Skip to main content
Log in

Recombinant Human Relaxin-2: (How) Can a Pregnancy Hormone Save Lives in Acute Heart Failure?

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Acute heart failure (AHF) syndrome, characterized by pulmonary and/or venous congestion owing to increased cardiac filling pressures with or without diminished cardiac output, is still associated with high post-discharge mortality and hospitalization rates. Many novel and promising therapeutic approaches, among them endothelin-1, vasopressin and adenosine antagonists, calcium sensitization, and recombinant B-type natriuretic hormone, have failed in large studies. Likewise, the classic drugs, vasodilators, diuretics, and inotropes, have never been shown to lower mortality.

The phase III trial RELAX-AHF tested recombinant human relaxin-2 (rhRlx) and found it to improve clinical symptoms moderately, to be neutral regarding the combination of death and hospitalization at day 60, to be safe, and to lower mortality at day 180.

This review focuses on basic research and pre-clinical findings that may account for the benefit of rhRlx in AHF. The drug combines short-term hemodynamic advantages, such as moderate blood pressure decline and functional endothelin-1 antagonism, with a wealth of protective effects harboring long-term benefits, such as anti-inflammatory, anti-fibrotic, and anti-oxidative actions. These pleiotropic effects are exerted through a complex and intricate signaling cascade involving the relaxin-family peptide receptor-1, the glucocorticoid receptor, nitric oxide, and a cell type-dependent variety of kinases and transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gheorghiade M, Abraham WT, Albert NM, Greenberg BH, O’Connor CM, She L, et al. Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA. 2006;296(18):2217–26.

    PubMed  CAS  Google Scholar 

  2. Heywood JT. The cardiorenal syndrome: lessons from the ADHERE database and treatment options. Heart Fail Rev. 2004;9(3):195–201.

    PubMed  Google Scholar 

  3. Gheorghiade M, Pang PS. Acute heart failure syndromes. J Am Coll Cardiol. 2009;53(7):557–73.

    PubMed  Google Scholar 

  4. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50(8):768–77.

    PubMed  Google Scholar 

  5. Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, et al. Association between performance measures and clinical outcomes for patients hospitalized with heart failure. JAMA. 2007;297(1):61–70.

    PubMed  CAS  Google Scholar 

  6. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.

    PubMed  Google Scholar 

  7. Metra M, Bettari L, Pagani F, Lazzarini V, Lombardi C, Carubelli V, et al. Troponin T levels in patients with acute heart failure: clinical and prognostic significance of their detection and release during hospitalisation. Clin Res Cardiol. 2012;101(8):663–72.

    PubMed  CAS  Google Scholar 

  8. Diez J. Serelaxin: a novel therapy for acute heart failure with a range of hemodynamic and non-hemodynamic actions. Am J Cardiovasc Drugs. 2014 Mar 4 [Epub ahead of print].

  9. Milo O, Cotter G, Kaluski E, Brill A, Blatt A, Krakover R, et al. Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus nonischemic causes. Am J Cardiol. 2003;92(2):222–6.

    PubMed  CAS  Google Scholar 

  10. Bott-Flugel L, Weig HJ, Uhlein H, Nabauer M, Laugwitz KL, Seyfarth M. Quantitative analysis of apoptotic markers in human end-stage heart failure. Eur J Heart Fail. 2008;10(2):129–32.

    PubMed  Google Scholar 

  11. Biolo A, Fisch M, Balog J, Chao T, Schulze PC, Ooi H, et al. Episodes of acute heart failure syndrome are associated with increased levels of troponin and extracellular matrix markers. Circ Heart Fail. 2010;3(1):44–50.

    PubMed  CAS  Google Scholar 

  12. Cleland JG, Coletta AP, Buga L, Antony R, Pellicori P, Freemantle N, et al. Clinical trials update from the American Heart Association meeting 2010: EMPHASIS-HF, RAFT, TIM-HF, Tele-HF, ASCEND-HF, ROCKET-AF, and PROTECT. Eur J Heart Fail. 2011;13(4):460–5.

    PubMed  Google Scholar 

  13. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.

    PubMed  CAS  Google Scholar 

  14. Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ, et al. Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE Randomized Trial. JAMA. 2007;297(17):1883–91.

    PubMed  CAS  Google Scholar 

  15. Metra M, Cleland JG, Weatherley BD, Dittrich HC, Givertz MM, Massie BM, et al. Dyspnoea in patients with acute heart failure: an analysis of its clinical course, determinants, and relationship to 60-day outcomes in the PROTECT pilot study. Eur J Heart Fail. 2010;12(5):499–507.

