Skip to main content

Advertisement

Log in

Potential sources and health risk assessment of polycyclic aromatic hydrocarbons in street dusts of Karaj urban area, northern Iran

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study chemical fingerprinting approach (isomeric ratios), a receptor-oriented model (principal component analysis with multiple linear regression, PCA/MLR) and a probabilistic health risk framework were employed to characterization, source appointment and carcinogenic risk assessment of polycyclic aromatic hydrocarbons (PAHs) in street dusts of Karaj urban area (northern Iran). Thirty street dusts samples were collected from the different functional areas in the city of Karaj and analyzed for PAHs by gas chromatography/mass spectrometry (GS/MS). The results obtained showed that ∑16PAHs concentrations varied widely from 16.2 to 1236.2 with a mean of 624 μg/kg and decreased in the following order of functional areas; traffic> residential > green/park areas. PAHs profile in the majority of dust samples were dominated by 5–6 rings PAHs, accounting for 25%–95% of the total PAHs. Qualitative source apportionment using the molecular isomeric ratios indicated mixed sources of PAHs in street dusts while PCA/MLR receptor model quantitatively identified three major sources with following relative contributions to the total dust PAH burden; 51% for pyrogenic-traffic sources, 32% for traffic-stationary sources and, 16% for petrogenic sources. The results of health risk assessment based on probabilistic model indicated that at the 95% percentiles, total cancer risks for children and adults are 8.43 × 10−4 and 3.34 × 10−5, respectively which both are higher than the acceptable baseline (10−6) indicating potential carcinogenic risk for local residents. It was also revealed that dust ingestion pathway is the most important contributor to the total carcinogenic risks of PAHs for both children and adults although the cancer risk level for adults through dermal and inhalation was 10 times greater than that for children. Based on the sensitivity analysis using the Monte Carlo simulation, benzo[a]pyrene equivalent concentration, exposure duration, dermal exposure area and ingestion rate were found to be the most sensitive exposure parameters which could introduce uncertainties into the cancer risk estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT. Sources of fine organic aersol 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol. 1993;27:636–51.

    Article  CAS  Google Scholar 

  2. Okuda T, Katsuno M, Naoi D, Nakao S, Tanaka S, He KB, et al. Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere. 2008;72:917–24.

    Article  CAS  Google Scholar 

  3. Cappelletti N, Astoviza M, Morrone M, Tatone L. Urban geochemistry and potential human health risks in the metropolitan area of Buenos Aires: PAHs and PCBs in soil, street dust, and bulk deposition. Environ Geochem Health. 2018;41:699–713. https://doi.org/10.1007/s10653-018-0163-3.

    Article  CAS  Google Scholar 

  4. Ravindra K, Sokhi R, Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ. 2008;42:2895–921.

    Article  CAS  Google Scholar 

  5. Peng C, Chen WP, Liao XL, Wang ME, Ouyang ZY, Jiao WT, et al. Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut. 2011;159:802–8.

    Article  CAS  Google Scholar 

  6. Abdel-Shafy HI, Mansour MS. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016;25:107–23.

    Article  Google Scholar 

  7. Larsen RK, Baker JE. Source apportionment of polycyclic aromatic hydro-carbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol. 2003;37:1873–81.

    Article  CAS  Google Scholar 

  8. Cao Z, Zhao L, Shi Y, Feng J, Wang S, Zhang Y, et al. PAH contamination in road dust from a moderate city in North China: the significant role of traffic emission. Hum Ecol Risk Assess. 2017;23:1072–85.

    Article  CAS  Google Scholar 

  9. Wang DG, Yang M, Jia HL, Zhou L, Li YF. Polycyclic aromatic hydrocarbons in urban street dust and surface soil: comparisons of concentrations, profile, and source. Arch Environ Contam Toxicol. 2009;56:173–80.

    Article  CAS  Google Scholar 

  10. Moyo S, McCrindle R, Mokgalaka N, Myburgh J, Mujuru M. Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers. Pure Appl Chem. 2013;85:2175–96.

    Article  CAS  Google Scholar 

  11. Katsoyiannis A, Sweetman AJ, Jones KC. PAH molecular diagnostic ratios applied to atmo-spheric sources: a critical evaluation using two decades of source inventory and air concentration data from the UK. Environ Sci Technol. 2011;4520:8897–906.

    Article  CAS  Google Scholar 

  12. Yang B, Zhou L, Xue N, Li F, Li Y, Vogt RD. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai plain, China: comparison of three receptor models. Sci Total Environ. 2013;443:31–9.

