Skip to main content

Advertisement

Log in

Prospective dietary radical scavengers: Boon in Pharmacokinetics, overcome insulin obstruction via signaling cascade for absorption during impediments in metabolic disorder like Diabetic Mellitus

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disorder which is characterized based on the blood glucose level. This can be due to the lack of efficiency of utilizing insulin or lack of production of insulin. There are numerous therapies and medications which are available for the treatment of this disease which can reduce the risk of diabetes. But there is no permanent cure found. Nutritional antioxidants show a foremost role in sustaining the homeostasis of the oxidative equilibrium. They have imparted their electron donor efficacy in preventing aging and in cancer. Vitamin C, E, β-carotene, carotenoids, polyphenols and selenium have been appraised as antioxidant constituents in the human diet nourishment. This paper emphasizes on the role of antioxidants which help in reducing or maintaining the level of glucose in the body. Antioxidants are substances that reduces the damages to the cells caused by free radicals. The available treatment and medications and how the supplementation of antioxidants is different from them is also discussed. Different type of antioxidants and their treatment in curing the disease is further focused in this paper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015. https://doi.org/10.4239/wjd.v6.i6.850.

  2. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88. https://doi.org/10.1152/physrev.00045.2011.

    Article  CAS  PubMed  Google Scholar 

  3. Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 2018. https://doi.org/10.1016/j.jcjd.2017.10.003.

    Article  PubMed  Google Scholar 

  4. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017. https://doi.org/10.1146/annurev-biochem-061516-045037.

    Article  PubMed  Google Scholar 

  5. Reische DW, Lillard DA, Eitenmiller RR. Antioxidants. Food lipids: chemistry, nutrition, and biotechnology. 2002. https://doi.org/10.1201/9780203908815.ch15.

  6. Galtier F. Definition, epidemiology, risk factors. Diabetes Metab. 2010. https://doi.org/10.1016/j.diabet.2010.11.014.

  7. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176275.

  8. Schellenberg ES, Dryden DM, Vandermeer B, Ha C, Korownyk C. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(8):543–51. https://doi.org/10.7326/0003-4819-159-8-201310150-00007.

    Article  PubMed  Google Scholar 

  9. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes. 2017. https://doi.org/10.1155/2018/3086167.

  10. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21051835.

  11. Said G. Diabetic neuropathy—a review. Nat Clin Pract Neurol. 2007. https://doi.org/10.1038/ncpneuro0504.

    Article  PubMed  Google Scholar 

  12. Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008. https://doi.org/10.1038/ncpendmet0894.

    Article  PubMed  Google Scholar 

  13. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL, Klein R. Retinopathy in diabetes. Diabetes Car. 2004. https://doi.org/10.2337/diacare.27.2007.s84.

    Article  Google Scholar 

  14. Frykberg RG. Diabetic foot ulcers: pathogenesis and management. Am Fam Physician. 2002. https://pubmed.ncbi.nlm.nih.gov/?term=Frykberg+RG&cauthor_id=12449264.

  15. Tay HL, Ray N, Ohri R, Frootko NJ. Diabetes mellitus and hearing loss. Clin Otolaryngol Allied Sci. 1995. https://doi.org/10.1111/j.1365-2273.1995.tb00029.x.

    Article  PubMed  Google Scholar 

  16. Luchsinger JA, Tang MX, Stern Y, Shea S, Mayeux R. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol. 2001. https://doi.org/10.1093/aje/154.7.635.

    Article  PubMed  Google Scholar 

  17. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291–5. https://doi.org/10.1113/expphysiol.1997.sp004024.

    Article  CAS  PubMed  Google Scholar 

  18. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998. https://doi.org/10.1152/physrev.1998.78.2.547.

    Article  PubMed  Google Scholar 

  19. Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001;40(8):959–75. https://doi.org/10.2174/157015909787602823.

    Article  CAS  PubMed  Google Scholar 

  20. Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des. 2004;10(14):1677–94. https://doi.org/10.2174/1381612043384655.

    Article  CAS  PubMed  Google Scholar 

  21. Halliwell B, Aeschbach R, Löliger J, Aruoma OI. The characterization of antioxidants. Food Chem Toxicol. 1995;33(7):601–17.

