Skip to main content
Log in

Pediatric Laser Therapy in Pigmented Conditions

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Advances in laser therapy have led to novel therapeutic approaches to common pediatric skin conditions. As a non-invasive alternative to surgical options, laser therapy is efficacious in treating a broad range of conditions, from vascular and pigmented lesions to tattoo and hair removal. This paper reviews the basic mechanics of laser therapy, its role in common pigmented pediatric dermatoses, and special considerations for this unique age group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cantatore JL, Kriegel DA. Laser surgery: an approach to the pediatric patient. J Am Acad Dermatol. 2004;50(2):165–84.

    Article  PubMed  Google Scholar 

  2. Cordisco MR. An update on lasers in children. Curr Opin Pediatr. 2009;21(4):499–504.

    Article  PubMed  Google Scholar 

  3. Anderson RR. Lasers for Dermatology and Skin Biology. J Invest Dermatol. 2013;133:E21–3.

    Article  PubMed  Google Scholar 

  4. Cole PD, Sonabend ML, Levy ML. Laser treatment of pediatric vascular lesions. Semin Plast Surg. 2007;21(3):159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tanzi EL, Lupton JR, Alster TS. Lasers in dermatology: four decades of progress. J Am Acad Dermatol. 2003;49(1):1–31.

    Article  PubMed  Google Scholar 

  6. Welch AJ, Torres JH, Cheong WF. Laser physics and laser-tissue interaction. Tex Heart Inst J. 1989;16(3):141–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–7.

    Article  CAS  PubMed  Google Scholar 

  9. Kasai K. Picosecond Laser Treatment for Tattoos and Benign Cutaneous Pigmented Lesions (Secondary publication). Laser Ther. 2017;26(4):274–81.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Allemann IB, Goldberg DJ (eds). Basics in Dermatological Laser Applications. Basel, Switzerland: Karger Medical and Scientific Publishers; 2011.

  11. Patil UA, Dhami LD. Overview of lasers. Indian J Plast Surg. 2008;41(3):101–13.

    Google Scholar 

  12. Stratigos AJ, Dover JS, Arndt KA. Laser treatment of pigmented lesions–2000: how far have we gone? Arch Dermatol. 2000;136(7):915–21.

    Article  CAS  PubMed  Google Scholar 

  13. Chapas AM, Geronemus RG. Our approach to pediatric dermatologic laser surgery. Lasers Surg Med. 2005;37(4):255–63.

    Article  PubMed  Google Scholar 

  14. Chapas AM, Eickhorst K, Geronemus RG. Efficacy of early treatment of facial port wine stains in newborns: A review of 49 cases. Lasers Surg Med. 2007;39(7):563–8.

    Article  PubMed  Google Scholar 

  15. Ashinoff R, Geronemus RG. Flashlamp-pumped pulsed dye laser for port-wine stains in infancy: Earlier versus later treatment. J Am Acad Dermatol. 1991;24(3):467–72.

    Article  CAS  PubMed  Google Scholar 

  16. Ducharme EE, Silverberg NB. Selected Applications of Technology in the Pediatric Dermatology Office. Semin Cutan Med Surg. 2008;27(1):94–100.

    Article  CAS  PubMed  Google Scholar 

  17. Lillieborg S, Otterbom I, Ahlen K. Topical anaesthesia in neonates, infants and children. Br J Anaesth. 2004;92(3):450–1.

    Article  CAS  PubMed  Google Scholar 

  18. Chiang YZ, Al-Niaimi F, Madan V. Comparative Efficacy and Patient Preference of Topical Anaesthetics in Dermatological Laser Treatments and Skin Microneedling. J Cutan Aesthet Surg. 2015;8(3):143–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez ME, Connelly EA, Schachner L. Techniques to allay anxiety during pediatric laser procedures. Arch Dermatol. 2008;144(11):1476.

    Article  Google Scholar 

  20. Belkin DA, Jeon H, Weiss E, Brauer JA, Geronemus RG. Successful and safe use of Q-switched lasers in the treatment of nevus of Ota in children with phototypes IV–VI. Lasers Surg Med. 2018;50(1):56–60.

    Article  PubMed  Google Scholar 

  21. Jevtovic-Todorovic V. Anesthetics and cognitive impairments in developing children what is our responsibility? JAMA Pediatr. 2017;171(12):1135–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chan HH, Leung RSC, Ying SY, et al. A retrospective analysis of complications in the treatment of nevus of Ota with the Q-switched alexandrite and Q-switched Nd:YAG lasers. Dermatol Surg. 2000;26(11):1000–6.

    Article  CAS  PubMed  Google Scholar 

  23. Jerdan K, Hsu JT, Schnurstein E. Successful treatment of Ota nevus with the 532-nm solid-state picosecond laser. Cutis. 2017;99(3):E29–31.

