Skip to main content
Log in

Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

The use of chemotherapeutic agents is becoming more frequent as the proportion of new oncology patients increases worldwide, with prolonged survival after treatment. As one of the most popular chemotherapy drugs, doxorubicin plays a substantial role in the treatment of tumors. Unfortunately, the use of doxorubicin is associated with several adverse effects, particularly severe cardiotoxicity that can be life-threatening, which greatly limits its clinical use. For decades, scientists have tried to explore many cardioprotective agents and therapeutic approaches, but their efficacy remains controversial, and some drugs have even brought about significant adverse effects. The concrete molecular mechanism of doxorubicin-induced cardiotoxicity is still to be unraveled, yet endothelial damage is gradually being identified as an important mechanism triggering the development and progression of doxorubicin-induced cardiotoxicity. Endothelial-to-mesenchymal transition (EndMT), a fundamental process regulating morphogenesis in multicellular organisms, is recognized to be associated with endothelial damage repair and acts as an important factor in the progression of cardiovascular diseases, tumors, and rheumatic immune diseases. Mounting evidence suggests that endothelial–mesenchymal transition may play a non-negligible role in doxorubicin-induced cardiotoxicity. In this paper, we reviewed the molecular mechanisms and signaling pathways of EndMT and outlined the molecular mechanisms of doxorubicin-induced cardiotoxicity and the current therapeutic advances. Furthermore, we summarized the basic principles of doxorubicin-induced endothelial–mesenchymal transition that lead to endothelial dysfunction and cardiotoxicity, aiming to provide suggestions or new ideas for the prevention and treatment of doxorubicin-induced endothelial and cardiac injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Najafi M, Hooshangi Shayesteh MR, Mortezaee K, et al. The role of melatonin on doxorubicin-induced cardiotoxicity: a systematic review. Life Sci. 2020;241: 117173. https://doi.org/10.1016/j.lfs.2019.117173.

    Article  CAS  PubMed  Google Scholar 

  3. Young RC, Ozols RF, Myers CE. The anthracycline antineoplastic drugs. N Engl J Med. 1981;305(3):139–53. https://doi.org/10.1056/NEJM198107163050305.

    Article  CAS  PubMed  Google Scholar 

  4. Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol. 2020;29: 101394. https://doi.org/10.1016/j.redox.2019.101394.

    Article  CAS  PubMed  Google Scholar 

  5. Damiani RM, Moura DJ, Viau CM, et al. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 2016;90(9):2063–76. https://doi.org/10.1007/s00204-016-1759-y.

    Article  CAS  PubMed  Google Scholar 

  6. Polgár L, Lajkó E, Soós P, et al. Drug targeting to decrease cardiotoxicity—determination of the cytotoxic effect of GnRH-based conjugates containing doxorubicin, daunorubicin and methotrexate on human cardiomyocytes and endothelial cells. Beilstein J Org Chem. 2018;14:1583–94. https://doi.org/10.3762/bjoc.14.136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79. https://doi.org/10.1002/cncr.11407.

    Article  CAS  PubMed  Google Scholar 

  8. Ma W, Wei S, Zhang B, et al. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Front Cell Dev Biol. 2020;8:434. https://doi.org/10.3389/fcell.2020.00434.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sonowal H, Pal P, Shukla K, et al. Aldose reductase inhibitor, fidarestat prevents doxorubicin-induced endothelial cell death and dysfunction. Biochem Pharmacol. 2018;150:181–90. https://doi.org/10.1016/j.bcp.2018.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tombor LS, Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol. 2022;117(1):35. https://doi.org/10.1007/s00395-022-00941-8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luu AZ, Chowdhury B, Al-Omran M, et al. Role of endothelium in doxorubicin-induced cardiomyopathy. JACC Basic Transl Sci. 2018;3(6):861–70. https://doi.org/10.1016/j.jacbts.2018.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Todorova VK, Wei JY, Makhoul I. Subclinical doxorubicin-induced cardiotoxicity update: role of neutrophils and endothelium. Am J Cancer Res. 2021;11(9):4070–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lipshultz SE, Franco VI, Sallan SE, et al. Dexrazoxane for reducing anthracycline-related cardiotoxicity in children with cancer: an update of the evidence. Prog Pediatr Cardiol. 2014;36(1–2):39–49. https://doi.org/10.1016/j.ppedcard.2014.09.007.

    Article  Google Scholar 

  14. Benjamin RS, Minotti G. Doxorubicin–dexrazoxane from day 1 for soft-tissue sarcomas: the road to cardioprotection. Clin Cancer Res. 2021;27(14):3809–11. https://doi.org/10.1158/1078-0432.Ccr-21-1376.

    Article  CAS  PubMed  Google Scholar 

  15. Xu A, Deng F, Chen Y, et al. NF-κB pathway activation during endothelial-to-mesenchymal transition in a rat model of doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2020;130: 110525. https://doi.org/10.1016/j.biopha.2020.110525.

    Article  CAS  PubMed  Google Scholar 

  16. Tsai TH, Lin CJ, Hang CL, et al. Calcitriol attenuates doxorubicin-induced cardiac dysfunction and inhibits endothelial-to-mesenchymal transition in mice. Cells. 2019. https://doi.org/10.3390/cells8080865.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wesseling M, Sakkers TR, de Jager SCA, et al. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul Pharmacol. 2018;106:1–8. https://doi.org/10.1016/j.vph.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  18. Cui X, Lu YW, Lee V, et al. Venous endothelial marker COUP-TFII regulates the distinct pathologic potentials of adult arteries and veins. Sci Rep. 2015;5:16193. https://doi.org/10.1038/srep16193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng CY, Xu J, Liu X, et al. Cardioprotective roles of endothelial progenitor cell-derived exosomes. Front Cardiovasc Med. 2021;8: 717536. https://doi.org/10.3389/fcvm.2021.717536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial–mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002;90(11):1189–96. https://doi.org/10.1161/01.res.0000021432.70309.28.