    Article  CAS  Google Scholar 

  22. Kabel AM. Free radicals and antioxidants: role of enzymes and nutrition. World J Nutr Health. 2014;2(3):35–8. https://doi.org/10.12691/jnh-2-3-2.

    Article  Google Scholar 

  23. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci. 2018;63(1):68–78.

    Article  Google Scholar 

  24. Gibaldi M, Perrier D. Pharmacokinetics. 1982. https://doi.org/10.1002/bdd.2510040213.

  25. Doogue MP, Polasek TM, Lowe RN, Marrs JC, Saseen JJ, Loke YK, Singh S, Grzeskowiak LE, Gilbert AL, Morrison JL. Therapeutic Advances in Drug Safety. 2012. https://doi.org/10.1177/2042098612469917.

  26. Doogue MP, Polasek TM. The ABCD of clinical pharmacokinetics. 2013. https://doi.org/10.1177/2042098612469335.

  27. Raghavan N, Frost CE, Yu Z, He K, Zhang H, Humphreys WG, Pinto D, Chen S, Bonacorsi S, Wong PC, Zhang D. Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug Metab Dispos. 2009;37(1):74–81. https://doi.org/10.1111/bcp.12393.

    Article  CAS  PubMed  Google Scholar 

  28. Swinney DC. Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discovery. 2004;3(9):801–8.

    Article  CAS  Google Scholar 

  29. Koch-Weser JAN. Bioavailability of drugs. N Engl J Med. 1974;291(5):233–7.

    Article  CAS  Google Scholar 

  30. Melander A. Influence of food on the bioavailability of drugs. Clin Pharmacokinet. 1978;3(5):337–51. https://doi.org/10.2165/00003088-197803050-00001.

    Article  CAS  PubMed  Google Scholar 

  31. Cerf ME. β cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37. https://doi.org/10.3389/fendo.2013.00037.

    Article  Google Scholar 

  32. Ashcroft FM, Rorsman P. Diabetes mellitus and the β cell: the last ten years. Cell. 2012;148(6):1160–71. https://doi.org/10.1016/j.cell.2012.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kahn SE. The relative contributions of insulin resistance and β-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46(1):3–19.

    Article  CAS  Google Scholar 

  34. Weir GC, Bonner-Weir S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes. 2004;53(suppl 3):S16–21. https://doi.org/10.2337/diabetes.53.suppl_3.s16.

    Article  CAS  PubMed  Google Scholar 

  35. Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and β-cell dysfunction. Pflügers Archiv-Eur J Physiol. 2010;460(4):703–18. https://doi.org/10.1007/s00424-010-0862-9.

    Article  CAS  Google Scholar 

  36. Victor VM, Rocha M, Herance R, Hernandez-Mijares A. Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des. 2011;17(36):3947–58. https://doi.org/10.1155/2020/8878172.

    Article  CAS  PubMed  Google Scholar 

  37. Keane KN, Cruzat VF, Carlessi R, de Bittencourt PIH, Newsholme P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid Med Cell Longev. 2015; 2015. https://doi.org/10.1155/2015/181643.

  38. Kajimoto Y, Kaneto H. Role of oxidative stress in pancreatic β-cell dysfunction. In Mitochondrial Pathogenesis. Berlin: Springer; 2004, 168–176.

  39. Russo GT, Giorda CB, Cercone S, Nicolucci A, Cucinotta D, β Decline Study Group. Factors associated with β-cell dysfunction in type 2 diabetes: the β DECLINE study. PLoS One. 2014;9(10):e109702. https://doi.org/10.1371/journal.pone.0109702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH. β-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-β-cell relationships. Proc Natl Acad Sci. 1994;91(23):10878–82.

    Article  CAS  Google Scholar 

  41. Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab. 2012;15(4):518–33. https://doi.org/10.1016/j.cmet.2012.01.023.

    Article  CAS  PubMed  Google Scholar 

  42. DeFronzo RA. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int J Clin Pract. 2004;58:9–21. https://doi.org/10.1111/j.1368-504X.2004.00389.x.