    PubMed  Google Scholar 

  24. Levin MK, Ng E, Bae YSC, Brauer JA, Geronemus RG. Treatment of pigmentary disorders in patients with skin of color with a novel 755 nm picosecond, Q-switched ruby, and Q-switched Nd:YAG nanosecond lasers: A retrospective photographic review. Lasers Surg Med. 2016;48(2):181–7.

    Article  PubMed  Google Scholar 

  25. Ohshiro T, Ohshiro T, Sasaki K, Kishi K. Picosecond pulse duration laser treatment for dermal melanocytosis in Asians : A retrospective review. Laser Ther. 2016;25(2):99–104.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chesnut C, Diehl J, Lask G. Treatment of nevus of ota with a picosecond 755-nm alexandrite laser. Dermatol Surg. 2015;41(4):508–10.

    Article  CAS  PubMed  Google Scholar 

  27. Seo HM, Choi CW, Kim WS. Beneficial effects of early treatment of nevus of ota with low-fluence 1,064-nm Q-switched Nd:YAG laser. Dermatol Surg. 2015;41(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  28. Alora MB, Arndt KA. Treatment of a café-au-lait macule with the erbium:YAG laser. J Am Acad Dermatol. 2001;45(4):566–8.

    Article  CAS  PubMed  Google Scholar 

  29. Artzi O, Mehrabi JN, Koren A, Niv R, Lapidoth M, Levi A. Picosecond 532-nm neodymium-doped yttrium aluminium garnet laser—a novel and promising modality for the treatment of café-au-lait macules. Lasers Med Sci. 2018;33(4):693–7.

    Article  PubMed  Google Scholar 

  30. Somyos K, Boonchu K, Somsak K, Panadda L, Leopairut J. Copper vapour laser treatment of cafe-au-lait macules. Br J Dermatol. 1996;135(6):964–8.

    Article  CAS  PubMed  Google Scholar 

  31. Chung BY, Han SS, Moon HR, Lee MW, Chang SE. Treatment with the pinhole technique using erbium-doped yttrium aluminium garnet laser for a café au lait macule and carbon dioxide laser for facial telangiectasia. Ann Dermatol. 2014;26(5):657–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Balaraman B, Ravanfar-Jordan P, Friedman PM. Novel use of non-ablative fractional photothermolysis for café-au-lait macules in darker skin types. Lasers Surg Med. 2017;49(1):84–7.

    Article  PubMed  Google Scholar 

  33. Nakayama J, Kiryu H, Urabe K, et al. Vitamin D3 analogues improve cafe au lait spots in patients with von Recklinghausen’s disease: Experimental and clinical studies. Eur J Dermatol. 1999;9(3):202–6.

    CAS  PubMed  Google Scholar 

  34. Lahti JG, Shabshin U, Lewis AT, Benedetto AV. Pediatric cosmetic dermatology. Clin Dermatol. 2003;21(4):315–20.

    Article  PubMed  Google Scholar 

  35. Wang Y, Qian H, Lu Z. Treatment of café au lait macules in Chinese patients with a Q-switched 755-nm alexandrite laser. J Dermatolog Treat. 2012;23(6):431–6.

    Article  PubMed  Google Scholar 

  36. Belkin DA, Neckman JP, Jeon H, Friedman P, Geronemus RG. Response to laser treatment of café au lait macules based on morphologic features. JAMA Dermatol. 2017;153(11):1158–61.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alster TS. Complete elimination of large cafe-au-lait birthmarks by the 510-nm pulsed dye laser. Plast Reconstr Surg. 1995;96(7):1660–4.

    Article  CAS  PubMed  Google Scholar 

  38. Kim HR, Ha JM, Park MS, et al. A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet laser for the treatment of café-au-lait macules. J Am Acad Dermatol. 2015;73(3):477–83.

    Article  PubMed  Google Scholar 

  39. Baek JO, Park IJ, Lee KR, et al. High-fluence 1064-nm Q-Switched Nd:YAG laser: Safe and effective treatment of café-au-lait macules in Asian patients. J Cosmet Dermatol. 2018;17(3):380–4.

    Article  PubMed  Google Scholar 

  40. Pinto F, Große-Büning S, Karsai S, et al. Neodymium-doped yttrium aluminium garnet (Nd:YAG) 1064-nm picosecond laser vs. Nd:YAG 1064-nm nanosecond laser in tattoo removal: a randomized controlled single-blind clinical trial. Br J Dermatol. 2017;176(2):457–64.

    Article  CAS  PubMed  Google Scholar 

  41. Rho N-K. Treatment of café-au-lait Macules using a Q-switched Laser Followed by Serial Fractional thulium Laser treatments. Med Lasers. 2017;6(1):41–3.

    Article  Google Scholar 

  42. Eggen CAM, Lommerts JE, van Zuuren EJ, Limpens J, Pasmans SGMA, Wolkerstorfer A. Laser treatment of congenital melanocytic naevi: a systematic review. Br J Dermatol. 2018;178(2):369–83.

