Skip to main content
Log in

Recovery of metals from anodic dissolution slime of waste from electric and electronic equipment(WEEE) by extraction in ionic liquids

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The recovery of metals from a multi-component alloy obtained by crushing, melting and anodic dissolu-tion of waste from electric and electronic equipment(WEEE) was investigated. The anodic dissolution of the alloy was carried out in an electrolysis cell with one copper cathode and a central cast anode, immersed in the electrolyte formed by choline chloride-ethylene glycol-iodine. The temperature of the electrolyte during the process was 343 K. Depending on the electrolysis parameters(current density and cell voltage), cathodic deposits of Sn, Pb and Zn of >99% purity were obtained. Cyclic voltammetry was used in order to determine the deposition potentials of the studied metals. The obtained metallic deposits were subject of determination of XRD, SEM/EDX and AFM in order to evidence the deposits structure and morphology. The experiments performed demonstrated the possibility of separating/selective recovery of metals from the multi-component alloy resulted from the waste from electrical and electronic equipment by anodic dissolution in ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berenblyum A. S., Katsman Е. А., Karasev Y. Z., Appl. Catal. A: Gen., 2006, 315, 128

    Article  CAS  Google Scholar 

  2. Ohno H.(Ed.), Electrochemical Aspects of Ionic Liquids, Second Edition, John Wiley & Sons, Hoboken, New Jersey, 2011

    Book  Google Scholar 

  3. Schubert T., Zein El Abedin S., Abott A. P., McKenzie K. J., Ryder K. S., Endres F.; Eds.: Endres F., MacFarlane D. R., Abbott A. P., Electrodeposition of Metals, in Electrodeposition from Ionic Liquids, Wiley-VCH, Weinheim, 2008

    Google Scholar 

  4. Whitehead J. A., Zhang J., Pereira N., McCluskey A., Lawrance G. A., Hydrometallurgy, 2007, 88, 109

    Article  CAS  Google Scholar 

  5. Popescu A. M., Donath C., Neacsu E. I., Soare V., Constantin V., Rev. Chim.(Bucharest), 2016, 67(6), 1076

    CAS  Google Scholar 

  6. Abbott A. P., Capper G., McKenzie K., Ryder K. S., J. Electroanal. Chem., 2007, 599, 288

    Article  CAS  Google Scholar 

  7. Salome S., Pereira N. M., Ferreira E. S., Pereira C. M., Silva A. F., J. Electroanal. Chem., 2013, 703, 80

    Article  CAS  Google Scholar 

  8. Xing S., Environmentally Friendly Baths for Cu-Sn Co-electrodeposition: Cyanide-free Aqueous Bath and Deep Eutectic Solvents, University of Trento, Trento, 2014

    Google Scholar 

  9. Golgovici F., Visan T., Chalcogenide Lett., 2011, 8(8), 487

    CAS  Google Scholar 

  10. Ru J., Hua Y., Xu C., Li J., Li Y., Wang D., Qi C., Gong K., Russ. J. Electrochem., 2015, 51(8), 773

    Article  CAS  Google Scholar 

  11. Abbott A. P., Barron J. C., Ryder K. S., Trans. Inst. Metal Finishing, 2009, 87(4), 201

    Article  CAS  Google Scholar 

  12. Abbott A. P., Capper G., McKenzie K. J., Ryder K. S., J. Electroanal. Chem., 2007, 599, 288

    Article  CAS  Google Scholar 

  13. Constantin V., Adya A. K., Popescu A. M., Fluid Phase Equilib., 2015, 395, 58

    Article  CAS  Google Scholar 

  14. Golgovici F., Cojocaru A., Anicai L., Visan T., Mater. Chem. Phys., 2011, 126(3), 700

    Article  CAS  Google Scholar 

  15. Ghosh S., Roy S., Mater. Sci. Eng. B, 2014, 190, 104

    Article  CAS  Google Scholar 

  16. Ghosh S., Roy S., Electrochim. Acta, 2015, 183, 27

    Article  CAS  Google Scholar 

  17. Pereira N. M., Salome S., Pereira C. M., Silva A. F., J. Appl. Electrochem., 2012, 42, 561

    Article  CAS  Google Scholar 

  18. Golgovici F., Chem. Bull. "Politehnica" Univ.(Timisoara), 2011, 56(70), 62

    Google Scholar 

  19. Polzler M., Whitehead A. H., Gollas B., ECS Trans., 2010, 25, 43

    Article  Google Scholar 

  20. Abbott A. P., Barron J. C., Frisch G., Ryder K. S., Silva A. F., Electrochim. Acta, 2011, 56, 5272

    Article  CAS  Google Scholar 

  21. Soare V., Dumitrescu D., Burada M., Constantin I., Soare V., Capota P., Popescu A. M., Constantin V., Rev. Chim.(Bucharest), 2016, 67(5), 920

    CAS  Google Scholar 

  22. Diffraction Pattern File: 85-2838, 85-5648, 81-1936, 01-1242, ICDD, PCPDFWIN V2.01, Joint Committee on Powder Diffraction Standards(JCPDS)-International Center for Diffraction Data(ICDD), Newtown Square, PA, 1998

  23. Lipson H. S., Lipson G., Steeple H., Stipl G., Interpretation of X-ray Powder Diffraction Patterns, Mir, Moscow, 1972

    Google Scholar 

  24. McCarthy G. J., Martin K. J., Holzer J. M., Grier D. G., Adv. in X-ray Analysis, 1992, 35, 17

    Google Scholar 

  25. Popescu A. M., Constantin V., Chem. Res. Chinese Universities, 2014, 30(1), 119

    Article  CAS  Google Scholar 

  26. Popescu A. M., Cojocaru A., Donath C., Constantin V., Chem. Res. Chinese Universities, 2013, 29(5), 991

    Article  CAS  Google Scholar 

  27. PDF-2 Data Base JCPDS-ICDD, JCPDS Card No. 026-1451 and No. 00-004-0836, Joint Committee on Powder Diffraction Standards (JCPDS)-International Centre for Diffraction Data(ICDD), Newtown Square, PA, 2007

  28. Dang J., Shi X., Zhang Q., Wang W, Sci. Total Environ., 2015, 517, 1

    Article  CAS  Google Scholar 

  29. Zhang Q. Z., Gao R., Xu F., Zhou Q., Jiang G. B., Wang T., Chen J. M., Hu J. T., Jiang W., Wang W. W., Environ. Sci. Technol., 2014, 48, 5051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgil Constantin.

Additional information

Supported by the MEN-UEFISCDI Romania Through Joint Applied Research Project(No.PN-II 82/2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, A.M., Yanushkevich, K., Soare, V. et al. Recovery of metals from anodic dissolution slime of waste from electric and electronic equipment(WEEE) by extraction in ionic liquids. Chem. Res. Chin. Univ. 34, 113–118 (2018). https://doi.org/10.1007/s40242-017-7225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-7225-4

Keywords

Navigation