Skip to main content
Log in

Ranolazine: Clinical Applications and Therapeutic Basis

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Ranolazine is currently approved for use in chronic angina. The basis for this use is likely related to inhibition of late sodium channels with resultant beneficial downstream effects. Randomized clinical trials have demonstrated an improvement in exercise capacity and reduction in angina episodes with ranolazine. This therapeutic benefit occurs without the hemodynamic effects seen with the conventional antianginal agents. The inhibition of late sodium channels as well as other ion currents has a central role in the potential use of ranolazine in ischemic heart disease, arrhythmias, and heart failure. Despite its QTc-prolonging action, albeit minimal, clinical data have not shown a predisposition to torsades de pointes, and the medication has shown a reasonable safety profile even in those with structural heart disease. In this article we present the experimental and clinical data that support its current therapeutic role, and provide insight into potential future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–209.

    Article  PubMed  Google Scholar 

  2. Mannheimer C, Camici P, Chester MR, Collins A, DeJongste M, Eliasson T, et al. The problem of chronic refractory angina; report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J. 2002;23(5):355–70.

    Article  PubMed  CAS  Google Scholar 

  3. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Article  PubMed  CAS  Google Scholar 

  4. Chaitman BR, Laddu AA. Stable angina pectoris: antianginal therapies and future directions. Nat Rev Cardiol. 2011;9(1):40–52.

    Google Scholar 

  5. Prescribing Information. http://www.ranexa.com/global/Prescribing-Information.aspx. Accessed 15 May 2012.

  6. European Medicines Agency. European public assessment report for Ranexa. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000805/WC500045940.pdf. Accessed 20 Aug 2012.

  7. Gintant GA, Datyner NB, Cohen IS. Slow inactivation of a tetrodotoxin-sensitive current in canine cardiac Purkinje fibers. Biophys J. 1984;45(3):509–12.

    Article  PubMed  CAS  Google Scholar 

  8. Patlak JB, Ortiz M. Slow currents through single sodium channels of the adult rat heart. J Gen Physiol. 1985;86(1):89–104.

    Article  PubMed  CAS  Google Scholar 

  9. Kiyosue T, Arita M. Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ Res. 1989;64(2):389–97.

    Article  PubMed  CAS  Google Scholar 

  10. Ju YK, Saint DA, Gage PW. Effects of lignocaine and quinidine on the persistent sodium current in rat ventricular myocytes. Br J Pharmacol. 1992;107(2):311–6.

    Article  PubMed  CAS  Google Scholar 

  11. Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol. 1996;497(Pt 2):337–47.

    Google Scholar 

  12. Noble D, Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium–calcium overload. Heart. 2006;92 Suppl 4:iv1–5.

    Google Scholar 

  13. Vassalle M, Lin CI. Calcium overload and cardiac function. J Biomed Sci. 2004;11(5):542–65.

    Google Scholar 

  14. Ver Donck L, Borgers M, Verdonck F. Inhibition of sodium and calcium overload pathology in the myocardium: a new cytoprotective principle. Cardiovasc Res. 1993;27(3):349–57.

    Google Scholar 

  15. Clusin WT. Calcium and cardiac arrhythmias: DADs, EADs, and alternans. Crit Rev Clin Lab Sci. 2003;40(3):337–75.

    Article  PubMed  CAS  Google Scholar 

  16. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart. 2006;92 Suppl 4:iv6–14.

    Google Scholar 

  17. Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation. 2004;110(8):904–10.

    Article  PubMed  CAS  Google Scholar 

  18. Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L, Antzelevitch C. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation. 2007;116(13):1449–57.

    Article  PubMed  CAS  Google Scholar 

  19. Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Res Cardiol. 2001;96(6):517–27.

    Article  PubMed  CAS  Google Scholar 

  20. Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Br J Pharmacol. 2006;148(1):16–24.

    Article  PubMed  CAS  Google Scholar 

  21. Song Y, Shryock JC, Wagner S, Maier LS, Belardinelli L. Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther. 2006;318(1):214–22.

    Article  PubMed  CAS  Google Scholar 

  22. Fraser H, Belardinelli L, Wang L, Light PE, McVeigh JJ, Clanachan AS. Ranolazine decreases diastolic calcium accumulation caused by ATX-II or ischemia in rat hearts. J Mol Cell Cardiol. 2006;41(6):1031–8.

    Article  PubMed  CAS  Google Scholar 

  23. Venkataraman R, Belardinelli L, Blackburn B, Heo J, Iskandrian AE. A study of the effects of ranolazine using automated quantitative analysis of serial myocardial perfusion images. JACC Cardiovasc Imaging. 2009;2(11):1301–9.

