.

  183. Christensen PA, Olsen RJ, Long SW, Subedi S, Davis JJ, Hodjat P, Walley DR, Kinskey JC, Saavedra MO, Pruitt L. Delta variants of SARS-CoV-2 cause significantly increased vaccine breakthrough COVID-19 cases in Houston, Texas. Am J Pathol. 2021;192(2):320–31.

  184. CDC Statement on B. 1.1. 529 (Omicron variant), Media Statement Release on November 26, 2021. https://www.cdc.gov/media/releases/2021/s1126-B11-529-omicron.html.

  185. Torjesen I. Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. In. British Medical Journal Publishing Group; 2021.

  186. Rao S, Singh M. The Newly Detected B. 1.1. 529 (Omicron) variant of SARS-CoV-2 With multiple mutations: implications for transmission, diagnostics, therapeutics, and immune evasion. DHR Proc. 2021;1(S5):7–10.

    Article  Google Scholar 

  187. Sahoo JP, Samal KC. World on alert: WHO designated South African new COVID strain (Omicron/B. 1.1. 529) as a variant of concern. Biotica Res Today. 2021;3(11):1086–8.

    Google Scholar 

  188. Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y, Zhang Y, Pan T, Zhang H, He X. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther. 2021;6(1):1–3.

    Google Scholar 

  189. Jahanshahlu L, Rezaei N. Monoclonal antibody as a potential anti-COVID-19. Biomed Pharmacother. 2020;129: 110337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Clark SA, Clark LE, Pan J, Coscia A, McKay LG, Shankar S, Johnson RI, Griffiths A, Abraham J. Molecular basis for a germline-biased neutralizing antibody response to SARS-CoV-2. bioRxiv 2020.

  191. Chen RE, Winkler ES, Case JB, Aziati ID, Bricker TL, Joshi A, Darling TL, Ying B, Errico JM, Shrihari S, VanBlargan LA. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature. 2021;596(7870):103–8.

  192. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD. Antibody resistance of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7. Nature. 2021;593(7857):130–5.

    Article  CAS  PubMed  Google Scholar 

  193. Starr TN, Greaney AJ, Dingens AS, Bloom JD. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep Med. 2021;2(4): 100255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bertoglio F, Fühner V, Ruschig M, Heine PA, Abassi L, Klünemann T, Rand U, Meier D, Langreder N, Steinke S. A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Rep. 2021;36(4): 109433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Williams MA, Hall DR, Hulswit RJ, Bowden TA, Fry EE. Antibody evasion by the P. 1 strain of SARS-CoV-2. Cell. 2021;184:1–16.

    Google Scholar 

  196. Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, Bolland W-H, Porrot F, Staropoli I, Lemoine F. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 2022;602(7898):671–5.

  197. Chen J, Wang R, Gilby NB, Wei G-W. Omicron variant (B. 1.1. 529): infectivity, vaccine breakthrough, and antibody resistance. J Chem Inf Model 2022;62(2):412–22.

  198. Huo J, Dijokaite-Guraliuc A, Liu C, Zhou D, Ginn HM, Das R, Supasa P, Selvaraj M, Nutalai R, Tuekprakhon A. A delicate balance between antibody evasion and ACE2 affinity for Omicron BA. 2.75. Cell Rep. 2022;42:111903.

  199. Cao Y, Song W, Wang L, Liu P, Yue C, Jian F, Yu Y, Yisimayi A, Wang P, Wang Y. Characterization of the enhanced infectivity and antibody evasion of Omicron BA. 2.75. Cell Host Microbe. 2022;30(11):1527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chakraborty C, Bhattacharya M, Sharma AR. Emerging mutations in the SARS-CoV-2 variants and their role in antibody escape to small molecule-based therapeutic resistance. Curr Opin Pharmacol. 2022;62:64–73.

    Article  CAS  PubMed  Google Scholar 

  201. Yue C, Song W, Wang L, Jian F, Chen X, Gao F, Shen Z, Wang Y, Wang X, Cao Y. Enhanced transmissibility of XBB. 1.5 is contributed by both strong ACE2 binding and antibody evasion. bioRxiv 2023:2023.2001. 2003.522427.

  202. Pardo J, Shukla AM, Chamarthi G, Gupte A. The journey of remdesivir: from Ebola to COVID-19. Drugs Context. 2020;9:1–9.

    Article  Google Scholar 

  203. Frediansyah A, Nainu F, Dhama K, Mudatsir M, Harapan H. Remdesivir and its antiviral activity against COVID-19: a systematic review. Clin Epidemiol Glob Health. 2021;9:123–7.

    Article  CAS  PubMed  Google Scholar 

  204. Kumari M, Subbarao N. Deep learning model for virtual screening of novel 3C-like protease enzyme inhibitors against SARS coronavirus diseases. Comput Biol Med. 2021;132:104317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Srinivasan S, Batra R, Chan H, Kamath G, Cherukara MJ, Sankaranarayanan SK. Artificial intelligence-guided De novo molecular design targeting COVID-19. ACS Omega. 2021;6(19):12557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bung N, Krishnan SR, Bulusu G, Roy A. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Med Chem. 2021;13(6):575–85.

