Skip to main content
Log in

Immune Checkpoint Inhibitors and Beyond: An Overview of Immune-Based Therapies in Merkel Cell Carcinoma

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Merkel cell carcinoma (MCC) is an aggressive skin cancer. Until 2017, patients with advanced disease were typically treated with conventional chemotherapies, with a median response duration of 3 months. Increased evidence of the role of the immune system in controlling this cancer has paved the way for immune-based therapies, with programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) inhibitors at the frontline. Avelumab, an anti-PD-L1 antibody, was the first-ever drug approved in advanced MCC after showing meaningful efficacy in a second-line setting. Objective responses were observed in one-third of patients and, most importantly, were durable with half of patients and one-third of patients still alive at 1 and 2 years, respectively. When used in a first-line setting, PD-1/PD-L1 inhibitors (avelumab, pembrolizumab, nivolumab) are even more promising as objective responses are observed in approximately 50–70% of patients within the first 4–8 weeks of treatment. Safety profiles are acceptable with 10–20% of patients experiencing adverse events grade ≥ 3. PD-1/PD-L1 inhibitors are considered the standard of care in advanced MCC and are currently being investigated in the adjuvant and neoadjuvant settings. However, innovative treatments are still needed in the metastatic setting, as approximately 50% of these patients will not persistently respond to currently available immunotherapies, and no predictors of response are available yet. Therefore, other immunotherapeutic strategies are now being investigated—ideally in combinations—to enhance the various aspects of the immune response against tumoral cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Paulson KG, Park SY, Vandeven NA, Lachance K, Thomas H, Chapuis AG, et al. Merkel cell carcinoma: current US incidence and projected increases based on changing demographics. J Am Acad Dermatol. 2018;78(457–463):e2.

    Google Scholar 

  2. Bichakjian CK, Olencki T, Aasi SZ, Alam M, Andersen JS, Blitzblau R, et al. Merkel cell carcinoma, version 1.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16:742–74.

    Article  PubMed  Google Scholar 

  3. Lebbe C, Becker JC, Grob J-J, Malvehy J, Del Marmol V, Pehamberger H, et al. Diagnosis and treatment of Merkel cell carcinoma. European consensus-based interdisciplinary guideline. Eur J Cancer. 2015;51:2396–403.

    Article  PubMed  Google Scholar 

  4. Harms KL, Healy MA, Nghiem P, Sober AJ, Johnson TM, Bichakjian CK, et al. Analysis of prognostic factors from 9387 Merkel cell carcinoma cases forms the basis for the new 8th edition AJCC staging system. Ann Surg Oncol. 2016;23(11):3564–71.

    Article  PubMed  Google Scholar 

  5. Allen PJ, Bowne WB, Jaques DP, Brennan MF, Busam K, Coit DG. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J Clin Oncol. 2005;23:2300–9.

    Article  PubMed  Google Scholar 

  6. van Veenendaal LM, van Akkooi ACJ, Verhoef C, Grünhagen DJ, Klop WMC, Valk GD, et al. Merkel cell carcinoma: clinical outcome and prognostic factors in 351 patients. J Surg Oncol. 2018;117(8):1768–75.

    Article  PubMed  Google Scholar 

  7. Sunshine JC, Jahchan NS, Sage J, Choi J. Are there multiple cells of origin of Merkel cell carcinoma? Oncogene. 2018;37:1409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicol JTJ, Robinot R, Carpentier A, Carandina G, Mazzoni E, Tognon M, et al. Age-specific seroprevalences of merkel cell polyomavirus, human polyomaviruses 6, 7, and 9, and trichodysplasia spinulosa-associated polyomavirus. Clin Vaccine Immunol. 2013;20:363–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Meijden E, Feltkamp M. The human polyomavirus middle and alternative T-antigens; thoughts on roles and relevance to cancer. Front Microbiol. 2018;9:398.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rodig SJ, Cheng J, Wardzala J, DoRosario A, Scanlon JJ, Laga AC, et al. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest. 2012;122:4645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cimino PJ, Robirds DH, Tripp SR, Pfeifer JD, Abel HJ, Duncavage EJ. Retinoblastoma gene mutations detected by whole exome sequencing of Merkel cell carcinoma. Mod Pathol. 2014;27:1073–87.

