Skip to main content
Log in

Surgical Site Infection After Dermatologic Procedures: Critical Reassessment of Risk Factors and Reappraisal of Rates and Causes

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

While rates are low, surgical site infections are the most common complication of dermatologic surgery. Surgical site infections have important consequences including impairment of wound healing, suboptimal cosmetic outcome, hospitalization, increased healthcare costs, and rarely, systemic infection. It is imperative to understand the risk factors and existing preventative measures to minimize the development of infection. This article reviews the available literature regarding surgical site infections following dermatologic procedures, to evaluate the standard of diagnosis and role of wound culture, risk factors, mimicking conditions, and significance of antibiotic prophylaxis. We offer a critical reassessment of the current literature on risk factors and reappraisal of infection rates to promote evidence-based patient care. We conclude that the strongest evidence suggests that diabetes mellitus is likely associated with increased surgical site infections. Immunosuppression is often clinically considered a risk factor; however, the evidence is mixed. In general the addition of antibiotics does not confer benefit except in high-risk sites. Conclusively, Mohs micrographic surgery has been proven safe in office and inpatient settings. We agree that sterile glove use for simple procedures is likely not a significant factor in the development of surgical site infections; however, we hypothesize that the overall sterile technique and setting may play a role in longer and/or more complex procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakirski G, Kotliar K, Pauly KJ, et al. Surgical site infections after dermatologic surgery in immunocompromised patients: a single-center experience. Dermatol Surg. 2018;44(12):1525–36. https://doi.org/10.1097/DSS.0000000000001615.

    Article  CAS  PubMed  Google Scholar 

  2. Alam M, Ibrahim O, Nodzenski M, et al. Adverse events associated with Mohs micrographic surgery: multicenter prospective cohort study of 20 821 cases at 23 centers. JAMA Dermatol. 2013;149(12):1378–85. https://doi.org/10.1001/jamadermatol.2013.6255.

    Article  PubMed  Google Scholar 

  3. Ken KM, Johnson MM, Leitenberger JJ, et al. Postoperative infections in dermatologic surgery: the role of wound cultures. Dermatol Surg. 2020;46(10):1294–9. https://doi.org/10.1097/DSS.0000000000002317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Artamonova I, Schmitt L, Yazdi AS, Megahed M, von Felbert V, Balakirski G. Postoperative complications in dermatological patients undergoing microscopically controlled surgery in inpatient setting (next-day surgery): a single-center epidemiological study. J Dtsch Dermatol Ges. 2020;18(12):1437–46. https://doi.org/10.1111/ddg.14148.

    Article  PubMed  Google Scholar 

  5. Dixon AJ, Dixon MP, Askew DA, Wilkinson D. Prospective study of wound infections in dermatologic surgery in the absence of prophylactic antibiotics. Dermatol Surg. 2006;32(6):819–27. https://doi.org/10.1111/j.1524-4725.2006.32167.x.

    Article  CAS  PubMed  Google Scholar 

  6. Dixon AJ, Dixon MP, Dixon JB. Prospective study of skin surgery in patients with and without known diabetes. Dermatol Surg. 2009;35(7):1035–40. https://doi.org/10.1111/j.1524-4725.2009.01180.x.

    Article  CAS  PubMed  Google Scholar 

  7. Totoraitis K, Cohen JL, Friedman A. Topical approaches to improve surgical outcomes and wound healing: a review of efficacy and safety. J Drugs Dermatol. 2017;16(3):209–12.

    CAS  PubMed  Google Scholar 

  8. Liu X, Kelleners-Smeets NWJ, Sprengers M, Hira V, Mosterd K, Nelemans PJ. A clinical prediction model for surgical site infections in dermatological surgery. Acta Derm Venereol. 2018;98(7):683–8. https://doi.org/10.2340/00015555-2945.

    Article  CAS  PubMed  Google Scholar 

  9. Bruce J, Russell EM, Mollison J, Krukowski ZH. The quality of measurement of surgical wound infection as the basis for monitoring: a systematic review. J Hosp Infect. 2001;49(2):99–108. https://doi.org/10.1053/jhin.2001.1045.

    Article  CAS  PubMed  Google Scholar 

  10. Maragh SLH, Brown MD. Prospective evaluation of surgical site infection rate among patients with Mohs micrographic surgery without the use of prophylactic antibiotics. J Am Acad Dermatol. 2008;59(2):275–8. https://doi.org/10.1016/j.jaad.2008.03.042.

