Skip to main content
Log in

Diagnosis and Management of Dermatologic Adverse Events from Systemic Melanoma Therapies

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

The advent of protein kinase inhibitors and immunotherapy has profoundly improved the management of advanced melanoma. However, with these therapeutic advancements also come drug-related toxicities that have the potential to affect various organ systems. We review dermatologic adverse events from targeted (including BRAF and MEK inhibitor-related) and less commonly used melanoma treatments, with a focus on diagnosis and management. As immunotherapy-related toxicities have been extensively reviewed, herein, we discuss injectable talimogene laherparepvec and touch on recent breakthroughs in the immunotherapy space. Dermatologic adverse events may severely impact quality of life and are associated with response and survival. It is therefore essential that clinicians are aware of their diverse presentations and management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  2. Surveillance E, and End Results Program. Cancer stat facts: melanoma of the skin. National Cancer Institute; 2022. https://seer.cancer.gov/statfacts/html/melan.html. Accessed 8 Aug 2022.

  3. Patel H, Yacoub N, Mishra R, White A, Long Y, Alanazi S, et al. Current advances in the treatment of BRAF-mutant melanoma. Cancers. 2020;12(2):482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.

    Article  CAS  PubMed  Google Scholar 

  5. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  CAS  PubMed  Google Scholar 

  7. McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heinzerling L, Eigentler TK, Fluck M, Hassel JC, Heller-Schenck D, Leipe J, et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open. 2019;4(3): e000491.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Macdonald JBMD, Macdonald BBA, Golitz LEMD, LoRusso PDO, Sekulic AMDP. Cutaneous adverse effects of targeted therapies. J Am Acad Dermatol. 2014;72(2):203–18.

    Article  Google Scholar 

  10. Lacouture ME, Duvic M, Hauschild A, Prieto VG, Robert C, Schadendorf D, et al. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. Oncologist. 2013;18(3):314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol. 2018;19(Suppl 1):31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Russo I, Zorzetto L, Chiarion Sileni V, Alaibac M. Cutaneous side effects of targeted therapy and immunotherapy for advanced melanoma. Scientifica. 2018;2018:5036213.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ros J, Munoz-Couselo E. DRESS syndrome due to vemurafenib treatment: switching BRAF inhibitor to solve a big problem. BMJ Case Rep. 2018.

  14. Torres-Navarro I, de Unamuno-Bustos B, Botella-Estrada R. Systematic review of BRAF/MEK inhibitors-induced severe cutaneous adverse reactions (SCARs). J Eur Acad Dermatol Venereol. 2021;35(3):607–14.

    Article  CAS  PubMed  Google Scholar 

  15. Lytvyn Y, Mufti A, Sachdeva M, Maliyar K, Yeung J. Stevens–Johnson syndrome and toxic epidermal necrolysis reactions to BRAF and MEK inhibitors in patients with melanoma: a systematic review. J Am Acad Dermatol. 2021;85(4):981–3.

    Article  CAS  PubMed  Google Scholar 

  16. Kardaun SH, Sidoroff A, Valeyrie-Allanore L, Halevy S, Davidovici BB, Mockenhaupt M, et al. Variability in the clinical pattern of cutaneous side-effects of drugs with systemic symptoms: does a DRESS syndrome really exist? Br J Dermatol. 2007;156(3):609–11.

    Article  CAS  PubMed  Google Scholar 

  17. Petukhova TA, Novoa RA, Honda K, Koon HB, Gerstenblith MR. Acneiform eruptions associated with vemurafenib. J Am Acad Dermatol. 2013;68(3):e97–9.

    Article  PubMed  Google Scholar 

  18. Heinzerling L, Eigentler TK, Fluck M, Hassel JC, Heller-Schenck D, Leipe J, et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open. 2019;4(3):e000491.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balagula Y, Barth Huston K, Busam KJ, Lacouture ME, Chapman PB, Myskowski PL. Dermatologic side effects associated with the MEK 1/2 inhibitor selumetinib (AZD6244, ARRY-142886). Investig New Drugs. 2011;29(5):1114–21.

    Article  CAS  Google Scholar 

  20. Caruana M, Hatami A, Marcoux D, Perreault S, McCuaig CC. Isotretinoin for the treatment of severe acneiform eruptions associated with the MEK inhibitor trametinib. JAAD Case Rep. 2020;6(10):1056–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bierbrier R, Lam M, Pehr K. A systematic review of oral retinoids for treatment of acneiform eruptions induced by epidermal growth factor receptor inhibitors. Dermatol Ther. 2022;35(5): e15412.