    Article  CAS  PubMed  Google Scholar 

  13. Erstad DJ, Cusack JC Jr. Mutational analysis of merkel cell carcinoma. Cancers (Basel). 2014;6:2116–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goh G, Walradt T, Markarov V, Blom A, Riaz N, Doumani R, et al. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget. 2016;7:3403–15.

    Article  PubMed  Google Scholar 

  15. González-Vela MDC, Curiel-Olmo S, Derdak S, Beltran S, Santibañez M, Martínez N, et al. Shared oncogenic pathways implicated in both virus-positive and UV-induced Merkel cell carcinomas. J Invest Dermatol. 2017;137:197–206.

    Article  CAS  PubMed  Google Scholar 

  16. Harms PW, Collie AMB, Hovelson DH, Cani AK, Verhaegen ME, Patel RM, et al. Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation. Mod Pathol. 2016;29:240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harms PW, Vats P, Verhaegen ME, Robinson DR, Wu Y-M, Dhanasekaran SM, et al. The distinctive mutational spectra of polyomavirus-negative Merkel cell carcinoma. Cancer Res. 2015;75:3720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nevels M, Täuber B, Spruss T, Wolf H, Dobner T. “Hit-and-run” transformation by adenovirus oncogenes. J Virol. 2001;75:3089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Engels EA, Frisch M, Goedert JJ, Biggar RJ, Miller RW. Merkel cell carcinoma and HIV infection. Lancet. 2002;359:497–8.

    Article  PubMed  Google Scholar 

  21. Clarke CA, Robbins HA, Tatalovich Z, Lynch CF, Pawlish KS, Finch JL, et al. Risk of merkel cell carcinoma after solid organ transplantation. J Natl Cancer Inst. 2015;107.

  22. Lanoy E, Engels EA. Skin cancers associated with autoimmune conditions among elderly adults. Br J Cancer. 2010;103:112–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paulson KG, Iyer JG, Blom A, Warton EM, Sokil M, Yelistratova L, et al. Systemic immune suppression predicts diminished Merkel cell carcinoma-specific survival independent of stage. J Invest Dermatol. 2013;133:642–6.

    Article  CAS  PubMed  Google Scholar 

  24. Samimi M, Touzé A, Laude H, Le Bidre E, Arnold F, Carpentier A, et al. Vitamin D deficiency is associated with greater tumor size and poorer outcome in Merkel cell carcinoma patients. J Eur Acad Dermatol Venereol. 2014;28:298–308.

    Article  CAS  PubMed  Google Scholar 

  25. Tarantola TI, Vallow LA, Halyard MY, Weenig RH, Warschaw KE, Weaver AL, et al. Unknown primary Merkel cell carcinoma: 23 new cases and a review. J Am Acad Dermatol. 2013;68:433–40.

    Article  PubMed  Google Scholar 

  26. Chang Y, Moore PS. Merkel cell carcinoma: a virus-induced human cancer. Annu Rev Pathol. 2012;7:123–44.

    Article  CAS  PubMed  Google Scholar 

  27. Koba S, Paulson KG, Nagase K, Tegeder A, Thibodeau R, Iyer JG, et al. Diagnostic biopsy does not commonly induce intratumoral CD8 T cell infiltration in Merkel cell carcinoma. PLoS ONE. 2012;7:e41465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paulson KG, Iyer JG, Tegeder AR, Thibodeau R, Schelter J, Koba S, et al. Transcriptome-wide studies of merkel cell carcinoma and validation of intratumoral CD8 + lymphocyte invasion as an independent predictor of survival. J Clin Oncol. 2011;29:1539–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paulson KG, Iyer JG, Simonson WT, Blom A, Thibodeau RM, Schmidt M, et al. CD8 + lymphocyte intratumoral infiltration as a stage-independent predictor of Merkel cell carcinoma survival: a population-based study. Am J Clin Pathol. 2014;142:452–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sihto H, Böhling T, Kavola H, Koljonen V, Salmi M, Jalkanen S, et al. Tumor infiltrating immune cells and outcome of Merkel cell carcinoma: a population-based study. Clin Cancer Res. 2012;18:2872–81.