    PubMed  Google Scholar 

  16. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381(9860):29–39.

    PubMed  CAS  Google Scholar 

  17. Konstam MA. RELAX-AHF: rising from the doldrums in acute heart failure. Lancet. 2013;381(9860):5–6.

    PubMed  Google Scholar 

  18. Hisaw FL. Experimental relaxation of the pubic ligament of guinea pig. Proc Soc Exp Biol Med. 1926;23:661–3.

    Google Scholar 

  19. Fevold HL, Hisaw FL, Meyer RK. The relaxative hormone of the corpus luteum. Its purification and concentration. J Am Chem Soc. 1930;52:3340–8.

    CAS  Google Scholar 

  20. Hudson P, Haley J, John M, Cronk M, Crawford R, Haralambidis J, et al. Structure of a genomic clone encoding biologically active human relaxin. Nature. 1983;301(5901):628–31.

    PubMed  CAS  Google Scholar 

  21. Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev. 2013;93(1):405–80.

    PubMed  CAS  Google Scholar 

  22. Dschietzig T, Bartsch C, Baumann G, Stangl K. Relaxin-a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol Ther. 2006;112(1):38–56.

    PubMed  CAS  Google Scholar 

  23. Dschietzig T, Richter C, Bartsch C, Laule M, Armbruster FP, Baumann G, et al. The pregnancy hormone relaxin is a player in human heart failure. FASEB J. 2001;15(12):2187–95.

    PubMed  CAS  Google Scholar 

  24. Stewart DR, Celniker AC, Taylor CA Jr, Cragun JR, Overstreet JW, Lasley BL. Relaxin in the peri-implantation period. J Clin Endocrinol Metab. 1990;70(6):1771–3.

    PubMed  CAS  Google Scholar 

  25. Khan-Dawood FS, Goldsmith LT, Weiss G, Dawood MY. Human corpus luteum secretion of relaxin, oxytocin, and progesterone. J Clin Endocrinol Metab. 1989;68(3):627–31.

    PubMed  CAS  Google Scholar 

  26. Dschietzig T, Teichman S, Unemori E, Wood S, Boehmer J, Richter C, et al. Intravenous recombinant human relaxin in compensated heart failure: a safety, tolerability, and pharmacodynamic trial. J Card Fail. 2009;15(3):182–90.

    PubMed  CAS  Google Scholar 

  27. Metra M, Ponikowski P, Cotter G, Davison BA, Felker GM, Filippatos G, et al. Effects of serelaxin in subgroups of patients with acute heart failure: results from RELAX-AHF. Eur Heart J. 2013;34(40):3128–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Metra M, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol. 2013;61(2):196–206.

    PubMed  CAS  Google Scholar 

  29. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, et al. Activation of orphan receptors by the hormone relaxin. Science. 2002;295(5555):671–4.

    PubMed  CAS  Google Scholar 

  30. Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 2006;58(1):7–31.

    PubMed  CAS  Google Scholar 

  31. Kamat AA, Feng S, Bogatcheva NV, Truong A, Bishop CE, Agoulnik AI. Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology. 2004;145(10):4712–20.

    PubMed  CAS  Google Scholar 

  32. Krajnc-Franken MA, van Disseldorp AJ, Koenders JE, Mosselman S, van Duin DM, Gossen JA. Impaired nipple development and parturition in LGR7 knockout mice. Mol Cell Biol. 2004;24(2):687–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277(35):31283–6.

    PubMed  CAS  Google Scholar 

  34. Liu C, Eriste E, Sutton S, Chen J, Roland B, Kuei C, et al. Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem. 2003;278(50):50754–64.

    PubMed  CAS  Google Scholar 

  35. Nef S, Parada LF. Cryptorchidism in mice mutant for Insl3. Nat Genet. 1999;22(3):295–9.

    PubMed  CAS  Google Scholar 

  36. Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RA, et al. Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol. 2010;518(19):4016–45.

    PubMed  CAS  Google Scholar 

  37. Zhao L, Roche PJ, Gunnersen JM, Hammond VE, Tregear GW, Wintour EM, et al. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology. 1999;140(1):445–53.

    PubMed  CAS  Google Scholar 

  38. Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol. 1999;13(5):681–91.

    PubMed  CAS  Google Scholar 

  39. van der Westhuizen ET, Christopoulos A, Sexton PM, Wade JD, Summers RJ. H2 relaxin is a biased ligand relative to H3 relaxin at the relaxin family peptide receptor 3 (RXFP3). Mol Pharmacol. 2010;77(5):759–72.