    Article  CAS  Google Scholar 

  13. Jamhari AA, Sahani M, Latif MT, Chan KM, Tan HS, Khan MF, et al. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10of urban, industrial and semi-urban areas in Malaysia. Atmos Environ. 2014;86:16–27.

    Article  CAS  Google Scholar 

  14. Kamal A, Qamar K, Gulfraz M. PAH exposure and oxidative stress indicators of human cohorts exposed to traffic pollution in Lahore city (Pakistan). Chemosphere. 2015;120:59–67. https://doi.org/10.1016/j.chemosphere.2014.05.021.

    Article  CAS  Google Scholar 

  15. Zhuo S, Shen G, Zhu Y, Du W, Pan X, Li T, et al. Source-oriented risk assessment of inhalation exposure to ambient polycyclic aromatic hydrocarbons and contributions of non-priority isomers in urban Nanjing, a megacity located in Yangtze River Delta, China. Environ Pollut. 2017;224:796–809.

    Article  CAS  Google Scholar 

  16. USEPA. Risk Assessment Guidance for Superfund (RAGS), Volume 1—Human Health Evaluation Manual, Part A. (Interim Final), (EPA/540/1–89/002); Office of Emergency and Remedial Response. 1989.

  17. Harris G, Van Horn R. Use of Monte Carlo methods in environmental risk assessment at the INEL: Applications and Issues. Idaho National Engineering Laboratory Environmental Restoration Department Lockheed Martin Idaho Technologies Company Idaho Falls, Idaho 83415. 1996.

  18. Bruce ED, Abusalih AA, McDonald TJ, Autenrieth RL. Comparing deterministic and probabilistic risk assessments for sites contaminated by polycyclic aromatic hydrocarbons (PAHs). J Environ Sci Health A. 2007;42:697–706.

    Article  CAS  Google Scholar 

  19. Mondal D, Polya DA. Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl Geochem. 2008;23:2987–98.

    Article  CAS  Google Scholar 

  20. Statistical Center of Iran. Population and housing census of 2016. Iran Statistics Center Press. 2006 and 2015. 2016: 51–101.

  21. Sakieh Y, Jaafari S, Ahmadi M, Danekar A. Green and calm: modeling the relationships between noise pollution propagation and spatial patterns of urban structures and green covers. Urban For Urban Green. 2017;24:195–211.

    Article  Google Scholar 

  22. Baptista LF, De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola: Tropical urban. Atmos Environ. 2005;39:4501–12.

    Article  CAS  Google Scholar 

  23. USEPA. Soxhlet extraction-method 3540, revision 3. US Environmental Protection Agency, 1996.

  24. Tobiszewski M, Namiesnik J. PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut. 2012;162:110–9.

    Article  CAS  Google Scholar 

  25. Pandey PK, Patel KS, Lenicek J. Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban–industrial location in India. Environ Monit Assess. 1999;59:287–319.

    Article  CAS  Google Scholar 

  26. Li CK, Kamens RM. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmos Environ. 1993;27A:523–32.

  27. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem. 2002;33:489–515.

    Article  CAS  Google Scholar 

  28. Benner BA, Bryner NP, Wise SA, Mulholland GH, Lao RC, Fingas MF. Polycyclic aromatic hydrocarbons emissions from combustion of crude oil on water. Environ Sci Technol. 1990;24:1418–27.

    Article  CAS  Google Scholar 

  29. Pies C, Hoffmann B, Petrowsky J, Yang Y, Ternes TA, Hofmann T. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere. 2008;72:1594–601.

    Article  CAS  Google Scholar 

  30. Ong S, Ayoko G, Kokot S, Morawska L. Polycyclic aromatic hydrocarbons in house dust samples: source identification and apportionment. In proceedings 14th international IUAPPA world congress, Brisbane, Australia. Pakistan. Environ Technol. 2007;16:45–53.

    Google Scholar 

  31. Singh KP, Malik A, Kumar A, Saxena P, Sinha S. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere. Environ Monit Assess. 2008;136:183–96.

    Article  CAS  Google Scholar 

  32. Hopke PK. Recent developments in receptor modeling. J Chemom. 2003;17:255–65. https://doi.org/10.1002/cem.796.

    Article  CAS  Google Scholar 

  33. Chiu TR, Nanyan NFM, Ali MM. Distribution of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Kapas Island, Terengganu, Malaysia. Procedia Environ Sci. 2015;30:162–7.

    Article  CAS  Google Scholar 

  34. Zhang Z, Huang J, Yu G, Hong H. Occurrence of PAHs, PCBs and Organochlorine pesticides in the Tonghui River of Beijing, China. Environ Pollut. 2004;130:249–61.