    Article  PubMed  Google Scholar 

  11. Levin EC, Chow C, Makhzoumi Z, Jin C, Shiboski SC, Arron ST. Association of postoperative antibiotics with surgical site infection in Mohs micrographic surgery. Dermatol Surg. 2019;45(1):52–7. https://doi.org/10.1097/DSS.0000000000001645.

    Article  CAS  PubMed  Google Scholar 

  12. Council ML, Alam M, Gloster HMJ, et al. Identifying and defining complications of dermatologic surgery to be tracked in the American College of Mohs Surgery (ACMS) Registry. J Am Acad Dermatol. 2016;74(4):739–45. https://doi.org/10.1016/j.jaad.2015.10.023.

    Article  PubMed  Google Scholar 

  13. Johnson-Jahangir H, Agrawal N. Perioperative antibiotic use in cutaneous surgery. Dermatol Clin. 2019;37(3):329–40. https://doi.org/10.1016/j.det.2019.03.003.

    Article  CAS  PubMed  Google Scholar 

  14. Uslan DZ, Kowalski TJ, Wengenack NL, Virk A, Wilson JW. Skin and soft tissue infections due to rapidly growing mycobacteria: comparison of clinical features, treatment, and susceptibility. Arch Dermatol. 2006;142(10):1287–92. https://doi.org/10.1001/archderm.142.10.1287.

    Article  PubMed  Google Scholar 

  15. Rao J, Golden TA, Fitzpatrick RE. Atypical mycobacterial infection following blepharoplasty and full-face skin resurfacing with CO2 laser. Dermatol Surg. 2002;28(8):768–71. https://doi.org/10.1046/j.1524-4725.2002.02008.x.

    Article  PubMed  Google Scholar 

  16. Liu X, Sprengers M, Nelemans PJ, Mosterd K, Kelleners-Smeets NWJ. Risk factors for surgical site infections in dermatological surgery. Acta Derm Venereol. 2018;98(2):246–50. https://doi.org/10.2340/00015555-2844.

    Article  PubMed  Google Scholar 

  17. Sudhakaran S, Surani SR. Guidelines for perioperative management of the diabetic patient. Surg Res Pract. 2015;2015:284063. https://doi.org/10.1155/2015/284063.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Martin ET, Kaye KS, Knott C, et al. Diabetes and risk of surgical site infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2016;37(1):88–99. https://doi.org/10.1017/ice.2015.249.

    Article  PubMed  Google Scholar 

  19. Heal CF, van Driel ML, Lepper PD, Banks JL. Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. Cochrane Database Syst Rev. 2016;11(11):CD011426. https://doi.org/10.1002/14651858.CD011426.

    Article  PubMed  Google Scholar 

  20. Menendez ME, Lu N, Unizony S, Choi HK, Ring D. Surgical site infection in hand surgery. Int Orthop. 2015;39(11):2191–8. https://doi.org/10.1007/s00264-015-2849-9.

    Article  PubMed  Google Scholar 

  21. Wukich DK, Crim BE, Frykberg RG, Rosario BL. Neuropathy and poorly controlled diabetes increase the rate of surgical site infection after foot and ankle surgery. J Bone Joint Surg Am. 2014;96(10):832–9. https://doi.org/10.2106/JBJS.L.01302.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Tai YJ, Borchard KLA, Gunson TH, Smith HR, Vinciullo C. Nasal carriage of Staphylococcus aureus in patients undergoing Mohs micrographic surgery is an important risk factor for postoperative surgical site infection: a prospective randomised study. Australas J Dermatol. 2013;54(2):109–14. https://doi.org/10.1111/ajd.12028.

    Article  PubMed  Google Scholar 

  23. Nakamura M, Shimakawa T, Nakano S, et al. Screening for nasal carriage of Staphylococcus aureus among patients scheduled to undergo orthopedic surgery: incidence of surgical site infection by nasal carriage. J Orthop Sci. 2017;22(4):778–82. https://doi.org/10.1016/j.jos.2017.03.005.

    Article  PubMed  Google Scholar 

  24. Gorwitz RJ, Kruszon-Moran D, McAllister SK, et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis. 2008;197(9):1226–34. https://doi.org/10.1086/533494.

    Article  PubMed  Google Scholar 

  25. Nolan MB, Martin DP, Thompson R, Schroeder DR, Hanson AC, Warner DO. Association between smoking status, preoperative exhaled carbon monoxide levels, and postoperative surgical site infection in patients undergoing elective surgery. JAMA Surg. 2017;152(5):476–83. https://doi.org/10.1001/jamasurg.2016.5704.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Dixon AJ, Dixon MP, Dixon JB, Del-Mar CB. Prospective study of skin surgery in smokers vs. nonsmokers. Br J Dermatol. 2009;160(2):365–7. https://doi.org/10.1111/j.1365-2133.2008.08846.x.