    Article  CAS  PubMed  Google Scholar 

  21. Sanchez-Duffhues G, Orlova V, Ten Dijke P. In Brief: endothelial-to-mesenchymal transition. J Pathol. 2016;238(3):378–80. https://doi.org/10.1002/path.4653.

    Article  PubMed  Google Scholar 

  22. Peng H, Li Y, Wang C, et al. ROCK1 induces endothelial-to-mesenchymal transition in glomeruli to aggravate albuminuria in diabetic nephropathy. Sci Rep. 2016;6:20304. https://doi.org/10.1038/srep20304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medici D, Kalluri R. Endothelial–mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol. 2012;22(5–6):379–84. https://doi.org/10.1016/j.semcancer.2012.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dagher O, Mury P, Thorin-Trescases N, et al. Therapeutic potential of quercetin to alleviate endothelial dysfunction in age-related cardiovascular diseases. Front Cardiovasc Med. 2021;8: 658400. https://doi.org/10.3389/fcvm.2021.658400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Richards J, El-Hamamsy I, Chen S, et al. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. Am J Pathol. 2013;182(5):1922–31. https://doi.org/10.1016/j.ajpath.2013.01.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao Y, Jumabay M, Ly A, et al. A role for the endothelium in vascular calcification. Circ Res. 2013;113(5):495–504. https://doi.org/10.1161/CIRCRESAHA.113.301792.

    Article  CAS  PubMed  Google Scholar 

  27. Kovacic JC, Mercader N, Torres M, et al. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 2012;125(14):1795–808. https://doi.org/10.1161/CIRCULATIONAHA.111.040352.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ranchoux B, Antigny F, Rucker-Martin C, et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation. 2015;131(11):1006–18. https://doi.org/10.1161/CIRCULATIONAHA.114.008750.

    Article  CAS  PubMed  Google Scholar 

  29. Liang C, Gao L, Liu Y, et al. MiR-451 antagonist protects against cardiac fibrosis in streptozotocin-induced diabetic mouse heart. Life Sci. 2019;224:12–22. https://doi.org/10.1016/j.lfs.2019.02.059.

    Article  CAS  PubMed  Google Scholar 

  30. Platel V, Faure S, Corre I, et al. Endothelial-to-mesenchymal transition (EndoMT): roles in tumorigenesis, metastatic extravasation and therapy resistance. J Oncol. 2019;2019:8361945. https://doi.org/10.1155/2019/8361945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 1995;77(1):1–6. https://doi.org/10.1161/01.res.77.1.1.

    Article  CAS  PubMed  Google Scholar 

  32. Lagendijk AK, Szabo A, Merks RM, et al. Hyaluronan: a critical regulator of endothelial-to-mesenchymal transition during cardiac valve formation. Trends Cardiovasc Med. 2013;23(5):135–42. https://doi.org/10.1016/j.tcm.2012.10.002.

    Article  CAS  PubMed  Google Scholar 

  33. Evrard SM, Lecce L, Michelis KC, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016. https://doi.org/10.1038/ncomms11853.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ciszewski WM, Wawro ME, Sacewicz-Hofman I, et al. Cytoskeleton reorganization in EndMT—the role in cancer and fibrotic diseases. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222111607.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, et al. TGF-beta-induced endothelial–mesenchymal transition in fibrotic diseases. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102157.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Milan M, Pace V, Maiullari F, et al. Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation. Cell Death Dis. 2018;9(2):108. https://doi.org/10.1038/s41419-017-0174-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res. 2012;347(1):177–86. https://doi.org/10.1007/s00441-011-1222-6.

    Article  CAS  PubMed  Google Scholar 

  38. Medici D, Potenta S, Kalluri R. Transforming growth factor-beta2 promotes Snail-mediated endothelial–mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J. 2011;437(3):515–20. https://doi.org/10.1042/BJ20101500.

    Article  CAS  PubMed  Google Scholar 

  39. Sabbineni H, Verma A, Somanath PR. Isoform-specific effects of transforming growth factor β on endothelial-to-mesenchymal transition. J Cell Physiol. 2018;233(11):8418–28. https://doi.org/10.1002/jcp.26801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8. https://doi.org/10.1126/scisignal.2005189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu X, Tan X, Tampe B, et al. Snail is a direct target of hypoxia-inducible factor 1alpha (HIF1alpha) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J Biol Chem. 2015;290(27):16653–64. https://doi.org/10.1074/jbc.M115.636944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noseda M, McLean G, Niessen K, et al. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res. 2004;94(7):910–7. https://doi.org/10.1161/01.RES.0000124300.76171.C9.

    Article  CAS  PubMed  Google Scholar 

  43. Choi SH, Hong ZY, Nam JK, et al. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin Cancer Res. 2015;21(16):3716–26. https://doi.org/10.1158/1078-0432.CCR-14-3193.

    Article  CAS  PubMed  Google Scholar 

  44. Li L, Chen L, Zang J, et al. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/beta-catenin signaling pathway in diabetic kidney disease. Metabolism. 2015;64(5):597–610. https://doi.org/10.1016/j.metabol.2015.01.014.

    Article  CAS  PubMed  Google Scholar 

  45. Wermuth PJ, Li Z, Mendoza FA, et al. Stimulation of transforming growth factor-beta1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS ONE. 2016;11(9): e0161988. https://doi.org/10.1371/journal.pone.0161988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Del Galdo F, Lisanti MP, Jimenez SA. Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis. Curr Opin Rheumatol. 2008;20(6):713–9. https://doi.org/10.1097/bor.0b013e3283103d27.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA. 1986;83(12):4167–71. https://doi.org/10.1073/pnas.83.12.4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Varga J, Jimenez SA. Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-beta. Biochem Biophys Res Commun. 1986;138(2):974–80. https://doi.org/10.1016/s0006-291x(86)80591-5.