    Article  CAS  Google Scholar 

  35. Mohhebi-Nozar SLM, Ismail WR, Zakaria MP. Distribution, sources identification, and ecological risk of PAHs and PCBs in coastal surface sediments from the northern Persian Gulf. Hum Ecol Risk Assess Int. 2014;20:1507–20.

    Article  CAS  Google Scholar 

  36. USEPA. Air quality criteria for particulate matter. EPA/600/P-95/001aF-cf. National Center for Environment Assessment-RTP Office, Research Triangle Park, NC. 1996.

  37. Nisbet C, LaGoy P. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol. 1992;16:290–300.

    Article  CAS  Google Scholar 

  38. USEPA. Guidance manual for the integrated exposure uptake biokinetic model for lead in children, EPA/540/E-93/081. Washington DC: Office of Solid Waste and Emergency Response; 1994.

    Google Scholar 

  39. USEPA. Exposure factors handbook. Washington, DC: National Center for Environmental Assessment Office of Research and Development; 1997.

    Google Scholar 

  40. Yang W, Carmichael SL, Roberts EM, Kegley SE, Padula AM, English PB. Residential agricultural pesticide exposures and risk of neural tube defects and or facial clefts among offspring in the San Joaquin Valley of California. Am J Epidemiol. 2014;179:740–8.

    Article  Google Scholar 

  41. Kelishadi R, Motlagh ME, Bahreynian M, Gharavi MJ, Kabir K, Ardalan G, et al. Methodology and early findings of the assessment of determinants of weight disorders among Iranian children and adolescents: the childhood and adolescence surveillance and prevention of adult non-communicable disease-IV study. Int J Prev Med. 2015;6:77–84.

    Article  Google Scholar 

  42. Sharafi K, Yunesian M, Nodehi RN, Mahvi AH, Pirsaheb M. A systematic literature review for some toxic metals in widely consumed rice types (domestic and imported) in Iran: human health risk assessment, uncertainty and sensitivity analysis. Ecotoxicol Environ Saf. 2019;176:64–75.

    Article  CAS  Google Scholar 

  43. USEPA. Polycyclic organic matter. Environmental Protection Agency, Washington, 2002. http://www.epa.gov/ttn/atw/hlthef/ polycycl.

  44. USEPA. Dermal exposure assessment: principles and applications. Office of Health and Environmental Assessment. EPA/ 600/6–88/005Cc. 1992.

  45. USEPA. Risk assessment guidance for superfund, volume 1: Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). EPA/540/R/99/005. Washington DC, USA E: Office of Emergency and Remedial Response. 2001.

  46. Gope M, Masto RE, George J, Balachandran S. Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustain Cities Soc. 2018;38:616–26.

    Article  Google Scholar 

  47. Chiang KC, Chio CP, Chiang YH, Liao CM. Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J Hazard Mater. 2009;166:676–85.

    Article  CAS  Google Scholar 

  48. Harrison RM, Smith D, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol. 1996;30:825–32. https://doi.org/10.1021/es950252d.

    Article  CAS  Google Scholar 

  49. Collins JF, Brown JP, Dawson SV, Marty MA. Risk assessment for benzo[a]pyrene. Regul Toxicol Pharmacol. 1991;13:170–84.

    Article  CAS  Google Scholar 

  50. Saeedi M, Li LY, Salmanzadeh M. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater. 2012;227:9–17.

    Article  CAS  Google Scholar 

  51. Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, et al. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Isfahan metropolis, Iran. Sci Total Environ. 2015;505:712–23.

    Article  CAS  Google Scholar 

  52. Keshavarzi B, Abbasi SH, Moore F, Delshab H, Soltani N. Polycyclic aromatic hydrocarbons in street dust of Bushehr City, Iran: status, source, and human health risk assessment. Polycycl Aromat Compd. 2017:1–15.

  53. Tuyen LH, Tue NM, Takahashi S, Suzuki G, Viet PH, Subramanian A, et al. Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: occurrence, distribution and in vitro toxicity evaluation. Environ Pollut. 2014;194:272–80.

    Article  CAS  Google Scholar 

  54. Smith DJT, Edelhauser EC, Harrison RM. Polynuclear aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan. Environ Technol. 1995;16:45–53.

    Article  CAS  Google Scholar 

  55. Liu M, Cheng SB, Ou DN, Hou LJ, Gao L, Wang LL, et al. Characterization, identification of road dust PAHs in Central Shanghai areas, China. Atmos Environ. 2007;41:8785–95.