    Article  CAS  PubMed  Google Scholar 

  27. Taylor O, Li JN, Carr C, et al. The effect of antibiotic prophylaxis on infection rates in mohs micrographic surgery: a single-institution retrospective study. Arch Dermatol Res. 2020. https://doi.org/10.1007/s00403-020-02153-3.

    Article  PubMed  Google Scholar 

  28. Wahie S, Lawrence CM. Wound complications following diagnostic skin biopsies in dermatology inpatients. Arch Dermatol. 2007;143(10):1267–71. https://doi.org/10.1001/archderm.143.10.1267.

    Article  PubMed  Google Scholar 

  29. Gill JF, Yu SS, Neuhaus IM. Tobacco smoking and dermatologic surgery. J Am Acad Dermatol. 2013;68(1):167–72. https://doi.org/10.1016/j.jaad.2012.08.039.

    Article  PubMed  Google Scholar 

  30. Benowitz NL, Lake T, Keller KH, Lee BL. Prolonged absorption with development of tolerance to toxic effects after cutaneous exposure to nicotine. Clin Pharmacol Ther. 1987;42(1):119–20. https://doi.org/10.1038/clpt.1987.119.

    Article  CAS  PubMed  Google Scholar 

  31. Goldminz D, Bennett RG. Cigarette smoking and flap and full-thickness graft necrosis. Arch Dermatol. 1991;127(7):1012–5.

    Article  CAS  PubMed  Google Scholar 

  32. Campos JHO, Gomes HC, dos-Santos WLC, Cardeal M, Ferreira LM. Effect of nicotine treatment and withdrawal on random-pattern skin flaps in rats. Exp Toxicol Pathol. 2008;60(6):449–52. https://doi.org/10.1016/j.etp.2008.02.004.

    Article  PubMed  Google Scholar 

  33. Forrest CR, Pang CY, Lindsay WK. Pathogenesis of ischemic necrosis in random-pattern skin flaps induced by long-term low-dose nicotine treatment in the rat. Plast Reconstr Surg. 1991;87(3):518–28. https://doi.org/10.1097/00006534-199103000-00020.

    Article  CAS  PubMed  Google Scholar 

  34. Jensen JA, Goodson WH, Hopf HW, Hunt TK. Cigarette smoking decreases tissue oxygen. Arch Surg. 1991;126(9):1131–4. https://doi.org/10.1001/archsurg.1991.01410330093013.

    Article  CAS  PubMed  Google Scholar 

  35. Aizman L, Barbieri JS, Lukowiak TM, et al. Attitudes on prophylactic antibiotic use in dermatologic surgery. Dermatol Surg. 2020. https://doi.org/10.1097/dss.0000000000002676.

    Article  Google Scholar 

  36. Wright TI, Baddour LM, Berbari EF, et al. Antibiotic prophylaxis in dermatologic surgery: advisory statement 2008. J Am Acad Dermatol. 2008;59(3):464–73. https://doi.org/10.1016/j.jaad.2008.04.031.

    Article  PubMed  Google Scholar 

  37. Rogues AM, Lasheras A, Amici JM, et al. Infection control practices and infectious complications in dermatological surgery. J Hosp Infect. 2007;65(3):258–63. https://doi.org/10.1016/j.jhin.2006.09.030.

    Article  CAS  PubMed  Google Scholar 

  38. Barbieri JS, Bhate K, Hartnett KP, Fleming-Dutra KE, Margolis DJ. Trends in oral antibiotic prescription in dermatology, 2008 to 2016. JAMA Dermatol. 2019;155(3):290–7. https://doi.org/10.1001/jamadermatol.2018.4944.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Kimyai-Asadi A, Goldberg LH, Peterson SR, Silapint S, Jih MH. The incidence of major complications from Mohs micrographic surgery performed in office-based and hospital-based settings. J Am Acad Dermatol. 2005;53(4):628–34. https://doi.org/10.1016/j.jaad.2005.03.023.

    Article  PubMed  Google Scholar 

  40. Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation. 2007;116(15):1736–54. https://doi.org/10.1161/CIRCULATIONAHA.106.183095.

    Article  PubMed  Google Scholar 

  41. Watters W 3rd, Rethman MP, Hanson NB, et al. Prevention of orthopaedic implant infection in patients undergoing dental procedures. J Am Acad Orthop Surg. 2013;21(3):180–9. https://doi.org/10.5435/JAAOS-21-03-180.