    Article  CAS  PubMed  Google Scholar 

  22. Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A. Cutaneous adverse effects of targeted therapies: part I: inhibitors of the cellular membrane. J Am Acad Dermatol. 2015;72(2):203–18 (quiz 19–20).

    Article  CAS  PubMed  Google Scholar 

  23. Mossner R, Zimmer L, Berking C, Hoeller C, Loquai C, Richtig E, et al. Erythema nodosum-like lesions during BRAF inhibitor therapy: report on 16 new cases and review of the literature. J Eur Acad Dermatol Venereol. 2015;29(9):1797–806.

    Article  CAS  PubMed  Google Scholar 

  24. Choy B, Chou S, Anforth R, Fernandez-Penas P. Panniculitis in patients treated with BRAF inhibitors: a case series. Am J Dermatopathol. 2014;36(6):493–7.

    Article  PubMed  Google Scholar 

  25. Monfort JB, Pages C, Schneider P, Neyns B, Comte C, Bagot M, et al. Vemurafenib-induced neutrophilic panniculitis. Melanoma Res. 2012;22(5):399–401.

    Article  PubMed  Google Scholar 

  26. Zimmer L, Livingstone E, Hillen U, Domkes S, Becker A, Schadendorf D. Panniculitis with arthralgia in patients with melanoma treated with selective BRAF inhibitors and its management. Arch Dermatol. 2012;148(3):357–61.

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira J, Toda-Brito H, Moura MC, Sachse MF, Costa-Rosa J. BRAFi-associated panniculitis - an emerging side effect with a variable histological picture: report of two cases and review of the literature. J Cutan Pathol. 2017;44(3):307–9.

    Article  PubMed  Google Scholar 

  28. Pattanaprichakul P, Tetzlaff MT, Lapolla WJ, Torres-Cabala CA, Duvic M, Prieto VG, et al. Sweet syndrome following vemurafenib therapy for recurrent cholangiocarcinoma. J Cutan Pathol. 2014;41(3):326–8.

    Article  PubMed  Google Scholar 

  29. Yorio JT, Mays SR, Ciurea AM, Cohen PR, Wang WL, Hwu WJ, et al. Case of vemurafenib-induced Sweet’s syndrome. J Dermatol. 2014;41(9):817–20.

    Article  CAS  PubMed  Google Scholar 

  30. Vashisht P, Goyal A, Hearth Holmes MP. Sweet syndrome. Treasure Island: StatPearls; 2022.

    Google Scholar 

  31. Cohen PR. Sweet’s syndrome—a comprehensive review of an acute febrile neutrophilic dermatosis. Orphanet J Rare Dis. 2007;2:34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brugiere C, Stefan A, Morice C, Cornet E, Moreau A, Allouche S, et al. Vemurafenib skin phototoxicity is indirectly linked to ultraviolet A minimal erythema dose decrease. Br J Dermatol. 2014;171(6):1529–32.

    Article  CAS  PubMed  Google Scholar 

  33. Mattei PL, Alora-Palli MB, Kraft S, Lawrence DP, Flaherty KT, Kimball AB. Cutaneous effects of BRAF inhibitor therapy: a case series. Ann Oncol. 2013;24(2):530–7.

    Article  CAS  PubMed  Google Scholar 

  34. Boussemart L, Routier E, Mateus C, Opletalova K, Sebille G, Kamsu-Kom N, et al. Prospective study of cutaneous side-effects associated with the BRAF inhibitor vemurafenib: a study of 42 patients. Ann Oncol. 2013;24(6):1691–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ascierto PA, McArthur GA, Dreno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17(9):1248–60.

    Article  CAS  PubMed  Google Scholar 

  36. Eberlein B, Biedermann T, Hein R, Posch C. Vemurafenib-related photosensitivity. J Dtsch Dermatol Ges. 2020;18(10):1079–83.

    PubMed  Google Scholar 

  37. Gabeff R, Dutartre H, Khammari A, Boisrobert A, Nguyen JM, Quereux G, et al. Phototoxicity of B-RAF inhibitors: exclusively due to UVA radiation and rapidly regressive. Eur J Dermatol. 2015;25(5):452–6.