    Article  PubMed  Google Scholar 

  24. Venkataraman R, Aljaroudi W, Belardinelli L, Heo J, Iskandrian AE. The effect of ranolazine on the vasodilator-induced myocardial perfusion abnormality. J Nucl Cardiol. 2011;18(3):456–62.

    Article  PubMed  Google Scholar 

  25. Antzelevitch C, Burashnikov A, Sicouri S, Belardinelli L. Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm. 2011;8(8):1281–90.

    Article  PubMed  Google Scholar 

  26. Wu L, Shryock JC, Song Y, Belardinelli L. An increase in late sodium current potentiates the proarrhythmic activities of low-risk QT-prolonging drugs in female rabbit hearts. J Pharmacol Exp Ther. 2006;316(2):718–26.

    Article  PubMed  CAS  Google Scholar 

  27. Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci. 2003;24(12):619–25.

    Article  PubMed  CAS  Google Scholar 

  28. McCormack JG, Barr RL, Wolff AA, Lopaschuk GD. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation. 1996;93(1):135–42.

    Article  PubMed  CAS  Google Scholar 

  29. Clarke B, Wyatt KM, McCormack JG. Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol. 1996;28(2):341–50.

    Article  PubMed  CAS  Google Scholar 

  30. MacInnes A, Fairman DA, Binding P, Rhodes J, Wyatt MJ, Phelan A, et al. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2003;93(3):e26–32.

    Article  PubMed  CAS  Google Scholar 

  31. Deshmukh SH, Patel SR, Pinassi E, Mindrescu C, Hermance EV, Infantino MN, et al. Ranolazine improves endothelial function in patients with stable coronary artery disease. Coron Artery Dis. 2009;20(5):343–7.

    Article  PubMed  Google Scholar 

  32. Zhao G, Walsh E, Shryock JC, Messina E, Wu Y, Zeng D, et al. Antiadrenergic and hemodynamic effects of ranolazine in conscious dogs. J Cardiovasc Pharmacol. 2011;57(6):639–47.

    Article  PubMed  CAS  Google Scholar 

  33. Letienne R, Vie B, Puech A, Vieu S, Le Grand B, John GW. Evidence that ranolazine behaves as a weak beta1- and beta2-adrenoceptor antagonist in the cat cardiovascular system. Naunyn Schmiedebergs Arch Pharmacol. 2001;363(4):464–71.

    Article  PubMed  CAS  Google Scholar 

  34. Chaitman BR, Pepine CJ, Parker JO, Skopal J, Chumakova G, Kuch J, et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA. 2004;291(3):309–16.

    Article  PubMed  CAS  Google Scholar 

  35. Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, Murphy SA, Budaj A, Varshavsky S, et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA. 2007;297(16):1775–83.

    Article  PubMed  CAS  Google Scholar 

  36. Stone PH, Chaitman BR, Stocke K, Sano J, DeVault A, Koch GG. The anti-ischemic mechanism of action of ranolazine in stable ischemic heart disease. J Am Coll Cardiol. 2010;56(12):934–42.

    Article  PubMed  CAS  Google Scholar 

  37. Jerling M. Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet. 2006;45(5):469–91.

    Article  PubMed  CAS  Google Scholar 

  38. Abdallah H, Jerling M. Effect of hepatic impairment on the multiple-dose pharmacokinetics of ranolazine sustained-release tablets. J Clin Pharmacol. 2005;45(7):802–9.

    Article  PubMed  CAS  Google Scholar 

  39. Jerling M, Abdallah H. Effect of renal impairment on multiple-dose pharmacokinetics of extended-release ranolazine. Clin Pharmacol Ther. 2005;78(3):288–97.

    Article  PubMed  CAS  Google Scholar 

  40. Chaitman BR, Skettino SL, Parker JO, Hanley P, Meluzin J, Kuch J, et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol. 2004;43(8):1375–82.

    Article  PubMed  CAS  Google Scholar 

  41. Stone PH, Gratsiansky NA, Blokhin A, Huang IZ, Meng L, ERICA Investigators. Antianginal efficacy of ranolazine when added to treatment with amlodipine: the ERICA (Efficacy of Ranolazine in Chronic Angina) trial. J Am Coll Cardiol. 2006;48(3):566–75.

    Article  PubMed  CAS  Google Scholar 

  42. Koren MJ, Crager MR, Sweeney M. Long-term safety of a novel antianginal agent in patients with severe chronic stable angina: the Ranolazine Open Label Experience (ROLE). J Am Coll Cardiol. 2007;49(10):1027–34.