    PubMed  Google Scholar 

  40. Hossain MA, Wade JD. The roles of the A- and B-chains of human relaxin-2 and -3 on their biological activity. Curr Protein Pept Sci. 2010;11(8):719–24.

    PubMed  CAS  Google Scholar 

  41. Pini A, Shemesh R, Samuel CS, Bathgate RA, Zauberman A, Hermesh C, et al. Prevention of bleomycin-induced pulmonary fibrosis by a novel antifibrotic peptide with relaxin-like activity. J Pharmacol Exp Ther. 2010;335(3):589–99.

    PubMed  CAS  Google Scholar 

  42. Shemesh R, Hermesh C, Toporik A, Levine Z, Novik A, Wool A, et al. Activation of relaxin-related receptors by short, linear peptides derived from a collagen-containing precursor. Ann N Y Acad Sci. 2009;1160:78–86.

    PubMed  CAS  Google Scholar 

  43. Xiao J, Huang Z, Chen CZ, Agoulnik IU, Southall N, Hu X, et al. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1. Nat Commun. 2013;4:1953.

    PubMed  Google Scholar 

  44. Halls ML, Bond CP, Sudo S, Kumagai J, Ferraro T, Layfield S, et al. Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther. 2005;313(2):677–87.

    PubMed  CAS  Google Scholar 

  45. Hopkins EJ, Layfield S, Ferraro T, Bathgate RA, Gooley PR. The NMR solution structure of the relaxin (RXFP1) receptor lipoprotein receptor class A module and identification of key residues in the N-terminal region of the module that mediate receptor activation. J Biol Chem. 2007;282(6):4172–84.

    PubMed  CAS  Google Scholar 

  46. Kern A, Agoulnik AI, Bryant-Greenwood GD. The low-density lipoprotein class A module of the relaxin receptor (leucine-rich repeat containing G-protein coupled receptor 7): its role in signaling and trafficking to the cell membrane. Endocrinology. 2007;148(3):1181–94.

    PubMed  CAS  Google Scholar 

  47. Dessauer CW, Nguyen BT. Relaxin stimulates multiple signaling pathways: activation of cAMP, PI3K, and PKCzeta in THP-1 cells. Ann N Y Acad Sci. 2005;1041:272–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Halls ML, Bathgate RA, Summers RJ. Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms. Mol Pharmacol. 2006;70(1):214–26.

    PubMed  CAS  Google Scholar 

  49. Halls ML, Hewitson TD, Moore XL, Du XJ, Bathgate RA, Summers RJ. Relaxin activates multiple cAMP signaling pathway profiles in different target cells. Ann N Y Acad Sci. 2009;1160:108–11.

    PubMed  CAS  Google Scholar 

  50. Halls ML, Cooper DM. Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, beta-arrestin 2, PDE4D3 complex. EMBO J. 2010;29(16):2772–87.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Kern A, Hubbard D, Amano A, Bryant-Greenwood GD. Cloning, expression, and functional characterization of relaxin receptor (leucine-rich repeat-containing g protein-coupled receptor 7) splice variants from human fetal membranes. Endocrinology. 2008;149(3):1277–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Svendsen AM, Zalesko A, Konig J, Vrecl M, Heding A, Kristensen JB, et al. Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1. Mol Cell Endocrinol. 2008;296(1–2):10–7.

    PubMed  CAS  Google Scholar 

  53. Chow BS, Kocan M, Bosnyak S, Sarwar M, Wigg B, Jones ES et al. Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int. 2014 Jan 15 [Epub ahead of print].

  54. Baccari MC, Nistri S, Vannucchi MG, Calamai F, Bani D. Reversal by relaxin of altered ileal spontaneous contractions in dystrophic (mdx) mice through a nitric oxide-mediated mechanism. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R662–8.

    PubMed  CAS  Google Scholar 

  55. Dschietzig T, Brecht A, Bartsch C, Baumann G, Stangl K, Alexiou K. Relaxin improves TNF-alpha-induced endothelial dysfunction: the role of glucocorticoid receptor and phosphatidylinositol 3-kinase signalling. Cardiovasc Res. 2012;95(1):97–107.

    PubMed  CAS  Google Scholar 

  56. Baccari MC, Bani D, Bigazzi M, Calamai F. Influence of relaxin on the neurally induced relaxant responses of the mouse gastric fundus. Biol Reprod. 2004;71(4):1325–9.

    PubMed  CAS  Google Scholar 

  57. Mookerjee I, Hewitson TD, Halls ML, Summers RJ, Mathai ML, Bathgate RA, et al. Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway, and Smad2. FASEB J. 2009;23(4):1219–29.