    Article  Google Scholar 

  43. Sivitz WI. Lipotoxicity and glucotoxicity in type 2 diabetes: effects on development and progression. Postgrad Med. 2001;109(4):55–64.

    Article  CAS  Google Scholar 

  44. Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabet Med. 2009;26(12):1185–92.

    Article  Google Scholar 

  45. Boden G. Fatty acid—induced inflammation and insulin resistance in skeletal muscle and liver. Curr DiabRep. 2006;6(3):177–81.

    CAS  Google Scholar 

  46. Igoillo-Esteve M, Marselli L, Cunha DA, Ladrière L, Ortis F, Grieco FA, Dotta F, Weir GC, Marchetti P, Eizirik DL, Cnop M. Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by β cells in type 2 diabetes. Diabetologia. 2010;53(7):1395–405. https://doi.org/10.1007/s00125-010-1707-y.

    Article  CAS  PubMed  Google Scholar 

  47. Zatalia SR, Sanusi H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med Indones. 2013;45(2):141–7.

    PubMed  Google Scholar 

  48. Maxwell SR. Prospects for the use of antioxidant therapies. Drugs. 1995;49(3):345–61.

    Article  CAS  Google Scholar 

  49. Sindhu RK, Koo JR, Roberts CK, Vaziri ND. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: response to insulin and antioxidant therapies. Clin Exp Hypertens. 2004;26(1):43–53.

    Article  CAS  Google Scholar 

  50. Vega-López S, Devaraj S, Jialal I. Oxidative stress and antioxidant supplementation in the management of diabetic cardiovascular disease. J Investig Med. 2004;52(1):24–32. https://doi.org/10.2310/6650.2004.11932.

    Article  PubMed  Google Scholar 

  51. Anderson JW, Gowri MS, Turner J, Nichols L, Diwadkar VA, Chow CK, Oeltjen PR. Antioxidant supplementation effects on low-density lipoprotein oxidation for individuals with type 2 diabetes mellitus. J Am Coll Nutr. 1999;18(5):451–61. https://doi.org/10.1080/07315724.1999.10718883.

    Article  CAS  PubMed  Google Scholar 

  52. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care. 2003;26(5):1589–96. https://doi.org/10.2337/diacare.26.5.1589.

    Article  CAS  PubMed  Google Scholar 

  53. Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(4):471–9. https://doi.org/10.2174/1568010054526359.

    Article  CAS  PubMed  Google Scholar 

  54. Neri S, Signorelli S, Pulvirenti D, Mauceri B, Cilio D, Bordonaro F, Abate G, Interlandi D, Misseri M, Ignaccolo L, Savastano M. Oxidative stress, nitric oxide, endothelial dysfunction and tinnitus. Free Radical Res. 2006;40(6):615–8. https://doi.org/10.1080/10715760600623825.

    Article  CAS  Google Scholar 

  55. Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 2007;7(1–2):106–18. https://doi.org/10.1016/j.mito.2006.11.026.

    Article  CAS  PubMed  Google Scholar 

  56. Davì G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal. 2005;7(1–2):256–68. https://doi.org/10.1089/ars.2005.7.256.

    Article  PubMed  Google Scholar 

  57. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599–622. https://doi.org/10.1210/er.2001-0039.

    Article  CAS  PubMed  Google Scholar 

  58. Gunnett CA, Lund DD, McDowell AK, Faraci FM, Heistad DD. Mechanisms of inducible nitric oxide synthase–mediated vascular dysfunction. Arterioscler Thromb Vasc Biol. 2005;25(8):1617–22. https://doi.org/10.1161/01.ATV.0000172626.00296.ba.

    Article  CAS  PubMed  Google Scholar 

  59. Babior BM. NADPH oxidase. Curr Opin Immunol. 2004;16(1):42–7. https://doi.org/10.1016/j.coi.2003.12.001.

    Article  CAS  PubMed  Google Scholar 

  60. Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J. 2005;386(3):401–16. https://doi.org/10.1042/BJ20041835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci. 2015;16(10):25234–63. https://doi.org/10.3390/ijms161025234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008;275(13):3249–77. https://doi.org/10.1111/j.1742-4658.2008.06488.x.