    Article  CAS  PubMed  Google Scholar 

  207. Arshia AH, Shadravan S, Solhjoo A, Sakhteman A, Sami A. De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Comput Biol Med. 2021;139: 104967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Magar R, Yadav P, Barati Farimani A. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Sci Rep. 2021;11(1):1–11.

    Article  Google Scholar 

  209. Williams AH, Zhan C-G. Fast prediction of binding affinities of SARS-CoV-2 spike protein and its mutants with antibodies through intermolecular interaction modeling-based machine learning. J Phys Chem B. 2022;126(28):5192–206.

  210. Xu Z, Yang L, Zhang X, Zhang Q, Yang Z, Liu Y, Wei S, Liu W. Discovery of potential flavonoid inhibitors against COVID-19 3CL proteinase based on virtual screening strategy. Front Mol Biosci. 2020;7: 556481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Li Z, Lin Y, Huang Y-Y, Liu R, Zhan C-G, Wang X, Luo H-B. Reply to Ma and Wang: Reliability of various in vitro activity assays on SARS-CoV-2 main protease inhibitors. Proc Natl Acad Sci USA. 2021;118(8):e2024937118. https://doi.org/10.1073/pnas.2024937118.

    Google Scholar 

  212. Ngwa W, Kumar R, Thompson D, Lyerly W, Moore R, Reid T-E, Lowe H, Toyang N. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules. 2020;25(11):2707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papain-like protease: in silico molecular docking studies and in vitro enzymatic activity assay. Front Chem. 2020;8:623971.

  214. Choi J, Yun JS, Song H, Kim NH, Kim HS, Yook JI. Exploring the chemical space of protein–protein interaction inhibitors through machine learning. Sci Rep. 2021;11(1):1–10.

    Google Scholar 

  215. Christensen AS, Faber FA, von Lilienfeld OA. Operators in quantum machine learning: response properties in chemical space. J Chem Phys. 2019;150(6):064105.

    Article  PubMed  Google Scholar 

  216. Coley CW. Defining and exploring chemical spaces. Trends Chem. 2021;3(2):133–45.

    Article  CAS  Google Scholar 

  217. Deng Z-L, Du C-X, Li X, Hu B, Kuang Z-K, Wang R, Feng S-Y, Zhang H-Y, Kong D-X. Exploring the biologically relevant chemical space for drug discovery. J Chem Inf Model. 2013;53(11):2820–8.

    Article  CAS  PubMed  Google Scholar 

  218. Öztürk H, Özgür A, Schwaller P, Laino T, Ozkirimli E. Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discov Today. 2020;25(4):689–705.

    Article  PubMed  Google Scholar 

  219. Ramakrishnan R, von Lilienfeld OA. Machine learning, quantum chemistry, and chemical space. Rev Comput Chem. 2017;30:225–56.

    CAS  Google Scholar 

  220. Reymond J-L. The chemical space project. Acc Chem Res. 2015;48(3):722–30.

    Article  CAS  PubMed  Google Scholar 

  221. Sperandio O, Reynès CH, Camproux A-C, Villoutreix BO. Rationalizing the chemical space of protein–protein interaction inhibitors. Drug Discov Today. 2010;15(5–6):220–9.

    Article  CAS  PubMed  Google Scholar 

  222. Kingma DP, Mohamed S, Jimenez Rezende D, Welling M. Semi-supervised learning with deep generative models. Adv Neural Inf Process Syst. 2014;27:1–16.

  223. Harshvardhan G, Gourisaria MK, Pandey M, Rautaray SS. A comprehensive survey and analysis of generative models in machine learning. Comput Sci Rev. 2020;38: 100285.

    Article  Google Scholar 

  224. Salakhutdinov R. Learning deep generative models. Annu Rev Stat Appl. 2015;2:361–85.

    Article  Google Scholar 

  225. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, Bellis L, Overington JP. ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015;43(W1):W612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Irwin JJ, Shoichet BK. ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45(1):177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Sterling T, Irwin JJ. ZINC 15—ligand discovery for everyone. J Chem Inf Model. 2015;55(11):2324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Santana MV, Silva-Jr FP. De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning. BMC Chem. 2021;15(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.

    Article  CAS  Google Scholar 

  231. Liu G, Zeng H, Mueller J, Carter B, Wang Z, Schilz J, Horny G, Birnbaum ME, Ewert S, Gifford DK. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics. 2020;36(7):2126–33.

    Article  CAS  PubMed  Google Scholar 

  232. Akbar R, Robert PA, Weber CR, Widrich M, Frank R, Pavlović M, Scheffer L, Chernigovskaya M, Snapkov I, Slabodkin A. In silico proof of principle of machine learning-based antibody design at unconstrained scale. In: MAbs: 2022. Taylor & Francis. p. 2031482.