    Article  PubMed  CAS  Google Scholar 

  43. Thadani U, Ezekowitz M, Fenney L, Chiang YK. Double-blind efficacy and safety study of a novel anti-ischemic agent, ranolazine, versus placebo in patients with chronic stable angina pectoris. Ranolazine Study Group. Circulation. 1994;90(2):726–34.

    Article  PubMed  CAS  Google Scholar 

  44. Rousseau M, Visser F, Bax J, Dubrey D, Cocco G, Pouleur H, et al. Ranolazine: antianginal therapy with a novel mechanism: placebo controlled comparison versus atenolol (abstr.). Eur Heart J. 1994;15(suppl I):95.

    Google Scholar 

  45. Pepine CJ, Wolff AA. A controlled trial with a novel anti-ischemic agent, ranolazine, in chronic stable angina pectoris that is responsive to conventional antianginal agents. Ranolazine Study Group. Am J Cardiol. 1999;84(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  46. Rousseau MF, Pouleur H, Cocco G, Wolff AA. Comparative efficacy of ranolazine versus atenolol for chronic angina pectoris. Am J Cardiol. 2005;95(3):311–6.

    Article  PubMed  CAS  Google Scholar 

  47. Siu SC, Jacoby RM, Phillips RT, Nesto RW. Comparative efficacy of nifedipine gastrointestinal therapeutic system versus diltiazem when added to beta blockers in stable angina pectoris. Am J Cardiol. 1993;71(11):887–92.

    Article  PubMed  CAS  Google Scholar 

  48. Greene RS, Rangel RM, Edwards KL, Chastain LM, Brouse SD, Alvarez CA, et al. Ranolazine for the treatment of refractory angina in a veterans population. Cardiovasc Revasc Med. 2012;13(2):141.e1–141.e5.

    Google Scholar 

  49. Wenger NK, Chaitman B, Vetrovec GW. Gender comparison of efficacy and safety of ranolazine for chronic angina pectoris in four randomized clinical trials. Am J Cardiol. 2007;99(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  50. Mehta PK, Goykhman P, Thomson LE, Shufelt C, Wei J, Yang Y, et al. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging. 2011;4(5):514–22.

    Article  PubMed  Google Scholar 

  51. Pelliccia F, Pasceri V, Marazzi G, Rosano G, Greco C, Gaudio C. A pilot randomized study of ranolazine for reduction of myocardial damage during elective percutaneous coronary intervention. Am Heart J. 2012;163(6):1019–23.

    Article  PubMed  CAS  Google Scholar 

  52. Wu L, Shryock JC, Song Y, Li Y, Antzelevitch C, Belardinelli L. Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome. J Pharmacol Exp Ther. 2004;310(2):599–605.

    Article  PubMed  CAS  Google Scholar 

  53. Wang WQ, Robertson C, Dhalla AK, Belardinelli L. Antitorsadogenic effects of ({+/−})-N-(2,6-dimethyl-phenyl)-(4[2-hydroxy-3-(2-methoxyphenoxy)propyl]-1-pipera zine (ranolazine) in anesthetized rabbits. J Pharmacol Exp Ther. 2008;325(3):875–81.

    Article  PubMed  CAS  Google Scholar 

  54. Zhao Z, Fefelova N, Shanmugam M, Bishara P, Babu GJ, Xie LH. Angiotensin II induces afterdepolarizations via reactive oxygen species and calmodulin kinase II signaling. J Mol Cell Cardiol. 2011;50(1):128–36.

    Article  PubMed  CAS  Google Scholar 

  55. Hoyer K, Song Y, Wang D, Phan D, Balschi J, Ingwall JS, et al. Reducing the late sodium current improves cardiac function during sodium pump inhibition by ouabain. J Pharmacol Exp Ther. 2011;337(2):513–23.

    Article  PubMed  CAS  Google Scholar 

  56. Antoons G, Oros A, Beekman JD, Engelen MA, Houtman MJ, Belardinelli L, et al. Late Na(+) current inhibition by ranolazine reduces torsades de pointes in the chronic atrioventricular block dog model. J Am Coll Cardiol. 2010;55(8):801–9.

    Article  PubMed  CAS  Google Scholar 

  57. Dhalla AK, Wang WQ, Dow J, Shryock JC, Belardinelli L, Bhandari A, et al. Ranolazine, an antianginal agent, markedly reduces ventricular arrhythmias induced by ischemia and ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2009;297(5):H1923–9.

    Article  PubMed  CAS  Google Scholar 

  58. Morita N, Lee JH, Xie Y, Sovari A, Qu Z, Weiss JN, et al. Suppression of re-entrant and multifocal ventricular fibrillation by the late sodium current blocker ranolazine. J Am Coll Cardiol. 2011;57(3):366–75.