    PubMed  CAS  Google Scholar 

  58. Alexiou K, Wilbring M, Matschke K, Dschietzig T. Relaxin protects rat lungs from ischemia–reperfusion injury via inducible NO synthase: role of ERK-1/2, PI3K, and forkhead transcription factor FKHRL1. PLoS One. 2013;8(9):e75592.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Bani D, Failli P, Bello MG, Thiemermann C, Bani ST, Bigazzi M, et al. Relaxin activates the l-arginine-nitric oxide pathway in vascular smooth muscle cells in culture. Hypertension. 1998;31(6):1240–7.

    PubMed  CAS  Google Scholar 

  60. Dschietzig T, Bartsch C, Richter C, Laule M, Baumann G, Stangl K. Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB. Circ Res. 2003;92(1):32–40.

    PubMed  CAS  Google Scholar 

  61. Dschietzig T, Bartsch C, Wessler S, Baumann G, Stangl K. Autoregulation of human relaxin-2 gene expression critically involves relaxin and glucocorticoid receptor binding to glucocorticoid response half-sites in the relaxin-2 promoter. Regul Pept. 2009;155(1–3):163–73.

    PubMed  CAS  Google Scholar 

  62. Singh S, Bennett RG. Relaxin signaling activates peroxisome proliferator-activated receptor gamma. Mol Cell Endocrinol. 2010;315(1–2):239–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, et al. Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-beta/Smad3 signaling. PLoS One. 2013;8(5):e63896.

    PubMed  PubMed Central  Google Scholar 

  64. Dschietzig T, Bartsch C, Stangl V, Baumann G, Stangl K. Identification of the pregnancy hormone relaxin as glucocorticoid receptor agonist. FASEB J. 2004;18(13):1536–8.

    PubMed  CAS  Google Scholar 

  65. Cosen-Binker LI, Binker MG, Cosen R, Negri G, Tiscornia O. Relaxin prevents the development of severe acute pancreatitis. World J Gastroenterol. 2006;12(10):1558–68.

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Halls ML, Bathgate RA, Summers RJ. Comparison of signaling pathways activated by the relaxin family peptide receptors, RXFP1 and RXFP2, using reporter genes. J Pharmacol Exp Ther. 2007;320(1):281–90.

    PubMed  CAS  Google Scholar 

  67. Horton JS, Yamamoto SY, Bryant-Greenwood GD. Relaxin modulates proinflammatory cytokine secretion from human decidual macrophages. Biol Reprod. 2011;85(4):788–97.

    PubMed  CAS  Google Scholar 

  68. Teerlink JR, Metra M, Felker GM, Ponikowski P, Voors AA, Weatherley BD, et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet. 2009;373(9673):1429–39.

    PubMed  CAS  Google Scholar 

  69. Callander GE, Thomas WG, Bathgate RA. Prolonged RXFP1 and RXFP2 signaling can be explained by poor internalization and a lack of beta-arrestin recruitment. Am J Physiol Cell Physiol. 2009;296(5):C1058–66.

    PubMed  CAS  Google Scholar 

  70. Jelinic M, Leo CH, Uiterweer ED, Sandow SL, Gooi JH, Wlodek ME, et al. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J. 2014;28(1):275–87.

    PubMed  CAS  Google Scholar 

  71. McGuane JT, Debrah JE, Sautina L, Jarajapu YP, Novak J, Rubin JP, et al. Relaxin induces rapid dilation of rodent small renal and human subcutaneous arteries via PI3 kinase and nitric oxide. Endocrinology. 2011;152(7):2786–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Jeyabalan A, Novak J, Danielson LA, Kerchner LJ, Opett SL, Conrad KP. Essential role for vascular gelatinase activity in relaxin-induced renal vasodilation, hyperfiltration, and reduced myogenic reactivity of small arteries. Circ Res. 2003;93(12):1249–57.

    PubMed  CAS  Google Scholar 

  73. Fernandez-Patron C, Radomski MW, Davidge ST. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res. 1999;85(10):906–11.

    PubMed  CAS  Google Scholar 

  74. Fernandez-Patron C, Radomski MW, Davidge ST. Role of matrix metalloproteinase-2 in thrombin-induced vasorelaxation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2000;278(5):H1473–9.

    PubMed  CAS  Google Scholar 

  75. McGuane JT, Danielson LA, Debrah JE, Rubin JP, Novak J, Conrad KP. Angiogenic growth factors are new and essential players in the sustained relaxin vasodilatory pathway in rodents and humans. Hypertension. 2011;57(6):1151–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Fisher C, MacLean M, Morecroft I, Seed A, Johnston F, Hillier C, et al. Is the pregnancy hormone relaxin also a vasodilator peptide secreted by the heart? Circulation. 2002;106(3):292–5.