    Article  CAS  PubMed  Google Scholar 

  31. Paulson KG, Carter JJ, Johnson LG, Cahill KW, Iyer JG, Schrama D, et al. Antibodies to merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. Cancer Res. 2010;70:8388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samimi M, Molet L, Fleury M, Laude H, Carlotti A, Gardair C, et al. Prognostic value of antibodies to Merkel cell polyomavirus T antigens and VP1 protein in patients with Merkel cell carcinoma. Br J Dermatol. 2016;174:813–22.

    Article  CAS  PubMed  Google Scholar 

  33. Paulson KG, Lewis CW, Redman MW, Simonson WT, Lisberg A, Ritter D, et al. Viral oncoprotein antibodies as a marker for recurrence of Merkel cell carcinoma: a prospective validation study. Cancer. 2017;123:1464–74.

    Article  CAS  PubMed  Google Scholar 

  34. Iyer JG, Afanasiev OK, McClurkan C, Paulson K, Nagase K, Jing L, et al. Merkel cell polyomavirus-specific CD8+ and CD4+ T-cell responses identified in Merkel cell carcinomas and blood. Clin Cancer Res. 2011;17:6671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lyngaa R, Pedersen NW, Schrama D, Thrue CA, Ibrani D, Met O, et al. T-cell responses to oncogenic merkel cell polyomavirus proteins distinguish patients with merkel cell carcinoma from healthy donors. Clin Cancer Res. 2014;20:1768–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paulson KG, Tegeder A, Willmes C, Iyer JG, Afanasiev OK, Schrama D, et al. Downregulation of MHC-I expression is prevalent but reversible in Merkel cell carcinoma. Cancer Immunol Res. 2014;2:1071–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paulson KG, Voillet V, McAfee MS, Hunter DS, Wagener FD, Perdicchio M, et al. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat Commun. 2018;9:3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wheat R, Roberts C, Waterboer T, Steele J, Marsden J, Steven NM, et al. Inflammatory cell distribution in primary merkel cell carcinoma. Cancers (Basel). 2014;6:1047–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Afanasiev OK, Yelistratova L, Miller N, Nagase K, Paulson K, Iyer JG, et al. Merkel polyomavirus-specific T cells fluctuate with merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers. Clin Cancer Res. 2013;19:5351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dowlatshahi M, Huang V, Gehad AE, Jiang Y, Calarese A, Teague JE, et al. Tumor-specific T cells in human Merkel cell carcinomas: a possible role for Tregs and T-cell exhaustion in reducing T-cell responses. J Invest Dermatol. 2013;133:1879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lipson EJ, Vincent JG, Loyo M, Kagohara LT, Luber BS, Wang H, et al. PD-L1 expression in the Merkel cell carcinoma microenvironment: association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol Res. 2013;1:54–63.

    Article  CAS  PubMed  Google Scholar 

  42. Werchau S, Toberer F, Enk A, Dammann R, Helmbold P. Merkel cell carcinoma induces lymphatic microvessel formation. J Am Acad Dermatol. 2012;67:215–25.

    Article  PubMed  Google Scholar 

  43. Walsh NM, Fleming KE, Hanly JG, Dakin Hache K, Doucette S, Ferrara G, et al. A morphological and immunophenotypic map of the immune response in Merkel cell carcinoma. Hum Pathol. 2016;52:190–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kervarrec T, Gaboriaud P, Berthon P, Zaragoza J, Schrama D, Houben R, et al. Merkel cell carcinomas infiltrated with CD33 + myeloid cells and CD8 + T cells are associated with improved outcome. J Am Acad Dermatol. 2018;78(973–982):e8.

    Google Scholar 

  45. Elliott LA, Doherty GA, Sheahan K, Ryan EJ. Human tumor-infiltrating myeloid cells: phenotypic and functional diversity. Front Immunol. 2017;8:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kervarrec T, Gaboriaud P, Tallet A, Leblond V, Arnold F, Berthon P, et al. VEGF-A inhibition as a potential therapeutic approach in Merkel cell carcinoma. J Invest Dermatol. 2018. https://doi.org/10.1016/j.jid.2018.08.029.