    Article  CAS  PubMed  Google Scholar 

  38. Trojaniello C, Festino L, Vanella V, Ascierto PA. Encorafenib in combination with binimetinib for unresectable or metastatic melanoma with BRAF mutations. Expert Rev Clin Pharmacol. 2019;12(3):259–66.

    Article  CAS  PubMed  Google Scholar 

  39. Huang V, Hepper D, Anadkat M, Cornelius L. Cutaneous toxic effects associated with vemurafenib and inhibition of the BRAF pathway. Arch Dermatol. 2012;148(5):628–33.

    Article  CAS  PubMed  Google Scholar 

  40. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen FW, Tseng D, Reddy S, Daud AI, Swetter SM. Involution of eruptive melanocytic nevi on combination BRAF and MEK inhibitor therapy. JAMA Dermatol. 2014;150(11):1209–12.

    Article  PubMed  Google Scholar 

  43. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366(3):207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alloo A, Garibyan L, LeBoeuf N, Lin G, Werchniak A, Hodi FS Jr, et al. Photodynamic therapy for multiple eruptive keratoacanthomas associated with vemurafenib treatment for metastatic melanoma. Arch Dermatol. 2012;148(3):363–6.

    Article  CAS  PubMed  Google Scholar 

  45. Que SKT, Compton LA, Schmults CD. Eruptive squamous atypia (also known as eruptive keratoacanthoma): definition of the disease entity and successful management via intralesional 5-fluorouracil. J Am Acad Dermatol. 2019;81(1):111–22.

    Article  CAS  PubMed  Google Scholar 

  46. Shimizu I, Cruz A, Chang KH, Dufresne RG. Treatment of squamous cell carcinoma in situ: a review. Dermatol Surg. 2011;37(10):1394–411.

    Article  CAS  PubMed  Google Scholar 

  47. Lilly E, Burke M, Kluger H, Choi J. Pregabalin for the treatment of painful hand-foot skin reaction associated with dabrafenib. JAMA Dermatol. 2015;151(1):102–3.

    Article  PubMed  Google Scholar 

  48. Anderson R, Jatoi A, Robert C, Wood LS, Keating KN, Lacouture ME. Search for evidence-based approaches for the prevention and palliation of hand-foot skin reaction (HFSR) caused by the multikinase inhibitors (MKIs). Oncologist. 2009;14(3):291–302.

    Article  CAS  PubMed  Google Scholar 

  49. Peuvrel L, Quereux G, Saint-Jean M, Brocard A, Nguyen JM, Khammari A, et al. Profile of vemurafenib-induced severe skin toxicities. J Eur Acad Dermatol Venereol. 2016;30(2):250–7.

    Article  CAS  PubMed  Google Scholar 

  50. Cebollero A, Puertolas T, Pajares I, Calera L, Anton A. Comparative safety of BRAF and MEK inhibitors (vemurafenib, dabrafenib and trametinib) in first-line therapy for BRAF-mutated metastatic melanoma. Mol Clin Oncol. 2016;5(4):458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blank CU, Larkin J, Arance AM, Hauschild A, Queirolo P, Del Vecchio M, et al. Open-label, multicentre safety study of vemurafenib in 3219 patients with BRAF(V600) mutation-positive metastatic melanoma: 2-year follow-up data and long-term responders’ analysis. Eur J Cancer. 2017;79:176–84.

    Article  CAS  PubMed  Google Scholar 

  52. Belum VR, Marulanda K, Ensslin C, Gorcey L, Parikh T, Wu S, et al. Alopecia in patients treated with molecularly targeted anticancer therapies. Ann Oncol. 2015;26(12):2496–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mir-Bonafe JF, Saceda-Corralo D, Vano-Galvan S. Adverse hair reactions to new targeted therapies for cancer. Actas Dermosifiliogr (Engl Ed). 2019;110(3):182–92.

    CAS  PubMed  Google Scholar 

  54. Hoffner B, Benchich K. Trametinib: a targeted therapy in metastatic melanoma. J Adv Pract Oncol. 2018;9(7):741–5.

    PubMed  PubMed Central  Google Scholar 

  55. Steeb T, Wessely A, Ruzicka T, Heppt MV, Berking C. How to MEK the best of uveal melanoma: a systematic review on the efficacy and safety of MEK inhibitors in metastatic or unresectable uveal melanoma. Eur J Cancer. 2018;103:41–51.