    PubMed  CAS  Google Scholar 

  77. Dschietzig T, Richter C, Bartsch C, Bohme C, Heinze D, Ott F, et al. Flow-induced pressure differentially regulates endothelin-1, urotensin II, adrenomedullin, and relaxin in pulmonary vascular endothelium. Biochem Biophys Res Commun. 2001;289(1):245–51.

    PubMed  CAS  Google Scholar 

  78. Unemori EN, Erikson ME, Rocco SE, Sutherland KM, Parsell DA, Mak J, et al. Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum Reprod. 1999;14(3):800–6.

    PubMed  CAS  Google Scholar 

  79. Unemori EN, Lewis M, Constant J, Arnold G, Grove BH, Normand J. Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair Regen. 2000;8:361–70.

    PubMed  CAS  Google Scholar 

  80. Chan SL, Cipolla MJ. Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-gamma. FASEB J. 2011;25(9):3229–39.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Debrah DO, Debrah JE, Haney JL, McGuane JT, Sacks MS, Conrad KP et al. Relaxin regulates vascular wall remodeling and passive mechanical properties in mice. J Appl Physiol (1985). 2011;111(1):260–271.

  82. Xu Q, Chakravorty A, Bathgate RA, Dart AM, Du XJ. Relaxin therapy reverses large artery remodeling and improves arterial compliance in senescent spontaneously hypertensive rats. Hypertension. 2010;55(5):1260–6.

    PubMed  CAS  Google Scholar 

  83. Picchi A, Gao X, Belmadani S, Potter BJ, Focardi M, Chilian WM, et al. Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res. 2006;99(1):69–77.

    PubMed  CAS  Google Scholar 

  84. Collino M, Rogazzo M, Pini A, Benetti E, Rosa AC, Chiazza F, et al. Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury. J Cell Mol Med. 2013;17(11):1494–505.

    PubMed  CAS  Google Scholar 

  85. Bani D, Bigazzi M, Masini E, Bani G, Sacchi TB. Relaxin depresses platelet aggregation: in vitro studies on isolated human and rabbit platelets. Lab Invest. 1995;73(5):709–16.

    PubMed  CAS  Google Scholar 

  86. Bani D, Maurizi M, Bigazzi M. Relaxin reduces the number of circulating platelets and depresses platelet release from megakaryocytes: studies in rats. Platelets. 1995;6:330–5.

    PubMed  CAS  Google Scholar 

  87. Masini E, Nistri S, Vannacci A, Bani ST, Novelli A, Bani D. Relaxin inhibits the activation of human neutrophils: involvement of the nitric oxide pathway. Endocrinology. 2004;145(3):1106–12.

    PubMed  CAS  Google Scholar 

  88. Brecht A, Bartsch C, Baumann G, Stangl K, Dschietzig T. Relaxin inhibits early steps in vascular inflammation. Regul Pept. 2011;166(1–3):76–82.

    PubMed  CAS  Google Scholar 

  89. Novak J, Danielson LA, Kerchner LJ, Sherwood OD, Ramirez RJ, Moalli PA, et al. Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J Clin Invest. 2001;107(11):1469–75.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Danielson LA, Sherwood OD, Conrad KP. Relaxin is a potent renal vasodilator in conscious rats. J Clin Invest. 1999;103(4):525–33.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Danielson LA, Conrad KP. Time course and dose response of relaxin-mediated renal vasodilation, hyperfiltration, and changes in plasma osmolality in conscious rats. J Appl Physiol. 2003;95(4):1509–14.

    PubMed  CAS  Google Scholar 

  92. Bogzil AH, Eardley R, Ashton N. Relaxin-induced changes in renal sodium excretion in the anesthetized male rat. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R322–8.

    PubMed  CAS  Google Scholar 

  93. Smith MC, Murdoch AP, Danielson LA, Conrad KP, Davison JM. Relaxin has a role in establishing a renal response in pregnancy. Fertil Steril. 2006;86(1):253–5.

    PubMed  CAS  Google Scholar 

  94. Smith MC, Danielson LA, Conrad KP, Davison JM. Influence of recombinant human relaxin on renal hemodynamics in healthy volunteers. J Am Soc Nephrol. 2006;17(11):3192–7.