    Article  CAS  PubMed  Google Scholar 

  49. Hwang S, Chung KW. Targeting fatty acid metabolism for fibrotic disorders. Arch Pharm Res. 2021;44(9–10):839–56. https://doi.org/10.1007/s12272-021-01352-4.

    Article  CAS  PubMed  Google Scholar 

  50. Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99(2):1281–324. https://doi.org/10.1152/physrev.00021.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700. https://doi.org/10.1016/s0092-8674(03)00432-x.

    Article  CAS  PubMed  Google Scholar 

  52. Heldin CH, Moustakas A. Role of Smads in TGFbeta signaling. Cell Tissue Res. 2012;347(1):21–36. https://doi.org/10.1007/s00441-011-1190-x.

    Article  CAS  PubMed  Google Scholar 

  53. Cortes E, Lachowski D, Robinson B, et al. Tamoxifen mechanically reprograms the tumor microenvironment via HIF-1A and reduces cancer cell survival. EMBO Rep. 2019. https://doi.org/10.15252/embr.201846557.

    Article  PubMed  Google Scholar 

  54. Xiong A, Liu Y. Targeting hypoxia inducible factors-1alpha as a novel therapy in fibrosis. Front Pharmacol. 2017;8:326. https://doi.org/10.3389/fphar.2017.00326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng W, Feng X, Li X, et al. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol. 2016;303:7–15. https://doi.org/10.1016/j.cellimm.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang B, Niu W, Dong HY, et al. Hypoxia induces endothelial–mesenchymal transition in pulmonary vascular remodeling. Int J Mol Med. 2018;42(1):270–8. https://doi.org/10.3892/ijmm.2018.3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013;126(Pt 10):2135–40. https://doi.org/10.1242/jcs.127308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. Semin Cell Dev Biol. 2012;23(4):450–7. https://doi.org/10.1016/j.semcdb.2012.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang AC, Garside VC, Fournier M, et al. A Notch-dependent transcriptional hierarchy promotes mesenchymal transdifferentiation in the cardiac cushion. Dev Dyn. 2014;243(7):894–905. https://doi.org/10.1002/dvdy.24127.

    Article  CAS  PubMed  Google Scholar 

  60. Chang AC, Fu Y, Garside VC, et al. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288–300. https://doi.org/10.1016/j.devcel.2011.06.022.

    Article  CAS  PubMed  Google Scholar 

  61. Lin QQ, Zhao J, Zheng CG, et al. Roles of notch signaling pathway and endothelial–mesenchymal transition in vascular endothelial dysfunction and atherosclerosis. Eur Rev Med Pharmacol Sci. 2018;22(19):6485–91. https://doi.org/10.26355/eurrev_201810_16062.

    Article  PubMed  Google Scholar 

  62. Zhang Y, Dong Y, Xiong Z, et al. Sirt6-mediated endothelial-to-mesenchymal transition contributes toward diabetic cardiomyopathy via the Notch1 signaling pathway. Diabetes Metab Syndr Obes. 2020;13:4801–8. https://doi.org/10.2147/dmso.S287287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang W, Wang Z, Tian D, et al. Integrin β3 mediates the endothelial-to-mesenchymal transition via the Notch pathway. Cell Physiol Biochem. 2018;49(3):985. https://doi.org/10.1159/000493229.

    Article  CAS  PubMed  Google Scholar 

  64. Patel J, Baz B, Wong HY, et al. Accelerated endothelial to mesenchymal transition increased fibrosis via deleting Notch signaling in wound vasculature. J Invest Dermatol. 2018;138(5):1166–75. https://doi.org/10.1016/j.jid.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  65. Liu J, Dong F, Jeong J, et al. Constitutively active Notch1 signaling promotes endothelial–mesenchymal transition in a conditional transgenic mouse model. Int J Mol Med. 2014;34(3):669–76. https://doi.org/10.3892/ijmm.2014.1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79. https://doi.org/10.1038/nrm3470.

    Article  CAS  PubMed  Google Scholar 

  67. Bergmann C, Distler JH. Canonical Wnt signaling in systemic sclerosis. Lab Invest. 2016;96(2):151–5. https://doi.org/10.1038/labinvest.2015.154.

    Article  CAS  PubMed  Google Scholar 

  68. Foulquier S, Daskalopoulos EP, Lluri G, et al. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev. 2018;70(1):68–141. https://doi.org/10.1124/pr.117.013896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99. https://doi.org/10.1016/j.cell.2017.05.016.

    Article  CAS  PubMed  Google Scholar 

  70. Li H, Zhao Q, Chang L, et al. LncRNA MALAT1 modulates ox-LDL induced EndMT through the Wnt/β-catenin signaling pathway. Lipids Health Dis. 2019;18(1):62. https://doi.org/10.1186/s12944-019-1006-7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang Z, Wang Z, Gao L, et al. miR-222 inhibits cardiac fibrosis in diabetic mice heart via regulating Wnt/β-catenin-mediated endothelium to mesenchymal transition. J Cell Physiol. 2020;235(3):2149–60. https://doi.org/10.1002/jcp.29119.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang J, Rojas S, Singh S, et al. Wnt2 contributes to the development of atherosclerosis. Front Cardiovasc Med. 2021;8: 751720. https://doi.org/10.3389/fcvm.2021.751720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang ZY, Zhai C, Yang XY, et al. Knockdown of CD146 promotes endothelial-to-mesenchymal transition via Wnt/β-catenin pathway. PLoS ONE. 2022;17(8): e0273542. https://doi.org/10.1371/journal.pone.0273542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cheng SL, Shao JS, Behrmann A, et al. Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial–mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33(7):1679–89. https://doi.org/10.1161/ATVBAHA.113.300647.