    Article  CAS  PubMed  Google Scholar 

  56. Falchook GS, Lewis KD, Infante JR, Gordon MS, Vogelzang NJ, DeMarini DJ, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tacastacas JD, Bray J, Cohen YK, Arbesman J, Kim J, Koon HB, et al. Update on primary mucosal melanoma. J Am Acad Dermatol. 2014;71(2):366–75.

    Article  PubMed  Google Scholar 

  58. Diamond EL, Durham BH, Ulaner GA, Drill E, Buthorn J, Ki M, et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature. 2019;567(7749):521–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Janne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 2013;14(1):38–47.

    Article  PubMed  Google Scholar 

  60. de Golian E, Kwong BY, Swetter SM, Pugliese SB. Cutaneous complications of targeted melanoma therapy. Curr Treat Options Oncol. 2016;17(11):57.

    Article  PubMed  Google Scholar 

  61. Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A. Cutaneous adverse effects of targeted therapies: part II: inhibitors of intracellular molecular signaling pathways. J Am Acad Dermatol. 2015;72(2):221–36 (quiz 37–8).

    Article  CAS  PubMed  Google Scholar 

  62. Kim KB, Kefford R, Pavlick AC, Infante JR, Ribas A, Sosman JA, et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013;31(4):482–9.

    Article  CAS  PubMed  Google Scholar 

  63. Rubio-Gonzalez B, Juhasz M, Fortman J, Mesinkovska NA. Pathogenesis and treatment options for chemotherapy-induced alopecia: a systematic review. Int J Dermatol. 2018;57(12):1417–24.

    Article  PubMed  Google Scholar 

  64. Glaser DA, Hossain P, Perkins W, Griffiths T, Ahluwalia G, Weng E, et al. Long-term safety and efficacy of bimatoprost solution 0.03% application to the eyelid margin for the treatment of idiopathic and chemotherapy-induced eyelash hypotrichosis: a randomized controlled trial. Br J Dermatol. 2015;172(5):1384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun Q, Antaya RJ. Treatment of MEK inhibitor-induced paronychia with doxycycline. Pediatr Dermatol. 2020;37(5):970–1.

    Article  PubMed  Google Scholar 

  66. Martinez-de-Espronceda I, Bernabeu-Wittel J, Azcona M, Monserrat MT. Recalcitrant trametinib-induced paronychia treated successfully with topical timolol in a pediatric patient. Dermatol Ther. 2020;33(1): e13164.

    Article  CAS  PubMed  Google Scholar 

  67. Patel U, Cornelius L, Anadkat MJ. MEK inhibitor-induced dusky erythema: characteristic drug hypersensitivity manifestation in 3 patients. JAMA Dermatol. 2015;151(1):78–81.

    Article  PubMed  Google Scholar 

  68. Bancalari B, Algarra MA, Llombart B, Nagore E, Soriano V, Sanmartin O, et al. Dusky erythema secondary to anti-MEK therapy. Melanoma Res. 2019;29(4):449–51.

    Article  PubMed  Google Scholar 

  69. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51.

    Article  CAS  PubMed  Google Scholar 

  70. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19(5):603–15.

    Article  CAS  PubMed  Google Scholar 

  71. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371(20):1877–88.

    Article  PubMed  Google Scholar 

  72. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9.

    Article  PubMed  Google Scholar 

  73. Sanlorenzo M, Choudhry A, Vujic I, Posch C, Chong K, Johnston K, et al. Comparative profile of cutaneous adverse events: BRAF/MEK inhibitor combination therapy versus BRAF monotherapy in melanoma. J Am Acad Dermatol. 2014;71(6):1102 e1-1109 e1.

    Article  Google Scholar 

  74. Carlos G, Anforth R, Clements A, Menzies AM, Carlino MS, Chou S, et al. Cutaneous toxic effects of BRAF inhibitors alone and in combination with MEK inhibitors for metastatic melanoma. JAMA Dermatol. 2015;151(10):1103–9.

    Article  PubMed  Google Scholar 

  75. Savoia P, Fava P, Casoni F, Cremona O. Targeting the ERK signaling pathway in melanoma. Int J Mol Sci. 2019;20(6):1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu J, Liu D, Offin M, Lezcano C, Torrisi JM, Brownstein S, et al. Characterization and management of ERK inhibitor associated dermatologic adverse events: analysis from a nonrandomized trial of ulixertinib for advanced cancers. Investig New Drugs. 2021;39(3):785–95.