  233. Morgan RS, McAdon JM. Predictor for sulfur-aromatic interactions in globular proteins. Int J Peptide Protein Res. 1980;15(2):177–80.

    Article  CAS  Google Scholar 

  234. Williams AH, Zhan C-G. Generalized methodology for the quick prediction of variant SARS-CoV-2 spike protein binding affinities with human angiotensin-converting enzyme II. J Phys Chem B. 2022;126(12):2353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Williams AH, Zhan C-G. Fast prediction of binding affinities of SARS-CoV-2 spike protein and its mutants with antibodies through intermolecular interaction modeling-based machine learning. J Phys Chem B. 2022;126(28):5194–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Williams AH, Zhan C-G. Fast prediction of binding affinities of the SARS-CoV-2 spike protein mutant N501Y (UK variant) with ACE2 and miniprotein drug candidates. J Phys Chem B. 2021;125(17):4330–6.

    Article  CAS  PubMed  Google Scholar 

  237. Guan D, Rahman MT, Gay EA, Vasukuttan V, Mathews KM, Decker AM, Williams AH, Zhan C-G, Jin C. Indole-containing amidinohydrazones as nonpeptide, dual RXFP3/4 agonists: synthesis, structure–activity relationship, and molecular modeling studies. J Med Chem. 2021;64(24):17866–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yang J-F, Williams AH, Penthala NR, Prather PL, Crooks PA, Zhan C-G. Binding Modes and selectivity of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor ligands. ACS Chem Neurosci. 2020;11(20):3455–63.

  239. Williams AH, Zhan C-G. Generalized methodology for the quick prediction of variant SARS-CoV-2 spike protein binding affinities with human angiotensin-converting enzyme II. J Phys Chem B. 2022;126(12):2353–60.

  240. Srivastava HK, Sastry GN. Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. J Chem Inf Model. 2012;52(11):3088–98.

    Article  CAS  PubMed  Google Scholar 

  241. Rastelli G, Del Rio A, Degliesposti G, Sgobba M. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem. 2010;31(4):797–810.

    CAS  PubMed  Google Scholar 

  242. Weng G, Wang E, Chen F, Sun H, Wang Z, Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein–peptide complexes. Phys Chem Chem Phys. 2019;21(19):10135–45.

    Article  CAS  PubMed  Google Scholar 

  243. Sun H, Duan L, Chen F, Liu H, Wang Z, Pan P, Zhu F, Zhang JZ, Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Phys Chem Chem Phys. 2018;20(21):14450–60.

    Article  CAS  PubMed  Google Scholar 

  244. Chen F, Sun H, Wang J, Zhu F, Liu H, Wang Z, Lei T, Li Y, Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein–RNA complexes. RNA. 2018;24(9):1183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking. Phys Chem Chem Phys. 2016;18(32):22129–39.

    Article  CAS  PubMed  Google Scholar 

  246. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Williams A, Zhou S, Zhan C-G. Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening. Bioorg Med Chem Lett. 2019;29(24): 126754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Dong L, Qu X, Zhao Y, Wang B. Prediction of binding free energy of protein–ligand complexes with a hybrid molecular mechanics/generalized born surface area and machine learning method. ACS Omega. 2021;6(48):32938–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. DeJong C, Wachter RM. The risks of prescribing hydroxychloroquine for treatment of COVID-19—first, do no harm. JAMA Intern Med. 2020;180(8):1118–9.

    Article  PubMed  Google Scholar 

  250. Chai PR, Ferro EG, Kirshenbaum JM, Hayes BD, Culbreth SE, Boyer EW, Erickson TB. Intentional hydroxychloroquine overdose treated with high-dose diazepam: an increasing concern in the COVID-19 pandemic. J Med Toxicol. 2020;16:314–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell discovery. 2020;6(1):16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Temple C, Hoang R, Hendrickson RG. Toxic effects from ivermectin use associated with prevention and treatment of Covid-19. N Engl J Med. 2021;385(23):2197–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Guo Zhan.

Ethics declarations

Author contributions

Conceptualization, CG Zhan; Data curation and analysis, AH Williams; Writing – original draft preparation, AH Williams; Writing – review and editing, AH Williams and CG Zhan; Funding acquisition, CG Zhan. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported in part by the funding of the Molecular Modeling and Biopharmaceutical Center at the University of Kentucky College of Pharmacy and the National Science Foundation (Directorate for Mathematical and Physical Sciences, NSF Grant DMS-2245903 under funding opportunity NSF 22-600—Joint DMS/NIGMS Initiative to Support Research at the Interface of the Biological and Mathematical Sciences).

Conflicts of interest

Authors declare no conflicting interests concerning the information presented within this review.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Availability of data and material

Not Applicable.

Code availability

Not Applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, A.H., Zhan, CG. Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management. BioDrugs 37, 649–674 (2023). https://doi.org/10.1007/s40259-023-00611-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-023-00611-8

Navigation