    Article  CAS  PubMed  Google Scholar 

  75. Gvaramia D, Blaauboer ME, Hanemaaijer R, et al. Role of caveolin-1 in fibrotic diseases. Matrix Biol. 2013;32(6):307–15. https://doi.org/10.1016/j.matbio.2013.03.005.

    Article  CAS  PubMed  Google Scholar 

  76. Razani B, Zhang XL, Bitzer M, et al. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem. 2001;276(9):6727–38. https://doi.org/10.1074/jbc.M008340200.

    Article  CAS  PubMed  Google Scholar 

  77. Li Z, Wermuth PJ, Benn BS, et al. Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. Am J Pathol. 2013;182(2):325–31. https://doi.org/10.1016/j.ajpath.2012.10.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang X, Pan L, Pu H, et al. Loss of caveolin-1 promotes endothelial–mesenchymal transition during sepsis: a membrane proteomic study. Int J Mol Med. 2013;32(3):585–92. https://doi.org/10.3892/ijmm.2013.1432.

    Article  CAS  PubMed  Google Scholar 

  79. Widyantoro B, Emoto N, Nakayama K, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121(22):2407–18. https://doi.org/10.1161/CIRCULATIONAHA.110.938217.

    Article  CAS  PubMed  Google Scholar 

  80. Soldano S, Paolino S, Pizzorni C, et al. Dual endothelin receptor antagonists contrast the effects induced by endothelin-1 on cultured human microvascular endothelial cells. Clin Exp Rheumatol. 2017;35(3):484–93.

    PubMed  Google Scholar 

  81. Cipriani P, Di Benedetto P, Ruscitti P, et al. The endothelial–mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-beta and may be blocked by macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol. 2015;42(10):1808–16. https://doi.org/10.3899/jrheum.150088.

    Article  CAS  PubMed  Google Scholar 

  82. Piera-Velazquez S, Jimenez SA. Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S7. https://doi.org/10.1186/1755-1536-5-S1-S7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gasperini P, Espigol-Frigole G, McCormick PJ, et al. Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through Notch-dependent signaling. Cancer Res. 2012;72(5):1157–69. https://doi.org/10.1158/0008-5472.CAN-11-3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goumans MJ, van Zonneveld AJ, ten Dijke P. Transforming growth factor beta-induced endothelial-to-mesenchymal transition: a switch to cardiac fibrosis? Trends Cardiovasc Med. 2008;18(8):293–8. https://doi.org/10.1016/j.tcm.2009.01.001.

    Article  CAS  PubMed  Google Scholar 

  85. Arciniegas E, Neves CY, Carrillo LM, et al. Endothelial–mesenchymal transition occurs during embryonic pulmonary artery development. Endothelium. 2005;12(4):193–200. https://doi.org/10.1080/10623320500227283.

    Article  CAS  PubMed  Google Scholar 

  86. Lovisa S, Fletcher-Sananikone E, Sugimoto H, et al. Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis. Sci Signal. 2020. https://doi.org/10.1126/scisignal.aaz2597.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952–61. https://doi.org/10.1038/nm1613.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Wu X, Li Y, et al. Endothelial to mesenchymal transition contributes to arsenic-trioxide-induced cardiac fibrosis. Sci Rep. 2016;6:33787. https://doi.org/10.1038/srep33787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Glover EK, Jordan N, Sheerin NS, et al. Regulation of endothelial-to-mesenchymal transition by microRNAs in chronic allograft dysfunction. Transplantation. 2019;103(4):e64–73. https://doi.org/10.1097/tp.0000000000002589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen XY, Lv RJ, Zhang W, et al. Inhibition of myocyte-specific enhancer factor 2A improved diabetic cardiac fibrosis partially by regulating endothelial-to-mesenchymal transition. Oncotarget. 2016;7(21):31053–66. https://doi.org/10.18632/oncotarget.8842.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Qin W, Zhang L, Li Z, et al. Endothelial to mesenchymal transition contributes to nicotine-induced atherosclerosis. Theranostics. 2020;10(12):5276–89. https://doi.org/10.7150/thno.42470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang S, Li Y, Huang X, et al. Seamless genetic recording of transiently activated mesenchymal gene expression in endothelial cells during cardiac fibrosis. Circulation. 2021;144(25):2004–20. https://doi.org/10.1161/circulationaha.121.055417.

    Article  CAS  PubMed  Google Scholar 

  93. Qiao X, van der Zanden SY, Wander DPA, et al. Uncoupling DNA damage from chromatin damage to detoxify doxorubicin. Proc Natl Acad Sci USA. 2020;117(26):15182–92. https://doi.org/10.1073/pnas.1922072117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun Z, Schriewer J, Tang M, et al. The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells. J Mol Cell Cardiol. 2016;90:129–38. https://doi.org/10.1016/j.yjmcc.2015.12.010.

    Article  CAS  PubMed  Google Scholar 

  95. Wilkinson EL, Sidaway JE, Cross MJ. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability. Biol Open. 2016;5(10):1362–70. https://doi.org/10.1242/bio.020362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sawicki KT, Sala V, Prever L, et al. Preventing and treating anthracycline cardiotoxicity: new insights. Annu Rev Pharmacol Toxicol. 2021;61:309–32. https://doi.org/10.1146/annurev-pharmtox-030620-104842.

    Article  CAS  PubMed  Google Scholar 

  97. Gaudin PB, Hruban RH, Beschorner WE, et al. Myocarditis associated with doxorubicin cardiotoxicity. Am J Clin Pathol. 1993;100(2):158–63. https://doi.org/10.1093/ajcp/100.2.158.

    Article  CAS  PubMed  Google Scholar 

  98. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. 2007;49(5):330–52. https://doi.org/10.1016/j.pcad.2006.10.002.

    Article  CAS  PubMed  Google Scholar 

  99. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7. https://doi.org/10.7326/0003-4819-91-5-710.