    Article  CAS  Google Scholar 

  77. Larocca CA, LeBoeuf NR, Silk AW, Kaufman HL. An update on the role of talimogene laherparepvec (T-VEC) in the treatment of melanoma: best practices and future directions. Am J Clin Dermatol. 2020;21(6):821–32.

    Article  PubMed  Google Scholar 

  78. SanFilippo A, Agarwala SS. FDA panels support approval of T-VEC for metastatic melanoma. HEM/ONC Today. 2015;16(10):7.

    Google Scholar 

  79. Lauer UM, Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncol. 2022;18(24):2713–32.

    Article  CAS  Google Scholar 

  80. Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22(5):1048–54.

    Article  CAS  PubMed  Google Scholar 

  81. Soh JM, Galka E, Mercurio MG. Herpetic Whitlow—a case of inadvertent inoculation with melanoma viral therapy. JAMA Dermatol. 2018;154(12):1487–8.

    Article  PubMed  Google Scholar 

  82. Louie RJ, Perez MC, Jajja MR, Sun J, Collichio F, Delman KA, et al. Real-world outcomes of talimogene laherparepvec therapy: a multi-institutional experience. J Am Coll Surg. 2019;228(4):644–9.

    Article  PubMed  Google Scholar 

  83. Kimmis BD, Luu Y, Dai H. Disseminated herpes infection following talimogene laherparepvec administration. JAMA Dermatol. 2022;158(4):456–7.

    Article  PubMed  Google Scholar 

  84. Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Hrling K, et al. Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J Immunother Cancer. 2019;7(1):145.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ribas A, Chesney J, Long GV, Kirkwood JM, Dummer R, Puzanov I, et al. 1037O MASTERKEY-265: a phase III, randomized, placebo (Pbo)-controlled study of talimogene laherparepvec (T) plus pembrolizumab (P) for unresectable stage IIIB–IVM1c melanoma (MEL). Ann Oncol. 2021;32:S868–9.

    Article  Google Scholar 

  86. Rehman H, Silk AW, Kane MP, Kaufman HL. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer. 2016;4(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cui J, Bystryn JC. Melanoma and vitiligo are associated with antibody responses to similar antigens on pigment cells. Arch Dermatol. 1995;131(3):314–8.

    Article  CAS  PubMed  Google Scholar 

  88. Iglesias P, Ribero S, Barreiro A, Podlipnik S, Carrera C, Malvehy J, et al. Induced vitiligo due to talimogene laherparepvec injection for metastatic melanoma associated with long-term complete response. Acta Derm Venereol. 2019;99(2):232–3.

    Article  CAS  PubMed  Google Scholar 

  89. Quach HT, Dewan AK, Davis EJ, Ancell KK, Fan R, Ye F, et al. Association of anti-programmed cell death 1 cutaneous toxic effects with outcomes in patients with advanced melanoma. JAMA Oncol. 2019;5(6):906–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Boada A, Carrera C, Segura S, Collgros H, Pasquali P, Bodet D, et al. Cutaneous toxicities of new treatments for melanoma. Clin Transl Oncol. 2018;20(11):1373–84.

    Article  CAS  PubMed  Google Scholar 

  91. Rosmarin D, Pandya AG, Lebwohl M, Grimes P, Hamzavi I, Gottlieb AB, et al. Ruxolitinib cream for treatment of vitiligo: a randomised, controlled, phase 2 trial. Lancet. 2020;396(10244):110–20.

    Article  CAS  PubMed  Google Scholar 

  92. Belum VR, Benhuri B, Postow MA, Hellmann MD, Lesokhin AM, Segal NH, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer. 2016;60:12–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE, Vitiligo WG. Current and emerging treatments for vitiligo. J Am Acad Dermatol. 2017;77(1):17–29.

    Article  PubMed  Google Scholar 

  94. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis. 2014;59(2):147–59.

    Article  PubMed  Google Scholar 

  95. Everett AS, Pavlidakey PG, Contreras CM, De Los Santos JF, Kim JY, McKee SB, et al. Chronic granulomatous dermatitis induced by talimogene laherparepvec therapy of melanoma metastases. J Cutan Pathol. 2018;45(1):48–53.

    Article  PubMed  Google Scholar 

  96. Long TH, Shinohara MM, Argenyi ZB, Thompson JA, Gardner JM. Panniculitis in a patient with pathologic complete response to talimogene laherparepvec treatment for recurrent, in-transit melanoma. J Cutan Pathol. 2018;45(11):864–8.