    Article  PubMed  Google Scholar 

  47. Laniosz V, Onajin O, Sominidi-Damodaran S, Meves A, Gibson LE, Baum CL. Natural killer cell response is a predictor of good outcome in MCPyV + Merkel cell carcinoma: a case series of 23 patients. J Am Acad Dermatol. 2017;77:31–2.

    Article  PubMed  Google Scholar 

  48. Ritter C, Fan K, Paulson KG, Nghiem P, Schrama D, Becker JC. Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma. Sci Rep. 2016;6:21678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nghiem P, Kaufman HL, Bharmal M, Mahnke L, Phatak H, Becker JC. Systematic literature review of efficacy, safety and tolerability outcomes of chemotherapy regimens in patients with metastatic Merkel cell carcinoma. Future Oncol. 2017;13:1263–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cowey CL, Mahnke L, Espirito J, Helwig C, Oksen D, Bharmal M. Real-world treatment outcomes in patients with metastatic Merkel cell carcinoma treated with chemotherapy in the USA. Future Oncol. 2017;13:1699–710.

    Article  CAS  PubMed  Google Scholar 

  51. Iyer JG, Blom A, Doumani R, Lewis C, Tarabadkar ES, Anderson A, et al. Response rates and durability of chemotherapy among 62 patients with metastatic Merkel cell carcinoma. Cancer Med. 2016;5(9):2294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tai PT, Yu E, Winquist E, Hammond A, Stitt L, Tonita J, et al. Chemotherapy in neuroendocrine/Merkel cell carcinoma of the skin: case series and review of 204 cases. J Clin Oncol. 2000;18:2493–9.

    Article  CAS  PubMed  Google Scholar 

  53. US Food and Drug Administration. Avelumab (BAVENCIO). https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm547965.htm. Accessed Dec 2018.

  54. European Medicines Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/bavencio. Accessed Dec 2018.

  55. Boyerinas B, Jochems C, Fantini M, Heery CR, Gulley JL, Tsang KY, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res. 2015;3:1148–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaufman HL, Russell JS, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after ≥ 1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer. 2018;6:7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nghiem P, Bhatia S, Scott Brohl A, Hamid O, Mehnert J, Terheyden P, et al. Two-year efficacy and safety update from JAVELIN Merkel 200 part A: a registrational study of avelumab in metastatic Merkel cell carcinoma progressed on chemotherapy [abstract]. J Clin Oncol. 2018;36:9507.

    Article  Google Scholar 

  59. Kelly K, Infante JR, Taylor MH, Patel MR, Wong DJ, Iannotti N, et al. Safety profile of avelumab in patients with advanced solid tumors: a pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials. Cancer. 2018;124:2010–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. D’Angelo SP, Russell J, Lebbé C, Chmielowski B, Gambichler T, Grob J-J, et al. Efficacy and safety of first-line avelumab treatment in patients with stage IV metastatic Merkel cell carcinoma: a preplanned interim analysis of a clinical trial. JAMA Oncol. 2018;4(9):e180077.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Walker J, Kasturi V, Lebbe C, Sandhu S, Grignani G, Hennessy M, et al. Second-line avelumab treatment of patients with metastatic Merkel cell carcinoma: experience from a global expanded access program [abstract]. J Clin Oncol. 2018;36(Suppl):9537.

    Article  Google Scholar 

  62. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med. 2016;374:2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nghiem P, Bhatia S, Lipson E, Sharfman W, Kudchadkar R, Friedlander P, et al. Durable tumor regression and overall survival in patients with advanced Merkel cell carcinoma receiving pembrolizumab as first-line therapy [abstract]. J Clin Oncol. 2018;36(Suppl):9506.

    Article  Google Scholar 

  64. Wang M, Ma X, Guo L, Xia F. Safety and efficacy profile of pembrolizumab in solid cancer: pooled reanalysis based on randomized controlled trials. Drug Des Devel Ther. 2017;11:2851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Walocko FM, Scheier BY, Harms PW, Fecher LA, Lao CD. Metastatic Merkel cell carcinoma response to nivolumab. J Immunother Cancer. 2016;4:79.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Topalian SL, Bhatia S, Hollebecque A, Awada A, De Boer J, Kudchadkar R. Non-comparative, open label, multiple cohort, phase 1/2 study to evaluate nivolumab in patients with virus-associated tumors (CheckMate 358): efficacy and safety in Merkel cell carcinoma [abstract]. Cancer Res. 2017;77(Suppl 13):CT074.