    Article  Google Scholar 

  100. Chatterjee K, Zhang J, Honbo N, et al. Doxorubicin cardiomyopathy. Cardiology. 2010;115(2):155–62. https://doi.org/10.1159/000265166.

    Article  CAS  PubMed  Google Scholar 

  101. Appel JM, Nielsen D, Zerahn B, et al. Anthracycline-induced chronic cardiotoxicity and heart failure. Acta Oncol. 2007;46(5):576–80. https://doi.org/10.1080/02841860601156165.

    Article  CAS  PubMed  Google Scholar 

  102. Tian W, Yang L, Liu, et al. Resveratrol attenuates doxorubicin-induced cardiotoxicity in rats by up-regulation of vascular endothelial growth factor B. J Nutr Biochem. 2020;79: 108132. https://doi.org/10.1016/j.jnutbio.2019.01.018.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42. https://doi.org/10.1038/nm.2919.

    Article  CAS  PubMed  Google Scholar 

  104. Shi Y, Moon M, Dawood S, et al. Mechanisms and management of doxorubicin cardiotoxicity. Herz. 2011;36(4):296–305. https://doi.org/10.1007/s00059-011-3470-3.

    Article  CAS  PubMed  Google Scholar 

  105. Khouri MG, Douglas PS, Mackey JR, et al. Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation. 2012;126(23):2749–63. https://doi.org/10.1161/CIRCULATIONAHA.112.100560.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res. 2015;116(7):1269–76. https://doi.org/10.1161/CIRCRESAHA.116.305381.

    Article  CAS  PubMed  Google Scholar 

  107. Oliveira MS, Melo MB, Carvalho JL, et al. Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J Cancer Sci Ther. 2013;5(2):52–7. https://doi.org/10.4172/1948-5956.1000184.

    Article  CAS  PubMed  Google Scholar 

  108. Cui N, Wu F, Lu WJ, et al. Doxorubicin-induced cardiotoxicity is maturation dependent due to the shift from topoisomerase IIα to IIβ in human stem cell derived cardiomyocytes. J Cell Mol Med. 2019;23(7):4627–39. https://doi.org/10.1111/jcmm.14346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Choi ME, Price DR, Ryter SW, et al. Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. 2019;4(15): e128834. https://doi.org/10.1172/jci.insight.128834.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wenningmann N, Knapp M, Ande A, et al. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96(2):219–32. https://doi.org/10.1124/mol.119.115725.

    Article  CAS  PubMed  Google Scholar 

  111. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Meng L, Lin H, Zhang J, et al. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. J Mol Cell Cardiol. 2019;136:15–26. https://doi.org/10.1016/j.yjmcc.2019.08.009.

    Article  CAS  PubMed  Google Scholar 

  113. Ichikawa Y, Ghanefar M, Bayeva M, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014;124(2):617–30. https://doi.org/10.1172/JCI72931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jahn SK, Hennicke T, Kassack MU, et al. Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. Biochim Biophys Acta Mol Cell Res. 2020;1867(7): 118711. https://doi.org/10.1016/j.bbamcr.2020.118711.

    Article  CAS  PubMed  Google Scholar 

  115. Arta A, Larsen JB, Eriksen AZ, et al. Cell targeting strategy affects the intracellular trafficking of liposomes altering loaded doxorubicin release kinetics and efficacy in endothelial cells. Int J Pharm. 2020;588: 119715. https://doi.org/10.1016/j.ijpharm.2020.119715.

    Article  CAS  PubMed  Google Scholar 

  116. Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100(2):174–90. https://doi.org/10.1161/01.RES.0000255690.03436.ae.

    Article  CAS  PubMed  Google Scholar 

  117. Räsänen M, Degerman J, Nissinen TA, et al. VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proc Natl Acad Sci USA. 2016;113(46):13144–9. https://doi.org/10.1073/pnas.1616168113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Park M, Kim J, Kim T, et al. REDD1 is a determinant of low-dose metronomic doxorubicin-elicited endothelial cell dysfunction through downregulation of VEGFR-2/3 expression. Exp Mol Med. 2021;53(10):1612–22. https://doi.org/10.1038/s12276-021-00690-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shamoon L, Espitia-Corredor JA, Dongil P, et al. Resolvin E1 attenuates doxorubicin-induced endothelial senescence by modulating NLRP3 inflammasome activation. Biochem Pharmacol. 2022;201: 115078. https://doi.org/10.1016/j.bcp.2022.115078.

    Article  CAS  PubMed  Google Scholar 

  120. Pan JA, Zhang H, Lin H, et al. Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol. 2021;46: 102120. https://doi.org/10.1016/j.redox.2021.102120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Grakova EV, Shilov SN, Kopeva KV, et al. Anthracycline-induced cardiotoxicity: the role of endothelial dysfunction. Cardiology. 2021;146(3):315–23. https://doi.org/10.1159/000512771.

    Article  CAS  PubMed  Google Scholar 

  122. Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8:14361. https://doi.org/10.1038/ncomms14361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cho JG, Lee A, Chang W, et al. Endothelial to mesenchymal transition represents a key link in the interaction between inflammation and endothelial dysfunction. Front Immunol. 2018;9:294. https://doi.org/10.3389/fimmu.2018.00294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang Z, He LJ, Sun SR. Role of endothelial cells in renal fibrosis. Adv Exp Med Biol. 2019;1165:145–63. https://doi.org/10.1007/978-981-13-8871-2_8.

    Article  CAS  PubMed  Google Scholar 

  125. Chude CI, Amaravadi RK. Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci. 2017;18(6):1279. https://doi.org/10.3390/ijms18061279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–619. https://doi.org/10.1111/bph.13517.