    Article  PubMed  Google Scholar 

  97. Lee K, Pouldar D, Shiu J, Elsensohn A, de Feraudy S. The histological spectrum of talimogene laherparepvec (TVEC) injections—neutrophilic and chronic granulomatous dermatitis. J Cutan Pathol. 2019;46(2):165–7.

    PubMed  Google Scholar 

  98. Leung B, Wan G, Zhang S, Chen W, Cohen S, Boland G, et al. Increased risk of cutaneous immune-related adverse events in patients treated with talimogene laherparepvec and immune checkpoint inhibitors: a multi-institutional cohort study. J American Acad Dermatol. 2023;88(6):1265–70.

  99. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wongvibulsin S, Pahalyants V, Kalinich M, Murphy W, Yu KH, Wang F, et al. Epidemiology and risk factors for the development of cutaneous toxicities in patients treated with immune-checkpoint inhibitors: a United States population-level analysis. J Am Acad Dermatol. 2022;86(3):563–72.

    Article  CAS  PubMed  Google Scholar 

  101. Bui AN, Bougrine A, Buchbinder EI, Giobbie-Hurder A, LeBoeuf NR. Female sex is associated with higher rates of dermatologic adverse events among patients with melanoma receiving immune checkpoint inhibitor therapy: a retrospective cohort study. J Am Acad Dermatol. 2022;87(2):403–6.

    Article  CAS  PubMed  Google Scholar 

  102. Hussaini S, Chehade R, Boldt RG, Raphael J, Blanchette P, Maleki Vareki S, et al. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors—a systematic review and meta-analysis. Cancer Treat Rev. 2021;92: 102134.

    Article  CAS  PubMed  Google Scholar 

  103. Tang K, Seo J, Tiu BC, Le TK, Pahalyants V, Raval NS, et al. Association of cutaneous immune-related adverse events with increased survival in patients treated with anti-programmed cell death 1 and anti-programmed cell death ligand 1 therapy. JAMA Dermatol. 2022;158(2):189–93.

    Article  PubMed  Google Scholar 

  104. Sibaud V. Dermatologic reactions to immune checkpoint inhibitors: skin toxicities and immunotherapy. Am J Clin Dermatol. 2018;19(3):345–61.

    Article  PubMed  Google Scholar 

  105. Park BC, Jung S, Chen ST, Dewan AK, Johnson DB. Challenging dermatologic considerations associated with immune checkpoint inhibitors. Am J Clin Dermatol. 2022;23(5):707–17.

    Article  PubMed  Google Scholar 

  106. Quach HT, Johnson DB, LeBoeuf NR, Zwerner JP, Dewan AK. Cutaneous adverse events caused by immune checkpoint inhibitors. J Am Acad Dermatol. 2021;85(4):956–66.

    Article  CAS  PubMed  Google Scholar 

  107. Paik J. Nivolumab plus relatlimab: first approval. Drugs. 2022;82(8):925–31.

    Article  CAS  PubMed  Google Scholar 

  108. Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DA. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol. 2002;32(8):2255–63.

    Article  CAS  PubMed  Google Scholar 

  109. Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol. 2004;172(9):5450–5.

    Article  CAS  PubMed  Google Scholar 

  110. Sun H, Sun C, Xiao W. Expression regulation of co-inhibitory molecules on human natural killer cells in response to cytokine stimulations. Cytokine. 2014;65(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  111. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–86.

    Article  PubMed  Google Scholar 

  112. Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol. 2011;186(9):5173–83.

    Article  CAS  PubMed  Google Scholar 

  113. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutierrez E, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nivolumab and relatlimab-rmbw. Am J Health Syst Pharm. 2022;79(13):1025–30.

  116. Le TK, Kaul S, Cappelli LC, Naidoo J, Semenov YR, Kwatra SG. Cutaneous adverse events of immune checkpoint inhibitor therapy: incidence and types of reactive dermatoses. J Dermatol Treat. 2022;33(3):1691–5.

    Article  CAS  Google Scholar 

  117. Ascierto PA, Long GV, Robert C, Brady B, Dutriaux C, Di Giacomo AM, et al. Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol. 2019;5(2):187–94.

    Article  PubMed  Google Scholar 

  118. Hermann N, Maul LV, Ameri M, Traidl S, Ziadlou R, Papageorgiou K, et al. Clinical presentation and prognostic features in patients with immunotherapy-induced vitiligo-like depigmentation: a monocentric prospective observational study. Cancers. 2022;14(19):4576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Larsabal M, Marti A, Jacquemin C, Rambert J, Thiolat D, Dousset L, et al. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J Am Acad Dermatol. 2017;76(5):863–70.