    Google Scholar 

  67. Winkler JK, Dimitrakopoulou-Strauss A, Sachpekidis C, Enk A, Hassel JC. Ipilimumab has efficacy in metastatic Merkel cell carcinoma: a case series of five patients. J Eur Acad Dermatol Venereol. 2017;31:e389–91.

    Article  CAS  PubMed  Google Scholar 

  68. Eggermont AMM, Chiarion-Sileni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16:522–30.

    Article  CAS  PubMed  Google Scholar 

  69. Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377:1824–35.

    Article  CAS  PubMed  Google Scholar 

  70. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378:1789–801.

    Article  CAS  PubMed  Google Scholar 

  71. Garneski KM, Nghiem P. Merkel cell carcinoma adjuvant therapy: current data support radiation but not chemotherapy. J Am Acad Dermatol. 2007;57:166–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Becker J, Hassel J, Menzer C, Kähler K, Eigentler T, Meier F, et al. Adjuvant ipilimumab compared with observation in completely resected Merkel cell carcinoma (ADMEC): a randomized, multicenter DeCOG/ADO study [abstract]. J Clin Oncol. 2018;36(Suppl):9527.

    Article  Google Scholar 

  73. Bhatia S, Brohl A, Brownell I, Chandra S, Dakhil S, Ernstoff M, et al. ADAM trial: a multicenter, randomized, double-blinded, placebo-controlled, phase 3 trial of adjuvant avelumab (anti-PD-L1 antibody) in merkel cell carcinoma patients with clinically detected lymph node metastases; NCT03271372 [abstract]. J Clin Oncol. 2018;36:TPS9605.

    Article  Google Scholar 

  74. Jouary T, Lalanne N, Siberchicot F, Ricard A-S, Versapuech J, Lepreux S, et al. Neoadjuvant polychemotherapy in locally advanced Merkel cell carcinoma. Nat Rev Clin Oncol. 2009;6:544–8.

    Article  CAS  PubMed  Google Scholar 

  75. Topalian S, Bhatia S, Kudchadkar R, Amin A, Sharfman W, Lebbe C, et al. Nivolumab (Nivo) as neoadjuvant therapy in patients with resectable Merkel cell carcinoma (MCC) in CheckMate 358 [abstract]. J Clin Oncol. 2018;36 Suppl:9505.

    Article  Google Scholar 

  76. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44:989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y, et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer. 2018;9:176–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Solomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother. 2018;67:1659–67.

    Article  CAS  PubMed  Google Scholar 

  79. Knepper T, Russell J, Montesion M, Sokol E, Frampton G, Stephens P, et al. Comprehensive genomic profiling of advanced Merkel cell carcinoma to reveal insights into immunotherapy response [abstract]. J Clin Oncol. 2018;36 Supple:9523.

    Article  Google Scholar 

  80. McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cotter SE, Dunn GP, Collins KM, Sahni D, Zukotynski KA, Hansen JL, et al. Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy: potential role of induced antitumor immunity. Arch Dermatol. 2011;147:870–2.

    Article  PubMed  Google Scholar 

  82. Xu MJ, Wu S, Daud AI, Yu SS, Yom SS. In-field and abscopal response after short-course radiation therapy in patients with metastatic Merkel cell carcinoma progressing on PD-1 checkpoint blockade: a case series. J Immunother Cancer. 2018;6:43.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Willmes C, Adam C, Alb M, Völkert L, Houben R, Becker JC, et al. Type I and II IFNs inhibit Merkel cell carcinoma via modulation of the Merkel cell polyomavirus T antigens. Cancer Res. 2012;72:2120–8.

    Article  CAS  PubMed  Google Scholar 

  84. Biver-Dalle C, Nguyen T, Touzé A, Saccomani C, Penz S, Cunat-Peultier S, et al. Use of interferon-alpha in two patients with Merkel cell carcinoma positive for Merkel cell polyomavirus. Acta Oncol. 2011;50:479–80.