    Article  CAS  PubMed  Google Scholar 

  127. Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial–mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–80. https://doi.org/10.1016/j.ajpath.2011.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shu DY, Wojciechowski M, Lovicu FJ. ERK1/2-mediated EGFR-signaling is required for TGFbeta-induced lens epithelial-mesenchymal transition. Exp Eye Res. 2019;178:108–21. https://doi.org/10.1016/j.exer.2018.09.021.

    Article  CAS  PubMed  Google Scholar 

  129. Perez L, Munoz-Durango N, Riedel CA, et al. Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev. 2017;33:41–54. https://doi.org/10.1016/j.cytogfr.2016.09.002.

    Article  CAS  PubMed  Google Scholar 

  130. Zhu N, Zhang GX, Yi B, et al. Nur77 limits endothelial barrier disruption to LPS in the mouse lung. Am J Physiol Lung Cell Mol Physiol. 2019;317(5):L615–24. https://doi.org/10.1152/ajplung.00425.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rudd MA, Johnstone MT, Rabbani LE, et al. Thrombolytic therapy causes an increase in vascular permeability that is reversed by 1-deamino-8-d-vasopressin. Circulation. 1991;84(6):2568–73. https://doi.org/10.1161/01.cir.84.6.2568.

    Article  CAS  PubMed  Google Scholar 

  132. Li Z, Li X, Zhu Y, et al. Protective effects of acetylcholine on hypoxia-induced endothelial-to-mesenchymal transition in human cardiac microvascular endothelial cells. Mol Cell Biochem. 2020;473(1–2):101–10. https://doi.org/10.1007/s11010-020-03811-w.

    Article  CAS  PubMed  Google Scholar 

  133. Zhou K, Tian KJ, Yan BJ, et al. A promising field: regulating imbalance of EndMT in cardiovascular diseases. Cell Cycle. 2021;20(15):1477–86. https://doi.org/10.1080/15384101.2021.1951939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee SW, Won JY, Kim WJ, et al. Snail as a potential target molecule in cardiac fibrosis: paracrine action of endothelial cells on fibroblasts through snail and CTGF axis. Mol Ther. 2013;21(9):1767–77. https://doi.org/10.1038/mt.2013.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kuo HF, Liu IF, Li CY, et al. Endocardial endothelial dysfunction and unknown polymorphic composite accumulation in heart failure. Biomedicines. 2021;9(10):1465. https://doi.org/10.3390/biomedicines9101465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhu K, Pan Q, Jia LQ, et al. MiR-302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelial–mesenchymal transition of endothelial cells. Sci Rep. 2014;4:5524. https://doi.org/10.1038/srep05524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Haynes BA, Yang LF, Huyck RW, et al. Endothelial-to-mesenchymal transition in human adipose tissue vasculature alters the particulate secretome and induces endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2019;39(10):2168–91. https://doi.org/10.1161/atvbaha.119.312826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xie Y, Liao J, Yu Y, et al. Endothelial-to-mesenchymal transition in human idiopathic dilated cardiomyopathy. Mol Med Rep. 2018;17(1):961–9. https://doi.org/10.3892/mmr.2017.8013.

    Article  CAS  PubMed  Google Scholar 

  139. Carlson BW, Craft MA, Carlson JR, et al. Accelerated vascular aging and persistent cognitive impairment in older female breast cancer survivors. Geroscience. 2018;40(3):325–36. https://doi.org/10.1007/s11357-018-0025-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Clayton ZS, Hutton DA, Mahoney SA, et al. Anthracycline chemotherapy-mediated vascular dysfunction as a model of accelerated vascular aging. Aging Cancer. 2021;2(1–2):45–69. https://doi.org/10.1002/aac2.12033.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  142. Sun X, Nkennor B, Mastikhina O, et al. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol. 2020;101:78–86. https://doi.org/10.1016/j.semcdb.2019.10.015.

    Article  CAS  PubMed  Google Scholar 

  143. Choi SH, Kim AR, Nam JK, et al. Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6(+) cancer cell and macrophage polarization. Nat Commun. 2018;9(1):5108. https://doi.org/10.1038/s41467-018-07470-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim SH, Song Y, Seo HR. GSK-3β regulates the endothelial-to-mesenchymal transition via reciprocal crosstalk between NSCLC cells and HUVECs in multicellular tumor spheroid models. J Exp Clin Cancer Res. 2019;38(1):46. https://doi.org/10.1186/s13046-019-1050-1.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yu J, Wang C, Kong Q, et al. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. Phytomedicine. 2018;40:125–39. https://doi.org/10.1016/j.phymed.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  146. Wang AJ, Zhang J, Xiao M, et al. Molecular mechanisms of doxorubicin-induced cardiotoxicity: novel roles of sirtuin 1-mediated signaling pathways. Cell Mol Life Sci. 2021;78(7):3105–25. https://doi.org/10.1007/s00018-020-03729-y.

    Article  CAS  PubMed  Google Scholar 

  147. Li J, Chang HM, Banchs J, et al. Detection of subclinical cardiotoxicity in sarcoma patients receiving continuous doxorubicin infusion or pre-treatment with dexrazoxane before bolus doxorubicin. Cardiooncology. 2020;6:1. https://doi.org/10.1186/s40959-019-0056-3.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64(9):938–45. https://doi.org/10.1016/j.jacc.2014.06.1167.

    Article  CAS  PubMed  Google Scholar 

  149. Asselin BL, Devidas M, Chen L, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-hodgkin lymphoma: a report of the Children’s Oncology Group randomized trial Pediatric Oncology Group 9404. J Clin Oncol. 2016;34(8):854–62. https://doi.org/10.1200/JCO.2015.60.8851.

    Article  CAS  PubMed  Google Scholar 

  150. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–53. https://doi.org/10.1056/NEJMoa035153.

    Article  CAS  PubMed  Google Scholar 

  151. Leger K, Slone T, Lemler M, et al. Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr Blood Cancer. 2015;62(1):123–7. https://doi.org/10.1002/pbc.25206.