    Article  PubMed  Google Scholar 

  120. Fukuda K, Harris JE. Vitiligo-like depigmentation in patients receiving programmed cell death-1 inhibitor reflects active vitiligo. J Am Acad Dermatol. 2018;78(1):e15–6.

    Article  PubMed  Google Scholar 

  121. National Comprehensive Cancer Network. Melanoma: Cutaneous (Version 3.2022). https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf. Accessed 1 Nov 2022.

  122. Hanna E, Abadi R, Abbas O. Imiquimod in dermatology: an overview. Int J Dermatol. 2016;55(8):831–44.

    Article  CAS  PubMed  Google Scholar 

  123. Hyde MA, Hadley ML, Tristani-Firouzi P, Goldgar D, Bowen GM. A randomized trial of the off-label use of imiquimod, 5%, cream with vs without tazarotene, 0.1%, gel for the treatment of lentigo maligna, followed by conservative staged excisions. Arch Dermatol. 2012;148(5):592–6.

    Article  CAS  PubMed  Google Scholar 

  124. Urosevic M, Maier T, Benninghoff B, Slade H, Burg G, Dummer R. Mechanisms underlying imiquimod-induced regression of basal cell carcinoma in vivo. Arch Dermatol. 2003;139(10):1325–32.

    Article  CAS  PubMed  Google Scholar 

  125. Naylor MF, Crowson N, Kuwahara R, Teague K, Garcia C, Mackinnis C, et al. Treatment of lentigo maligna with topical imiquimod. Br J Dermatol. 2003;149(Suppl 66):66–70.

    Article  CAS  PubMed  Google Scholar 

  126. Spenny ML, Walford J, Werchniak AE, Beltrani V, Brennick JB, Storm CA, et al. Lentigo maligna (melanoma in situ) treated with imiquimod cream 5%: 12 case reports. Cutis. 2007;79(2):149–52.

    PubMed  Google Scholar 

  127. Buettiker UV, Yawalkar NY, Braathen LR, Hunger RE. Imiquimod treatment of lentigo maligna: an open-label study of 34 primary lesions in 32 patients. Arch Dermatol. 2008;144(7):943–5.

    Article  PubMed  Google Scholar 

  128. Kai AC, Richards T, Coleman A, Mallipeddi R, Barlow R, Craythorne EE. Five-year recurrence rate of lentigo maligna after treatment with imiquimod. Br J Dermatol. 2016;174(1):165–8.

    Article  CAS  PubMed  Google Scholar 

  129. Mora AN, Karia PS, Nguyen BM. A quantitative systematic review of the efficacy of imiquimod monotherapy for lentigo maligna and an analysis of factors that affect tumor clearance. J Am Acad Dermatol. 2015;73(2):205–12.

    Article  CAS  PubMed  Google Scholar 

  130. Turza K, Dengel LT, Harris RC, Patterson JW, White K, Grosh WW, et al. Effectiveness of imiquimod limited to dermal melanoma metastases, with simultaneous resistance of subcutaneous metastasis. J Cutan Pathol. 2010;37(1):94–8.

    Article  PubMed  Google Scholar 

  131. Heber G, Helbig D, Ponitzsch I, Wetzig T, Harth W, Simon JC. Complete remission of cutaneous and subcutaneous melanoma metastases of the scalp with imiquimod therapy. J Dtsch Dermatol Ges. 2009;7(6):534–6.

    PubMed  Google Scholar 

  132. Alessi SS, Sanches JA, Oliveira WR, Messina MC, Pimentel ER, Festa NC. Treatment of cutaneous tumors with topical 5% imiquimod cream. Clinics. 2009;64(10):961–6.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cantisani C, Lazic T, Richetta AG, Clerico R, Mattozzi C, Calvieri S. Imiquimod 5% cream use in dermatology, side effects and recent patents. Recent Pat Inflamm Allergy Drug Discov. 2012;6(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  134. Gowda S, Tillman DK, Fitzpatrick JE, Gaspari AA, Goldenberg G. Imiquimod-induced vitiligo after treatment of nodular basal cell carcinoma. J Cutan Pathol. 2009;36(8):878–81.

    Article  PubMed  Google Scholar 

  135. Brown T, Zirvi M, Cotsarelis G, Gelfand JM. Vitiligo-like hypopigmentation associated with imiquimod treatment of genital warts. J Am Acad Dermatol. 2005;52(4):715–6.