    Article  CAS  PubMed  Google Scholar 

  43. Ibrahimi OA, Alikhan A, Eisen DB. Congenital melanocytic nevi: Where are we now? Part II. Treatment options and approach to treatment. J Am Acad Dermatol. 2012;67(4):515.e1–13.

    Article  Google Scholar 

  44. Rogers T, Krakowski AC, Marino ML, Rossi A, Anderson RR, Marghoob AA. Nevi and lasers: Practical considerations. Lasers Surg Med. 2018;50(1):7–9.

    Article  PubMed  Google Scholar 

  45. August PJ, Ferguson JE, Madan V. A study of the efficacy of carbon dioxide and pigment-specific lasers in the treatment of medium-sized congenital melanocytic naevi. Br J Dermatol. 2011;164(5):1037–42.

    Article  CAS  PubMed  Google Scholar 

  46. Bray FN, Shah V, Nouri K. Laser treatment of congenital melanocytic nevi: a review of the literature. Lasers Med Sci. 2016;31(1):197–204.

    Article  PubMed  Google Scholar 

  47. Maize JC, Foster G. Age-related changes in melanocytic naevi. Clin Exp Dermatol. 1979;4(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  48. Adatto MA, Amir R, Bhawalkar J, et al. New and advanced picosecond lasers for tattoo removal. Curr Probl Dermatol. 2017;52:113–23.

    Article  PubMed  Google Scholar 

  49. Luebberding S, Alexiades-Armenakas M. New tattoo approaches in dermatology. Dermatol Clin. 2014;32(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  50. Choi MS, Seo HS, Kim JG, et al. Effects of picosecond laser on the multi-colored tattoo removal using Hartley guinea pig: A preliminary study. PLoS One. 2018;13(9):e0203370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ho SGY, Goh CL. Laser Tattoo Removal: A Clinical Update. J Cutan Aesthet Surg. 2015;8(1):9–15.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Naga LI, Alster TS. Laser Tattoo Removal: An Update. Am J Clin Dermatol. 2017;18(1):59–65.

    Article  PubMed  Google Scholar 

  53. Weiss ET, Geronemus RG. Combining fractional resurfacing and Q-switched ruby laser for tattoo removal. Dermatol Surg. 2011;37(1):97–9.

    Article  CAS  PubMed  Google Scholar 

  54. Vangipuram R, Hamill SS, Friedman PM. Perfluorodecalin-infused patch in picosecond and Q-switched laser-assisted tattoo removal: Safety in Fitzpatrick IV–VI skin types. Lasers Surg Med. 2019;51(1):23–6.

    Article  PubMed  Google Scholar 

  55. Kossida T, Rigopoulos D, Katsambas A, Anderson RR. Optimal tattoo removal in a single laser session based on the method of repeated exposures. J Am Acad Dermatol. 2012;66(2):271–7.

    Article  PubMed  Google Scholar 

  56. Jones A, Roddey P, Orengo I, Rosen T. The Q-switched ND:YAG laser effectively treats tattoos in darkly pigmented skin. Dermatol Surg. 1996;22(12):999–1001.

    Article  CAS  PubMed  Google Scholar 

  57. Casanova D, Bardot J, Aubert JP, Andrac L, Magalon G. Management of nevus spilus. Pediatr Dermatol. 1996;13(3):233–8.

    Article  CAS  PubMed  Google Scholar 

  58. Grevelink JM, Gonzalez S, Bonoan R, Vibhagool C, Gonzalez E. Treatment of nevus spilus with the Q-switched ruby laser. Dermatol Surg. 1997;23(5):365–9.

    Article  CAS  PubMed  Google Scholar 

  59. Abrusci V, Benzecry V. Medium-sized nevus spilus of the neck treated with pulsed dye laser. Dermatol Ther. 2017;30(4):e12497.

    Article  Google Scholar 

  60. Kagami S, Asahina A, Watanabe R, et al. Treatment of 153 Japanese patients with Q-switched alexandrite laser. Lasers Med Sci. 2007;22(3):159–63.

    Article  PubMed  Google Scholar 

  61. Trelles MA, Allones I, Moreno-Arias GA, Vélez M. Becker’s naevus: A comparative study between erbium: YAG and Q-switched neodymium:YAG; clinical and histopathological findings. Br J Dermatol. 2005;152(2):308–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Tsoukas.

Ethics declarations

Funding

No funding was received for the preparation of this review.

Conflict of interest

Priyanka D. Patel, Girish C. Mohan, Tanya Bhattacharya, Ronak A. Patel, and Maria Tsoukas have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P.D., Mohan, G.C., Bhattacharya, T. et al. Pediatric Laser Therapy in Pigmented Conditions. Am J Clin Dermatol 20, 647–655 (2019). https://doi.org/10.1007/s40257-019-00449-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-019-00449-3

Navigation