    Article  CAS  PubMed  Google Scholar 

  152. Monahan DS, Flaherty E, Hameed A, et al. Resveratrol significantly improves cell survival in comparison to dexrazoxane and carvedilol in a h9c2 model of doxorubicin induced cardiotoxicity. Biomed Pharmacother. 2021;140: 111702. https://doi.org/10.1016/j.biopha.2021.111702.

    Article  CAS  PubMed  Google Scholar 

  153. Kopp LM, Womer RB, Schwartz CL, et al. Effects of dexrazoxane on doxorubicin-related cardiotoxicity and second malignant neoplasms in children with osteosarcoma: a report from the Children’s Oncology Group. Cardiooncology. 2019;5:15. https://doi.org/10.1186/s40959-019-0050-9.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Bosch X, Rovira M, Sitges M, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61(23):2355–62. https://doi.org/10.1016/j.jacc.2013.02.072.

    Article  CAS  PubMed  Google Scholar 

  155. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62. https://doi.org/10.1016/j.jacc.2006.07.052.

    Article  CAS  PubMed  Google Scholar 

  156. Kaya MG, Ozkan M, Gunebakmaz O, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167(5):2306–10. https://doi.org/10.1016/j.ijcard.2012.06.023.

    Article  PubMed  Google Scholar 

  157. Gulati G, Heck SL, Rosjo H, et al. Neurohormonal blockade and circulating cardiovascular biomarkers during anthracycline therapy in breast cancer patients: results from the PRADA (Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy) study. J Am Heart Assoc. 2017;6(11): e006513. https://doi.org/10.1161/JAHA.117.006513.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chandran K, Aggarwal D, Migrino RQ, et al. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J. 2009;96(4):1388–98. https://doi.org/10.1016/j.bpj.2008.10.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McGowan JV, Chung R, Maulik A, et al. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75. https://doi.org/10.1007/s10557-016-6711-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Armstrong GT, Joshi VM, Ness KK, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol. 2015;65(23):2511–22. https://doi.org/10.1016/j.jacc.2015.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bischoff J. Endothelial-to-mesenchymal transition. Circ Res. 2019;124(8):1163–5. https://doi.org/10.1161/circresaha.119.314813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chevalier J, Yin H, Arpino JM, et al. Obstruction of small arterioles in patients with critical limb ischemia due to partial endothelial-to-mesenchymal transition. iScience. 2020;23(6): 101251. https://doi.org/10.1016/j.isci.2020.101251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Courchaine K, Rugonyi S. Optical coherence tomography for in vivo imaging of endocardial to mesenchymal transition during avian heart development. Biomed Opt Express. 2019;10(11):5989–95. https://doi.org/10.1364/boe.10.005989.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhao G, Lu H, Liu Y, et al. Single-cell transcriptomics reveals endothelial plasticity during diabetic atherogenesis. Front Cell Dev Biol. 2021;9: 689469. https://doi.org/10.3389/fcell.2021.689469.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lefrancais E, Ortiz-Munoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9. https://doi.org/10.1038/nature21706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kwok JC, Richardson DR. The cardioprotective effect of the iron chelator dexrazoxane (ICRF-187) on anthracycline-mediated cardiotoxicity. Redox Rep. 2000;5(6):317–24. https://doi.org/10.1179/135100000101535898.

    Article  CAS  PubMed  Google Scholar 

  167. Hasinoff BB, Patel D, Wu X. The role of topoisomerase IIbeta in the mechanisms of action of the doxorubicin cardioprotective agent dexrazoxane. Cardiovasc Toxicol. 2020;20(3):312–20. https://doi.org/10.1007/s12012-019-09554-5.

    Article  CAS  PubMed  Google Scholar 

  168. Swain SM, Whaley FS, Gerber MC, et al. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol. 1997;15(4):1333–40. https://doi.org/10.1200/JCO.1997.15.4.1333.

    Article  CAS  PubMed  Google Scholar 

  169. McCormack K. The cardioprotective effect of dexrazoxane (Cardioxane) is consistent with sequestration of poly(ADP-ribose) by self-assembly and not depletion of topoisomerase 2B. Ecancermedicalscience. 2018;12:889. https://doi.org/10.3332/ecancer.2018.889.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Sishi BJ, Loos B, van Rooyen J, et al. Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochem Pharmacol. 2013;85(1):124–34. https://doi.org/10.1016/j.bcp.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  171. Li M, Sala V, De Santis MC, et al. Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth. Circulation. 2018;138(7):696–711. https://doi.org/10.1161/circulationaha.117.030352.

    Article  CAS  PubMed  Google Scholar 

  172. Ding Y, Sun X, Huang W, et al. Haploinsufficiency of target of rapamycin attenuates cardiomyopathies in adult zebrafish. Circ Res. 2011;109(6):658–69. https://doi.org/10.1161/circresaha.111.248260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.132747.

    Article  PubMed  PubMed Central  Google Scholar 

  174. He H, Wang L, Qiao Y, et al. Epigallocatechin-3-gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKalpha2 and activating adaptive autophagy. Redox Biol. 2021;48: 102185. https://doi.org/10.1016/j.redox.2021.102185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 2019;116(7):2672–80. https://doi.org/10.1073/pnas.1821022116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mukhopadhyay P, Rajesh M, Batkai S, et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296(5):H1466–83. https://doi.org/10.1152/ajpheart.00795.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cabral REL, Mendes TB, Vendramini V, et al. Carnitine partially improves oxidative stress, acrosome integrity, and reproductive competence in doxorubicin-treated rats. Andrology. 2018;6(1):236–46. https://doi.org/10.1111/andr.12426.

    Article  CAS  PubMed  Google Scholar 

  178. Rocha VC, Franca LS, de Araujo CF, et al. Protective effects of mito-TEMPO against doxorubicin cardiotoxicity in mice. Cancer Chemother Pharmacol. 2016;77(3):659–62. https://doi.org/10.1007/s00280-015-2949-7.