    Article  CAS  PubMed  Google Scholar 

  63. Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther. 2008;120(3):254–91.

    Article  CAS  Google Scholar 

  64. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci. 2010;107(35):15565–70. https://doi.org/10.1073/pnas.1002178107.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: molecular mechanisms of activation. Free Radical Biol Med. 2014;76:208–26. https://doi.org/10.1016/j.freeradbiomed.2014.07.046.

    Article  CAS  Google Scholar 

  66. Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH, Morawietz H. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun. 2006;344(1):200–5.

    Article  CAS  Google Scholar 

  67. Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD. Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal. 2009;11(10):2535–52. https://doi.org/10.1089/ars.2009.2585.

    Article  CAS  PubMed  Google Scholar 

  68. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313. https://doi.org/10.1152/physrev.00044.2005.

    Article  CAS  PubMed  Google Scholar 

  69. Ma MW, Wang J, Dhandapani KM, Wang R, Brann DW. NADPH oxidases in traumatic brain injury–Promising therapeutic targets? Redox biology. 2018;16:285–93. https://doi.org/10.1016/j.redox.2018.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23.

    Article  CAS  Google Scholar 

  71. Petri S, Körner S, Kiaei M. Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int. 2012. https://doi.org/10.1155/2012/878030.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ma Q. Role of nrf2 in oxidative stress and toxicity. Ann Rev Pharmacol Toxicol. 2013;53:401–26. https://doi.org/10.1146/annurev-pharmtox-011112-140320.

    Article  CAS  Google Scholar 

  73. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017;1863(2):585–97. https://doi.org/10.1016/j.bbadis.2016.11.005.

    Article  CAS  PubMed  Google Scholar 

  74. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284(20):13291–5. https://doi.org/10.1074/jbc.r900010200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduction. 2011. https://doi.org/10.1155/2011/792639.

    Article  Google Scholar 

  76. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016. https://doi.org/10.1155/2016/4350965.

  77. Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev. 2008;60(3):261–310. https://doi.org/10.1124/pr.107.00106.

    Article  CAS  PubMed  Google Scholar 

  78. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807–69. https://doi.org/10.1152/physrev.2001.81.2.807.

    Article  CAS  PubMed  Google Scholar 

  79. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118. https://doi.org/10.4103/0973-7847.70902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moussa Z, Judeh ZM, Ahmed SA. Nonenzymatic exogenous and endogenous antioxidants. In Free Radical Medicine and Biology. IntechOpen; 2019.

  81. Is Y, Woodside JV. Antioxidant in health and disease. J Clin Pathol. 2001;54(3):176–86. https://doi.org/10.1136/jcp.54.3.176.

    Article  Google Scholar 

  82. Oldham KM, Bowen PE. Oxidative stress in critical care: is antioxidant supplementation beneficial? J Am Diet Assoc. 1998;98(9):1001–8. https://doi.org/10.1016/j.jff.2019.103508.

    Article  CAS  PubMed  Google Scholar 

  83. Chow CK. Vitamin E and oxidative stress. Free Radical Biol Med. 1991;11(2):215–32. https://doi.org/10.1016/0891-5849(91)90174-2.

    Article  CAS  Google Scholar 

  84. Pazdro R, Burgess JR. The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev. 2010;131(4):276–86.

    Article  CAS  Google Scholar 

  85. Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr. 2005;25:151–74. https://doi.org/10.1146/annurev.nutr.24.012003.132446.

    Article  CAS  PubMed  Google Scholar 

  86. Feillet-Coudray C, Rock E, Coudray C, Grzelkowska K, Azais-Braesco V, Dardevet D, Mazur A. Lipid peroxidation and antioxidant status in experimental diabetes. Clin Chim Acta. 1999;284(1):31–43. https://doi.org/10.1016/s0009-8981(99)00046-7.

    Article  CAS  PubMed  Google Scholar 

  87. Jain AB, Jain VA. Vitamin E, its beneficial role in diabetes mellitus (DM) and its complications. J Clin Diagnostic Res. 2012;6(10):1624. https://doi.org/10.7860/jcdr/2012/4791.2625.