    Article  PubMed  CAS  Google Scholar 

  59. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471(7337):225–9.

    Article  PubMed  CAS  Google Scholar 

  60. Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the metabolic efficiency with ranolazine for less ischemia in non st-elevation acute coronary syndrome thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2007;116(15):1647–52.

    Article  PubMed  CAS  Google Scholar 

  61. Scirica BM, Braunwald E, Belardinelli L, Hedgepeth CM, Spinar J, Wang W, et al. Relationship between nonsustained ventricular tachycardia after non-ST-elevation acute coronary syndrome and sudden cardiac death: observations from the metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2010;122(5):455–62.

    Article  PubMed  CAS  Google Scholar 

  62. Moss AJ, Zareba W, Schwarz KQ, Rosero S, McNitt S, Robinson JL. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol. 2008;19(12):1289–93.

    Article  PubMed  Google Scholar 

  63. Murdock DK, Kaliebe J, Overton N. Ranolozine-induced suppression of ventricular tachycardia in a patient with nonischemic cardiomyopathy: a case report. Pacing Clin Electrophysiol. 2008;31(6):765–8.

    Article  PubMed  Google Scholar 

  64. Bunch TJ, Mahapatra S, Murdock D, Molden J, Weiss JP, May HT, et al. Ranolazine reduces ventricular tachycardia burden and ICD shocks in patients with drug-refractory ICD shocks. Pacing Clin Electrophysiol. 2011;34(12):1600–6.

    Article  PubMed  Google Scholar 

  65. Murdock DK, Overton N, Kersten M, Kaliebe J, Devecchi F. The effect of ranolazine on maintaining sinus rhythm in patients with resistant atrial fibrillation. Indian Pacing Electrophysiol J. 2008;8(3):175–81.

    PubMed  Google Scholar 

  66. Murdock DK, Kersten M, Kaliebe J, Larrain G. The use of oral ranolazine to convert new or paroxysmal atrial fibrillation: a review of experience with implications for possible “pill in the pocket” approach to atrial fibrillation. Indian Pacing Electrophysiol J. 2009;9(5):260–7.

    PubMed  Google Scholar 

  67. Murdock DK, Reiffal JA, Kaliebe JW. The conversion of paroxysmal or initial onset atrial fibrillation with oral ranolazine: implications for “pill in the pocket” approach in structural heart disease. J Am Coll Cardiol 2010;9:A6.E58.

    Google Scholar 

  68. Capucci A, Boriani G, Botto GL, Lenzi T, Rubino I, Falcone C, et al. Conversion of recent-onset atrial fibrillation by a single oral loading dose of propafenone or flecainide. Am J Cardiol. 1994;74(5):503–5.

    Article  PubMed  CAS  Google Scholar 

  69. Miles RH, Passman R, Murdock DK. Comparison of effectiveness and safety of ranolazine versus amiodarone for preventing atrial fibrillation after coronary artery bypass grafting. Am J Cardiol. 2011;108(5):673–6.

    Article  PubMed  CAS  Google Scholar 

  70. Giri S, White CM, Dunn AB, Felton K, Freeman-Bosco L, Reddy P, et al. Oral amiodarone for prevention of atrial fibrillation after open heart surgery, the Atrial Fibrillation Suppression Trial (AFIST): a randomised placebo-controlled trial. Lancet. 2001;357(9259):830–6.

    Article  PubMed  CAS  Google Scholar 

  71. Burashnikov A, Sicouri S, Di Diego JM, Belardinelli L, Antzelevitch C. Synergistic effect of the combination of ranolazine and dronedarone to suppress atrial fibrillation. J Am Coll Cardiol. 2010;56(15):1216–24.

    Article  PubMed  CAS  Google Scholar 

  72. Sicouri S, Burashnikov A, Belardinelli L, Antzelevitch C. Synergistic electrophysiologic and antiarrhythmic effects of the combination of ranolazine and chronic amiodarone in canine atria. Circ Arrhythm Electrophysiol. 2010;3(1):88–95.

    Article  PubMed  CAS  Google Scholar 

  73. Fragakis N, Koskinas KC, Katritsis DG, Pagourelias ED, Zografos T, Geleris P. Comparison of effectiveness of ranolazine plus amiodarone versus amiodarone alone for conversion of recent-onset atrial fibrillation. Am J Cardiol. 2012;110(5):673–7.