    PubMed  CAS  Google Scholar 

  95. Khanna D, Clements PJ, Furst DE, Korn JH, Ellman M, Rothfield N, et al. Recombinant human relaxin in the treatment of systemic sclerosis with diffuse cutaneous involvement: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2009;60(4):1102–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Seibold JR, Korn JH, Simms R, Clements PJ, Moreland LW, Mayes MD, et al. Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2000;132(11):871–9.

    PubMed  CAS  Google Scholar 

  97. Masini E, Salvemini D, Mugnai L, Bello MG, Bani D, Mannaioni PF. The effect of relaxin on myocardial ischaemia–reperfusion injury and histamine release in vitro and in vivo. Inflamm Res. 1996;45(Suppl 1):S27–8.

    PubMed  CAS  Google Scholar 

  98. Masini E, Bani D, Bello MG, Bigazzi M, Mannaioni PF, Sacchi TB. Relaxin counteracts myocardial damage induced by ischemia–reperfusion in isolated guinea pig hearts: evidence for an involvement of nitric oxide. Endocrinology. 1997;138(11):4713–20.

    PubMed  CAS  Google Scholar 

  99. Perna AM, Masini E, Nistri S, Briganti V, Chiappini L, Stefano P, et al. Novel drug development opportunity for relaxin in acute myocardial infarction: evidences from a swine model. FASEB J. 2005;19(11):1525–7.

    PubMed  CAS  Google Scholar 

  100. Boehnert MU, Hilbig H, Armbruster FP. Relaxin as an additional protective substance in preserving and reperfusion solution for liver transplantation, shown in a model of isolated perfused rat liver. Ann N Y Acad Sci. 2005;1041:434–40.

    PubMed  CAS  Google Scholar 

  101. Boehnert MU, Armbruster FP, Hilbig H. Relaxin as a protective substance in preservation solutions for organ transplantation, as shown in an isolated perfused rat liver model. Transpl Proc. 2008;40(4):978–80.

    CAS  Google Scholar 

  102. Boehnert MU, Armbruster FP, Hilbig H. Relaxin as a protective substance in the preserving solution for liver transplantation: spectrophotometric in vivo imaging of local oxygen supply in an isolated perfused rat liver model. Ann N Y Acad Sci. 2009;1160:320–1.

    PubMed  CAS  Google Scholar 

  103. Yoshida T, Kumagai H, Kohsaka T, Ikegaya N. Relaxin protects against renal ischemia–reperfusion injury. Am J Physiol Renal Physiol. 2013;305(8):F1169–76.

    PubMed  CAS  Google Scholar 

  104. Alexiou K, Matschke K, Westphal A, Stangl K, Dschietzig T. Relaxin is a candidate drug for lung preservation: relaxin-induced protection of rat lungs from ischemia–reperfusion injury. J Heart Lung Transpl. 2010;29(4):454–60.

    Google Scholar 

  105. Samuel CS, Zhao C, Bathgate RA, Bond CP, Burton MD, Parry LJ, et al. Relaxin deficiency in mice is associated with an age-related progression of pulmonary fibrosis. FASEB J. 2003;17(1):121–3.

    PubMed  CAS  Google Scholar 

  106. Samuel CS, Hewitson TD. Relaxin and the progression of kidney disease. Curr Opin Nephrol Hypertens. 2009;18(1):9–14.

    PubMed  CAS  Google Scholar 

  107. Bennett RG, Kharbanda KK, Tuma DJ. Inhibition of markers of hepatic stellate cell activation by the hormone relaxin. Biochem Pharmacol. 2003;66(5):867–74.

    PubMed  CAS  Google Scholar 

  108. Hewitson TD, Ho WY, Samuel CS. Antifibrotic properties of relaxin: in vivo mechanism of action in experimental renal tubulointerstitial fibrosis. Endocrinology. 2010;151(10):4938–48.

    PubMed  CAS  Google Scholar 

  109. Lekgabe ED, Kiriazis H, Zhao C, Xu Q, Moore XL, Su Y, et al. Relaxin reverses cardiac and renal fibrosis in spontaneously hypertensive rats. Hypertension. 2005;46(2):412–8.

    PubMed  CAS  Google Scholar 

  110. Samuel CS, Unemori EN, Mookerjee I, Bathgate RA, Layfield SL, Mak J, et al. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology. 2004;145(9):4125–33.

    PubMed  CAS  Google Scholar 

  111. Sasser JM, Molnar M, Baylis C. Relaxin ameliorates hypertension and increases nitric oxide metabolite excretion in angiotensin II but not N(omega)-nitro-l-arginine methyl ester hypertensive rats. Hypertension. 2011;58(2):197–204.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Unemori EN, Beck LS, Lee WP, Xu Y, Siegel M, Keller G, et al. Human relaxin decreases collagen accumulation in vivo in two rodent models of fibrosis. J Invest Dermatol. 1993;101(3):280–5.