    Article  PubMed  Google Scholar 

  85. Chapuis AG, Afanasiev OK, Iyer JG, Paulson KG, Parvathaneni U, Hwang JH, et al. Regression of metastatic Merkel cell carcinoma following transfer of polyomavirus-specific T cells and therapies capable of re-inducing HLA class-I. Cancer Immunol Res. 2014;2:27–36.

    Article  CAS  PubMed  Google Scholar 

  86. Lasek W, Zagożdżon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother. 2014;63:419–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bhatia S, Iyer J, Ibrani D, Blom A, Byrd D, Parvathaneni U, et al. Intratumoral delivery of Interleukin-12 DNA via in vivo electroporation leads to regression of injected and non-injected tumors in Merkel cell carcinoma: final results of a phase 2 study [abstract no. 504]. Eur J Cancer. 2015;51(Suppl 3):104.

    Article  Google Scholar 

  88. Bhatia S, Miller NJ, Lu H, Vandeven NV, Ibrani D, Shinohara M, et al. Intratumoral G100, a TLR4 agonist, induces anti-tumor immune responses and tumor regression in patients with Merkel cell carcinoma. Clin Cancer Res. 2018. https://doi.org/10.1158/1078-0432.CCR-18-0469 (Epub 2018 Aug 9).

    Article  PubMed  Google Scholar 

  89. Blackmon JT, Dhawan R, Viator TM, Terry NL, Conry RM. Talimogene laherparepvec for regionally advanced Merkel cell carcinoma: a report of 2 cases. JAAD Case Rep. 2017;3:185–9.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood. 2018;131:39–48.

    CAS  PubMed  Google Scholar 

  91. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting adenosine receptor signaling in cancer immunotherapy. Int J Mol Sci. 2018;19:3837.

    Article  CAS  PubMed Central  Google Scholar 

  93. Seitz L, Jin L, Leleti M, Ashok D, Jeffrey J, Rieger A, et al. Safety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. Invest New Drugs. 2018. https://doi.org/10.1007/s10637-018-0706-6 (Epub 2018 Dec 19).

    Article  PubMed  Google Scholar 

  94. Vandeven N, Viller NN, O’Connor A, Chen H, Bossen B, Sievers E, et al. CD47 is overexpressed on Merkel cell carcinoma and a target for SIRPalphaFc therapy [abstract]. J Immunother Cancer. 2016. https://doi.org/10.1186/s40425-016-0172-7.

    Article  PubMed Central  Google Scholar 

  95. Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, et al. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018;32:480–9.

    Article  CAS  PubMed  Google Scholar 

  96. Folkes AS, Feng M, Zain JM, Abdulla F, Rosen ST, Querfeld C. Targeting CD47 as a cancer therapeutic strategy: the cutaneous T-cell lymphoma experience. Curr Opin Oncol. 2018;30:332–7.

    Article  CAS  Google Scholar 

  97. Gavvovidis I, Leisegang M, Willimsky G, Miller N, Nghiem P, Blankenstein T. Targeting Merkel cell carcinoma by engineered T cells specific to T-antigens of Merkel cell polyomavirus. Clin Cancer Res. 2018;24:3644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bhatia S, Burgess M, Zhang H, Lee T, Lingemann H, Soon-Shiong P, et al. Adoptive cellular therapy (ACT) with allogeneic activated natural killer (aNK) cells in patients with advanced Merkel cell carcinoma (MCC): preliminary results of a phase II trial [abstract no. P44]. J Immunother Cancer. 2016;4(Suppl 1):82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahtab Samimi.

Ethics declarations

Funding

No external funding was used in the preparation of this review.

Conflict of interest

Mahtab Samimi has received speaking fees in educational programs from BMS, Janssen, Acthelion, and Abbvie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samimi, M. Immune Checkpoint Inhibitors and Beyond: An Overview of Immune-Based Therapies in Merkel Cell Carcinoma. Am J Clin Dermatol 20, 391–407 (2019). https://doi.org/10.1007/s40257-019-00427-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-019-00427-9

Navigation