    Article  PubMed  CAS  Google Scholar 

  74. Murdock DK, Kaliebe J, Larrain G. The use of ranolazine to facilitate electrical cardioversion in cardioversion-resistant patients: a case series. Pacing Clin Electrophysiol. 2012;35(3):302–7.

    Article  PubMed  Google Scholar 

  75. Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol. 2006;17(Suppl 1):S169–77.

    Article  PubMed  Google Scholar 

  76. Matsumura H, Hara A, Hashizume H, Maruyama K, Abiko Y. Protective effects of ranolazine, a novel anti-ischemic drug, on the hydrogen peroxide-induced derangements in isolated, perfused rat heart: comparison with dichloroacetate. Jpn J Pharmacol. 1998;77(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  77. Sossalla S, Wagner S, Rasenack EC, Ruff H, Weber SL, Schondube FA, et al. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts—role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45(1):32–43.

    Article  PubMed  CAS  Google Scholar 

  78. Wu Y, Song Y, Belardinelli L, Shryock JC. The late Na+ current (INa) inhibitor ranolazine attenuates effects of palmitoyl-l-carnitine to increase late INa and cause ventricular diastolic dysfunction. J Pharmacol Exp Ther. 2009;330(2):550–7.

    Article  PubMed  CAS  Google Scholar 

  79. Hayashida W, van Eyll C, Rousseau MF, Pouleur H. Effects of ranolazine on left ventricular regional diastolic function in patients with ischemic heart disease. Cardiovasc Drugs Ther. 1994;8(5):741–7.

    Article  PubMed  CAS  Google Scholar 

  80. Bleeker GB, Bax JJ, Steendijk P, Schalij MJ, van der Wall EE. Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment. Nat Clin Pract Cardiovasc Med. 2006;3(4):213–9.

    Article  PubMed  Google Scholar 

  81. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol. 2004;44(9):1834–40.

    Article  PubMed  Google Scholar 

  82. Venkataraman R, Chen J, Garcia EV, Belardinelli L, Hage FG, Heo J, et al. Effect of ranolazine on left ventricular dyssynchrony in patients with coronary artery disease. Am J Cardiol. 2012;110(10):1440–45.

    Google Scholar 

  83. Jacobshagen C, Belardinelli L, Hasenfuss G, Maier LS. Ranolazine for the treatment of heart failure with preserved ejection fraction: background, aims, and design of the RALI-DHF study. Clin Cardiol. 2011;34(7):426–32.

    Article  PubMed  Google Scholar 

  84. Maier L, Wachter R, Edelmann F, et al. Ranolazine for the treatment of diastolic heart failure in patients with preserved ejection fraction: results from the RALI-DHF study. J Am Coll Cardiol. 2012;59(13):E865–E865.

    Google Scholar 

  85. Abozguia K, Clarke K, Lee L, Frenneaux M. Modification of myocardial substrate use as a therapy for heart failure. Nat Clin Pract Cardiovasc Med. 2006;3(9):490–8.

    Article  PubMed  CAS  Google Scholar 

  86. Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wiig P, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl). 2012;90(1):31–43.

    Google Scholar 

  87. Timmis AD, Chaitman BR, Crager M. Effects of ranolazine on exercise tolerance and HbA1c in patients with chronic angina and diabetes. Eur Heart J. 2006;27(1):42–8.

    Article  PubMed  CAS  Google Scholar 

  88. Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.

    Article  PubMed  CAS  Google Scholar 

  89. Morrow DA, Scirica BM, Chaitman BR, McGuire DK, Murphy SA, Karwatowska-Prokopczuk E, et al. Evaluation of the glycometabolic effects of ranolazine in patients with and without diabetes mellitus in the MERLIN-TIMI 36 randomized controlled trial. Circulation. 2009;119(15):2032–9.

    Article  PubMed  CAS  Google Scholar 

  90. Ning Y, Zhen W, Fu Z, Jiang J, Liu D, Belardinelli L, et al. Ranolazine increases beta-cell survival and improves glucose homeostasis in low-dose streptozotocin-induced diabetes in mice. J Pharmacol Exp Ther. 2011;337(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  91. Nieminen T, Tavares CA, Pegler JR, Belardinelli L, Verrier RL. Ranolazine injection into coronary or femoral arteries exerts marked, transient regional vasodilation without systemic hypotension in an intact porcine model. Circ Cardiovasc Interv. 2011;4(5):481–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest that are directly related to the content of this article. No funding was received for the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawwa, N., Menon, V. Ranolazine: Clinical Applications and Therapeutic Basis. Am J Cardiovasc Drugs 13, 5–16 (2013). https://doi.org/10.1007/s40256-012-0003-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-012-0003-2

Keywords

Navigation