    Article  CAS  Google Scholar 

  56. Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Slee D, et al. Polycyclic aromatic hydrocarbons in road-de-posited sediments, water sediments, and soils in Sydney, Australia: comparisons of concentration distribution, sources and potential toxicity. Ecotoxicol Environ Saf. 2014;104:339–48.

    Article  CAS  Google Scholar 

  57. Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem. 1996;11:121–7.

    Article  Google Scholar 

  58. Yang SYN, Connell DW, Hawker DW, Kayal SI. Polycyclic aromatic hydrocarbons in air, soil and vegetation in the vicinity of an urban roadway. Sci Total Environ. 1991;102:229–40.

    Article  CAS  Google Scholar 

  59. Ren DY, Zhao FH, Dai SF, Zhang JY, Luo KL. Geochemistry of trace elements in coal. Beijing: Science Press; 2006.

    Google Scholar 

  60. Dong TTT, Lee BK. Characteristics, toxicity, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere. 2009;74:1245–53.

    Article  CAS  Google Scholar 

  61. Tong L, Peng CH, Huang ZW, Zhang JJ, Dai XR, Xiao H, et al. Identifying the pollution characteristics of atmospheric polycyclic aromatic hydrocarbons associated with functional districts in Ningbo, China. Bull Environ Contam Toxicol. 2019;103:34–40. https://doi.org/10.1007/s00128-018-02535-4.

    Article  CAS  Google Scholar 

  62. Simcik MF, Eisenreich SJ, Lioy PJ. Source apportionment and source/sink relationships of PAHs in the costal atmosphere of Chicago and Lake Michigan. Atmos Environ. 1999;33:5071–9.

    Article  CAS  Google Scholar 

  63. Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ Sci Technol. 2002;36:1907–18.

    Article  CAS  Google Scholar 

  64. Hartmann PC, Quinn JG, Cairns RW, King JW. The distribution and sources of polycyclic aromatic hydrocarbons in Narragansett Bay surface sediments. Mar Pollut Bull. 2004;48:351–8.

    Article  CAS  Google Scholar 

  65. Liu Y, Chen L, Jianfu Z, Qinghui H, Zhiliang Z, Hongwen G. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environ Pollut. 2008;154:298–330.

    Article  CAS  Google Scholar 

  66. Riccardi C, Di Filippo P, Pomata D, Di Basilio M, Spicaglia S. Identification of hydrocarbon sources in contaminated soils of three industrial areas. Sci Total Environ. 2013;450:13–22.

    Article  CAS  Google Scholar 

  67. Zhang J, Ruifei L, Zhang X, Ding C, Hua P. Traffic contribution to polycyclic aromatic hydrocarbons in road dust: a source apportionment analysis under different antecedent dry-weather periods. Sci Total Environ. 2019;658:996–1005.

    Article  CAS  Google Scholar 

  68. Wang W, Huang M, Kang Y, Wang H, Leung AOW, Cheung KC, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ. 2011;409:4519–27.

    Article  CAS  Google Scholar 

  69. Lorenzi D, Entwistle JA, Cave M, Dean JR. Determination of polycyclic aromatic hydrocarbons in urban street dust: implications for human health. Chemosphere. 2011;83:970–7.

    Article  CAS  Google Scholar 

  70. IARC (International Agency for Research on Cancer). Polynuclear Aromatic Compounds: Part 3; Industrial Exposures. IARC Lyon (IARC monograph Vol. 34). 1984.

  71. IARC (International Agency for Research on Cancer). Overall evaluation of carcinogenicity to humans, formaldehyde [50-00-0]. Monographs series. International Agency for Research on Cancer: Lyon, France; 2006.

    Google Scholar 

  72. Jiang Y, Hu X, Yves UJ, Zhan H, Wu Y. Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicol Environ Saf. 2014;106:11–8.

    Article  CAS  Google Scholar 

  73. Bandowe BA, Nkansah MA. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and Azaarenes) in street dust from a major west African metropolis. Sci Total Environ. 2016;553:439–49.

    Article  CAS  Google Scholar 

  74. Wei C, Han Y, Bandowe BAM, Cao J, Huang RJ, Tian J, et al. Occurrence, gas/ particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi'an, Central China. Sci Total Environ. 2015;505:814–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work is from the M.S. Thesis of F. Beiramali fulfilled at Shahrood University of Technology. The authors wish to thank the research council of Shahrood University of Technology for providing the means of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Qishlaqi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qishlaqi, A., Beiramali, F. Potential sources and health risk assessment of polycyclic aromatic hydrocarbons in street dusts of Karaj urban area, northern Iran. J Environ Health Sci Engineer 17, 1029–1044 (2019). https://doi.org/10.1007/s40201-019-00417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00417-3

Keywords

Navigation