    PubMed  CAS  Google Scholar 

  113. Unemori EN, Pickford LB, Salles AL, Piercy CE, Grove BH, Erikson ME, et al. Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J Clin Invest. 1996;98(12):2739–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Heeg MH, Koziolek MJ, Vasko R, Schaefer L, Sharma K, Muller GA, et al. The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int. 2005;68(1):96–109.

    PubMed  CAS  Google Scholar 

  115. Unemori EN, Amento EP. Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J Biol Chem. 1990;265(18):10681–5.

    PubMed  CAS  Google Scholar 

  116. Moore XL, Tan SL, Lo CY, Fang L, Su YD, Gao XM, et al. Relaxin antagonizes hypertrophy and apoptosis in neonatal rat cardiomyocytes. Endocrinology. 2007;148(4):1582–9.

    PubMed  CAS  Google Scholar 

  117. Dschietzig T, Bartsch C, Kinkel T, Baumann G, Stangl K. Myocardial relaxin counteracts hypertrophy in hypertensive rats. Ann N Y Acad Sci. 2005;1041:441–3.

    PubMed  CAS  Google Scholar 

  118. Fisher C, Al-Benna S, Kirk A, Morton JJ, McMurray JJ. Transcardiac and transpulmonary gradients in the putative new cardiovascular hormone relaxin. Heart. 2003;89(7):789–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Heringlake M, Kox T, Poeling J, Klaus S, Hanke T, Franz N, et al. The effects of physical exercise on plasma levels of relaxin, NTproANP, and NTproBNP in patients with ischemic heart disease. Eur J Med Res. 2009;14(3):106–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Kupari M, Mikkola TS, Turto H, Lommi J. Is the pregnancy hormone relaxin an important player in human heart failure? Eur J Heart Fail. 2005;7(2):195–8.

    PubMed  CAS  Google Scholar 

  121. Kompa AR, Samuel CS, Summers RJ. Inotropic responses to human gene 2 (B29) relaxin in a rat model of myocardial infarction (MI): effect of pertussis toxin. Br J Pharmacol. 2002;137(5):710–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Zhang J, Qi YF, Geng B, Pan CS, Zhao J, Chen L, et al. Effect of relaxin on myocardial ischemia injury induced by isoproterenol. Peptides. 2005;26(9):1632–9.

    PubMed  CAS  Google Scholar 

  123. Stangl K, Dschietzig T, Richter C, Laule M, Stangl V, Tanis E, et al. Pulmonary release and coronary and peripheral consumption of big endothelin and endothelin-1 in severe heart failure: acute effects of vasodilator therapy. Circulation. 2000;102(10):1132–8.

    PubMed  CAS  Google Scholar 

  124. Webb DJ. Evidence for endothelin-1-mediated vasoconstriction in severe chronic heart failure. Endothelin antagonism in heart failure. Circulation. 1995;92(12):3372.

    PubMed  CAS  Google Scholar 

  125. Wei CM, Lerman A, Rodeheffer RJ, McGregor CG, Brandt RR, Wright S, et al. Endothelin in human congestive heart failure. Circulation. 1994;89(4):1580–6.

    PubMed  CAS  Google Scholar 

  126. Dupuis J, Stewart DJ, Cernacek P, Gosselin G. Human pulmonary circulation is an important site for both clearance and production of endothelin-1. Circulation. 1996;94(7):1578–84.

    PubMed  CAS  Google Scholar 

  127. Dupuis J, Rouleau JL, Cernacek P. Reduced pulmonary clearance of endothelin-1 contributes to the increase of circulating levels in heart failure secondary to myocardial infarction. Circulation. 1998;98(16):1684–7.

    PubMed  CAS  Google Scholar 

  128. Toth M, Taskinen P, Ruskoaho H. Relaxin stimulates atrial natriuretic peptide secretion in perfused rat heart. J Endocrinol. 1996;150(3):487–95.

    PubMed  CAS  Google Scholar 

  129. Debrah DO, Conrad KP, Danielson LA, Shroff SG. Effects of relaxin on systemic arterial hemodynamics and mechanical properties in conscious rats: sex dependency and dose response. J Appl Physiol. 2005;98(3):1013–20.

    PubMed  CAS  Google Scholar 

  130. Debrah DO, Conrad KP, Jeyabalan A, Danielson LA, Shroff SG. Relaxin increases cardiac output and reduces systemic arterial load in hypertensive rats. Hypertension. 2005;46(4):745–50.