    Article  PubMed  Google Scholar 

  42. Barbieri JS, Fix WC, Miller CJ, et al. Variation in prescribing and factors associated with the use of prophylactic antibiotics for Mohs surgery: a single-institution retrospective study. Dermatol Surg. 2020;46(7):868–75. https://doi.org/10.1097/DSS.0000000000002203.

    Article  CAS  PubMed  Google Scholar 

  43. Miller MQ, Stevens JS, Park SS, Christophel JJ. Do postoperative antibiotics affect outcomes in Mohs reconstructive surgery? Laryngoscope. 2021;131(2):E434–9. https://doi.org/10.1002/lary.28700.

    Article  CAS  PubMed  Google Scholar 

  44. Saleh K, Schmidtchen A. Surgical site infections in dermatologic surgery: etiology, pathogenesis, and current preventative measures. Dermatol Surg. 2015;41(5):537–49. https://doi.org/10.1097/DSS.0000000000000364.

    Article  CAS  PubMed  Google Scholar 

  45. Moy RL, Grossfeld JS, Baum M, Rivlin D, Eremia S. Reconstruction of the nose utilizing a bilobed flap. Int J Dermatol. 1994;33(9):657–60. https://doi.org/10.1111/j.1365-4362.1994.tb02932.x.

    Article  CAS  PubMed  Google Scholar 

  46. Futoryan T, Grande D. Postoperative wound infection rates in dermatologic surgery. Dermatol Surg. 1995;21(6):509–14. https://doi.org/10.1016/1076-0512(95)00170-9.

    Article  CAS  PubMed  Google Scholar 

  47. Rongetti RL, de Tarso Oliveira e Castro P, Aloisio da Costa Vieira R, Serrano SV, Mengatto MF, Fregnani JHTG. Surgical site infection: an observer-blind, randomized trial comparing electrocautery and conventional scalpel. Int J Surg. 2014;12(7):681–7. https://doi.org/10.1016/j.ijsu.2014.05.064.

    Article  PubMed  Google Scholar 

  48. Creamer J, Davis K, Rice W. Sterile gloves: do they make a difference? Am J Surg. 2012;204(6):976–80. https://doi.org/10.1016/j.amjsurg.2012.06.003.

    Article  PubMed  Google Scholar 

  49. Echols K, Graves M, LeBlanc KG, Marzolf S, Yount A. Role of antiseptics in the prevention of surgical site infections. Dermatolog Surg. 2015;41(6):667–76. https://doi.org/10.1097/DSS.0000000000000375.

    Article  CAS  Google Scholar 

  50. Xia Y, Cho S, Greenway HT, Zelac DE, Kelley B. Infection rates of wound repairs during Mohs micrographic surgery using sterile versus nonsterile gloves: a prospective randomized pilot study. Dermatol Surg. 2011;37(5):651–6. https://doi.org/10.1111/j.1524-4725.2011.01949.x.

    Article  CAS  PubMed  Google Scholar 

  51. Mehta D, Chambers N, Adams B, Gloster H. Comparison of the prevalence of surgical site infection with use of sterile versus nonsterile gloves for resection and reconstruction during mohs surgery. Dermatol Surg. 2014;40(3):234–9. https://doi.org/10.1111/dsu.12438.

    Article  CAS  PubMed  Google Scholar 

  52. Brewer JD, Gonzalez AB, Baum CL, et al. Comparison of sterile vs nonsterile gloves in cutaneous surgery and common outpatient dental procedures a systematic review and meta-analysis. JAMA Dermatol. 2016;152(9):1008–14. https://doi.org/10.1001/jamadermatol.2016.1965.

    Article  PubMed  Google Scholar 

  53. Rogers HD, Desciak EB, Marcus RP, Wang S, MacKay-Wiggan J, Eliezri YD. Prospective study of wound infections in Mohs micrographic surgery using clean surgical technique in the absence of prophylactic antibiotics. J Am Acad Dermatol. 2010;63(5):842–51. https://doi.org/10.1016/j.jaad.2010.07.029.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amor Khachemoune.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of interest

There are no financial disclosures, commercial associations, or any other conditions posing a conflict of interest to report for Gabrielle Schwartzman and Amor Khachemoune.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Availability of data and material

Data obtained from public domain resources.

Code availability

Not applicable.

Author contributions

AK had the idea for the article. GS performed the initial literature search and data analysis and drafted the initial draft. GS and AK revised the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartzman, G., Khachemoune, A. Surgical Site Infection After Dermatologic Procedures: Critical Reassessment of Risk Factors and Reappraisal of Rates and Causes. Am J Clin Dermatol 22, 503–510 (2021). https://doi.org/10.1007/s40257-021-00599-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-021-00599-3

Navigation