    Article  PubMed  Google Scholar 

  136. Li W, Xin H, Ge L, Song H, Cao W. Induction of vitiligo after imiquimod treatment of condylomata acuminata. BMC Infect Dis. 2014;14:329.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE, Vitiligo WG. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 2017;77(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  138. Yu H, Cen J, Lin X, Cheng H, Seifert O. Imiquimod induced vitiligo-like lesions-A consequence of modified melanocyte function. Immun Inflamm Dis. 2022;10(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  139. Kim CH, Ahn JH, Kang SU, Hwang HS, Lee MH, Pyun JH, et al. Imiquimod induces apoptosis of human melanocytes. Arch Dermatol Res. 2010;302(4):301–6.

    Article  CAS  PubMed  Google Scholar 

  140. Wu JK, Siller G, Strutton G. Psoriasis induced by topical imiquimod. Australas J Dermatol. 2004;45(1):47–50.

    Article  PubMed  Google Scholar 

  141. Patel U, Mark NM, Machler BC, Levine VJ. Imiquimod 5% cream induced psoriasis: a case report, summary of the literature and mechanism. Br J Dermatol. 2011;164(3):670–2.

    CAS  PubMed  Google Scholar 

  142. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182(9):5836–45.

    Article  PubMed  Google Scholar 

  143. Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA. 2020;323(19):1945–60.

    Article  CAS  PubMed  Google Scholar 

  144. Torres-Cabala CA, Wang WL, Trent J, Yang D, Chen S, Galbincea J, et al. Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol. 2009;22(11):1446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–6.

    Article  CAS  PubMed  Google Scholar 

  146. Ugurel S, Hildenbrand R, Zimpfer A, La Rosee P, Paschka P, Sucker A, et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer. 2005;92(8):1398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305(22):2327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol. 2013;31(26):3182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wyman K, Atkins MB, Prieto V, Eton O, McDermott DF, Hubbard F, et al. Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer. 2006;106(9):2005–11.

    Article  CAS  PubMed  Google Scholar 

  150. Ugurel S, Hildenbrand R, Dippel E, Hochhaus A, Schadendorf D. Dose-dependent severe cutaneous reactions to imatinib. Br J Cancer. 2003;88(8):1157–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pretel-Irazabal M, Tuneu-Valls A, Ormaechea-Pérez N. Adverse skin effects of imatinib, a tyrosine kinase inhibitor. Actas Dermo-Sifiliográficas (English Edition). 2014;105(7):655–62.

    Article  CAS  Google Scholar 

  152. Forschner A, Forchhammer S, Bonzheim I. NTRK gene fusions in melanoma: detection, prevalence and potential therapeutic implications. J Dtsch Dermatol Ges. 2020;18(12):1387–92.

    PubMed  Google Scholar 

  153. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, et al. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7(4):400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Espinosa ML, Abad C, Kurtzman Y, Abdulla FR. Dermatologic toxicities of targeted therapy and immunotherapy in head and neck cancers. Front Oncol. 2021;11: 605941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):271–82.

    Article  CAS  PubMed  Google Scholar 

  157. ClinicalTrials.gov U.S. National Library of Medicine. https://clinicaltrials.gov/. Accessed 26 Oct 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole R. LeBoeuf.

Ethics declarations

Funding

There were no sources of financial assistance to conduct the study/analysis described in the manuscript and/or used to assist with the preparation of the manuscript.

Conflict of interest

The authors declare no conflicts of interest with respect to the research, authorship, and/or publication of this article. Nicole R. LeBoeuf is a consultant and has received honoraria from Bayer, Seattle Genetics, Sanofi, Silverback, and Synox Therapeutics outside the scope of the submitted work.

Availability of data and material

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The patients whose medical photographs are included in this article have provided written consent for having their photographs taken and published.

Code availability

Not applicable.

Author contributions

First draft: SJ and CF; critical review, writing, and revisions: SJ, CF, BM, BSA, CL, NL.

Additional information

Christopher Fay and Samantha Jakuboski are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fay, C.J., Jakuboski, S., Mclellan, B. et al. Diagnosis and Management of Dermatologic Adverse Events from Systemic Melanoma Therapies. Am J Clin Dermatol 24, 765–785 (2023). https://doi.org/10.1007/s40257-023-00790-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-023-00790-8

Navigation