    PubMed  CAS  Google Scholar 

  131. Voors AA, Davison BA, Felker GM, Ponikowski P, Unemori E, Cotter G, et al. Early drop in systolic blood pressure and worsening renal function in acute heart failure: renal results of Pre-RELAX-AHF. Eur J Heart Fail. 2011;13(9):961–7.

    PubMed  Google Scholar 

  132. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9.

    PubMed  PubMed Central  Google Scholar 

  133. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.

    PubMed  Google Scholar 

  134. Dschietzig T, Alexiou K, Kinkel HT, Baumann G, Matschke K, Stangl K. The positive inotropic effect of relaxin-2 in human atrial myocardium is preserved in end-stage heart failure: role of G(i)-phosphoinositide-3 kinase signaling. J Card Fail. 2011;17(2):158–66.

    PubMed  CAS  Google Scholar 

  135. Piedras-Renteria ES, Sherwood OD, Best PM. Effects of relaxin on rat atrial myocytes. I. Inhibition of I (to) via PKA-dependent phosphorylation. Am J Physiol. 1997;272(4 Pt 2):H1791–H1797.

  136. Piedras-Renteria ES, Sherwood OD, Best PM. Effects of relaxin on rat atrial myocytes. II. Increased calcium influx derived from action potential prolongation. Am J Physiol. 1997;272(4 Pt 2):H1798–H1803.

  137. Edouard DA, Pannier BM, London GM, Cuche JL, Safar ME. Venous and arterial behavior during normal pregnancy. Am J Physiol. 1998;274(5 Pt 2):H1605–12.

    PubMed  CAS  Google Scholar 

  138. Slangen BF, Out IC, Verkeste CM, Peeters LL. Hemodynamic changes in early pregnancy in chronically instrumented, conscious rats. Am J Physiol. 1996;270(5 Pt 2):H1779–84.

    PubMed  CAS  Google Scholar 

  139. Li Y, Brookes ZL, Kaufman S. Acute and chronic effects of relaxin on vasoactivity, myogenic reactivity and compliance of the rat mesenteric arterial and venous vasculature. Regul Pept. 2005;132(1–3):41–6.

    PubMed  CAS  Google Scholar 

  140. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 2008;108(4):735–48.

    PubMed  Google Scholar 

  141. Brunner F, Bras-Silva C, Cerdeira AS, Leite-Moreira AF. Cardiovascular endothelins: essential regulators of cardiovascular homeostasis. Pharmacol Ther. 2006;111(2):508–31.

    PubMed  CAS  Google Scholar 

  142. Kawanabe Y, Nauli SM. Endothelin. Cell Mol Life Sci. 2011;68(2):195–203.

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309(12):1268–77.

    PubMed  CAS  Google Scholar 

  144. Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JE, Cleland JG, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12(5):423–33.

    PubMed  Google Scholar 

  145. Stevenson LW. Are hemodynamic goals viable in tailoring heart failure therapy? Hemodynamic goals are relevant. Circulation. 2006;113(7):1020–7.

    PubMed  Google Scholar 

  146. Ambrosy AP, Vaduganathan M, Huffman MD, Khan S, Kwasny MJ, Fought AJ, et al. Clinical course and predictive value of liver function tests in patients hospitalized for worsening heart failure with reduced ejection fraction: an analysis of the EVEREST trial. Eur J Heart Fail. 2012;14(3):302–11.

    PubMed  CAS  Google Scholar 

  147. Bettencourt P, Azevedo A, Pimenta J, Frioes F, Ferreira S, Ferreira A. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004;110(15):2168–74.

    PubMed  CAS  Google Scholar 

  148. Januzzi JL Jr, Filippatos G, Nieminen M, Gheorghiade M. Troponin elevation in patients with heart failure: on behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur Heart J. 2012;33(18):2265–71.

    PubMed  CAS  Google Scholar 

  149. Lassus J, Harjola VP, Sund R, Siirila-Waris K, Melin J, Peuhkurinen K, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28(15):1841–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author received no financial support for writing this manuscript. The author has previously received the following payments from Novartis: consultation fees and payments for oral presentations regarding relaxin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bernd Dschietzig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dschietzig, T.B. Recombinant Human Relaxin-2: (How) Can a Pregnancy Hormone Save Lives in Acute Heart Failure?. Am J Cardiovasc Drugs 14, 343–355 (2014). https://doi.org/10.1007/s40256-014-0078-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-014-0078-z

Keywords

Navigation