    Article  CAS  PubMed  Google Scholar 

  179. Clayton ZS, Brunt VE, Hutton DA, et al. Doxorubicin-induced oxidative stress and endothelial dysfunction in conduit arteries is prevented by mitochondrial-specific antioxidant treatment. JACC CardioOncol. 2020;2(3):475–88. https://doi.org/10.1016/j.jaccao.2020.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zilinyi R, Czompa A, Czegledi A, et al. The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: the role of autophagy. Molecules. 2018. https://doi.org/10.3390/molecules23051184.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Liu D, Ma Z, Di S, et al. AMPK/PGC1alpha activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med. 2018;129:59–72. https://doi.org/10.1016/j.freeradbiomed.2018.08.032.

    Article  CAS  PubMed  Google Scholar 

  182. Li HR, Wang C, Sun P, et al. Melatonin attenuates doxorubicin-induced cardiotoxicity through preservation of YAP expression. J Cell Mol Med. 2020;24(6):3634–46. https://doi.org/10.1111/jcmm.15057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kobashigawa LC, Xu YC, Padbury JF, et al. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS ONE. 2014;9(8): e104888. https://doi.org/10.1371/journal.pone.0104888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Asensio-Lopez MC, Lax A, Pascual-Figal DA, et al. Metformin protects against doxorubicin-induced cardiotoxicity: involvement of the adiponectin cardiac system. Free Radic Biol Med. 2011;51(10):1861–71. https://doi.org/10.1016/j.freeradbiomed.2011.08.015.

    Article  CAS  PubMed  Google Scholar 

  185. Arinno A, Maneechote C, Khuanjing T, et al. Cardioprotective effects of melatonin and metformin against doxorubicin-induced cardiotoxicity in rats are through preserving mitochondrial function and dynamics. Biochem Pharmacol. 2021;192: 114743. https://doi.org/10.1016/j.bcp.2021.114743.

    Article  CAS  PubMed  Google Scholar 

  186. Xue H, Ren W, Denkinger M, et al. Nutrition modulation of cardiotoxicity and anticancer efficacy related to doxorubicin chemotherapy by glutamine and omega-3 polyunsaturated fatty acids. JPEN J Parenter Enteral Nutr. 2016;40(1):52–66. https://doi.org/10.1177/0148607115581838.

    Article  CAS  PubMed  Google Scholar 

  187. Todorova VK, Kaufmann Y, Hennings L, et al. Oral glutamine protects against acute doxorubicin-induced cardiotoxicity of tumor-bearing rats. J Nutr. 2010;140(1):44–8. https://doi.org/10.3945/jn.109.113415.

    Article  CAS  PubMed  Google Scholar 

  188. Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37(4):837–46. https://doi.org/10.1016/j.yjmcc.2004.05.024.

    Article  CAS  PubMed  Google Scholar 

  189. Oliveira PJ, Bjork JA, Santos MS, et al. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol. 2004;200(2):159–68. https://doi.org/10.1016/j.taap.2004.04.005.

    Article  CAS  PubMed  Google Scholar 

  190. Georgakopoulos P, Roussou P, Matsakas E, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. 2010;85(11):894–6. https://doi.org/10.1002/ajh.21840.

    Article  CAS  PubMed  Google Scholar 

  191. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8. https://doi.org/10.1161/CIRCULATIONAHA.114.013777.

    Article  CAS  PubMed  Google Scholar 

  192. Huelsenbeck J, Henninger C, Schad A, et al. Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis. 2011;2: e190. https://doi.org/10.1038/cddis.2011.65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Huang WP, Yin WH, Chen JS, et al. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway. Sci Rep. 2021;11(1):1159. https://doi.org/10.1038/s41598-021-80984-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Shoukry HS, Ammar HI, Rashed LA, et al. Prophylactic supplementation of resveratrol is more effective than its therapeutic use against doxorubicin induced cardiotoxicity. PLoS ONE. 2017;12(7): e0181535. https://doi.org/10.1371/journal.pone.0181535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zordoky BNM, Robertson IM, Dyck JRB. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochem Biophys Acta. 2015;1852(6):1155–77. https://doi.org/10.1016/j.bbadis.2014.10.016.

    Article  CAS  PubMed  Google Scholar 

  196. Avila MS, Ayub-Ferreira SM, de Barros Wanderley Jr MR, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol. 2018;71(20):2281–90. https://doi.org/10.1016/j.jacc.2018.02.049.

    Article  CAS  PubMed  Google Scholar 

  197. Ekinci Akdemir FN, Yildirim S, Kandemir FM, et al. Protective effects of gallic acid on doxorubicin-induced cardiotoxicity; an experimantal study. Arch Physiol Biochem. 2021;127(3):258–65. https://doi.org/10.1080/13813455.2019.1630652.

    Article  CAS  PubMed  Google Scholar 

  198. Hou J, Yun Y, Cui C, et al. Ginsenoside Rh2 mitigates doxorubicin-induced cardiotoxicity by inhibiting apoptotic and inflammatory damage and weakening pathological remodelling in breast cancer-bearing mice. Cell Prolif. 2022;55(6):e13246. https://doi.org/10.1111/cpr.13246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wu.

Ethics declarations

Funding

This work was supported by the Beijing Health Promotion Association (20181BCB24013) and Special Funds for Guiding Local Scientific and Technological Development from the Central Government of China (S2019CXSFG0016).

Conflict of interest

Jie Feng and Yanqing Wu have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Author contributions

JF was responsible for the literature search, data compilation, and writing of the paper. YW provided guidance on the design of the article, quality control and review of the article, and was responsible for the overall responsibility, supervision and management of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Wu, Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs 23, 231–246 (2023). https://doi.org/10.1007/s40256-023-00573-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-023-00573-w

Navigation