    Article  CAS  Google Scholar 

  88. Scott DL, Kelleher J, Losowsky MS. The influence of dietary selenium and vitamin E on glutathione peroxidase and glutathione in the rat. Biochim Biophys Acta Gen Subjects. 1977;497(1):218–24. https://doi.org/10.1016/0304-4165(77)90154-4.

    Article  CAS  Google Scholar 

  89. Wagh SP, Bhagat SP, Bankar N, Jain K. Role of Vitamin-C Supplementation in Type II Diabetes Mellitus. Int J Cur Res Rev. 2020. https://doi.org/10.31782/IJCRR.2020.121311.

  90. Dakhale GN, Chaudhari HV, Shrivastava M. Supplementation of vitamin C reduces blood glucose and improves glycosylated hemoglobin in type 2 diabetes mellitus: a randomized, double-blind study. Adv Pharmacol Sci. 2011. https://doi.org/10.1155/2011/195271.

  91. Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem. 2013;28(4):314–28. https://doi.org/10.1007/s12291-013-0375-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Casagrande D, Waib PH, Júnior AAJ. Mechanisms of action and effects of the administration of Coenzyme Q10 on metabolic syndrome. J Nutr Intermediary Metab. 2018;13:26–32.

    Article  Google Scholar 

  93. Saini R. Coenzyme Q10: the essential nutrient. J Pharm Bioallied Sci. 2011;3(3):466–7.

    Article  CAS  Google Scholar 

  94. Molyneux SL, Young JM, Florkowski CM, Lever M, George PM. Coenzyme Q10: is there a clinical role and a case for measurement? Clin Biochem Rev. 2008;29(2):71.

    PubMed  PubMed Central  Google Scholar 

  95. Shen Q, Pierce JD. Supplementation of coenzyme Q10 among patients with type 2 diabetes mellitus. Healthcare. 2015;3(2):296–309. https://doi.org/10.3390/healthcare3020296 (Multidisciplinary Digital Publishing Institute).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Shimura Y, Hogimoto S. Significance of coenzyme Q10 on the treatment of diabetes mellitus. Jpn J Clin Exp Med. 1981;58:1349–52.

    Google Scholar 

  97. Bansal D, Badhan Y, Gudala K, Schifano F. Ruboxistaurin for the treatment of diabetic peripheral neuropathy: a systematic review of randomized clinical trials. Diabetes Metab J. 2013;37(5):375. https://doi.org/10.4093/dmj.2013.37.5.375.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu Y, Lei S, Gao X, Mao X, Wang T, Wong GT, Vanhoutte PM, Irwin MG, Xia Z. PKCβ inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfuntion in rats with streptozotocin-induced diabetes. Clin Sci. 2012;122(4):161–73. https://doi.org/10.1042/cs20110176.

    Article  CAS  Google Scholar 

  99. Javey G, Schwartz SG, Flynn HW Jr, Aiello LP, Sheetz MJ. Ruboxistaurin: review of safety and efficacy in the treatment of diabetic retinopathy. Clin Med Insights Ther. 2010;2:CMT-S5046. https://doi.org/10.4137/CMT.S5046.

    Article  Google Scholar 

  100. Budhiraja S, Singh J. Protein kinase C β inhibitors: a new therapeutic target for diabetic nephropathy and vascular complications. Fundam Clin Pharmacol. 2008;22(3):231–40.

    Article  CAS  Google Scholar 

  101. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31. https://doi.org/10.1161/CIRCRESAHA.110.217117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care. 2005;28(11):2686–90. https://doi.org/10.2337/diacare.28.11.2686.

    Article  CAS  PubMed  Google Scholar 

  103. Group, P.D. Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy. Ophthalmology. 2006;113(12):2221–30.

    Article  Google Scholar 

  104. Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene. 2014;533(2):469–76. https://doi.org/10.1016/j.gene.2013.10.017.

    Article  CAS  PubMed  Google Scholar 

  105. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375(9733):2267–77. https://doi.org/10.1016/S0140-6736(10)60408-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes. 2002;51(7):2005–11.

    Article  CAS  Google Scholar 

  107. Arsenian MA. Carnitine and its derivatives in cardiovascular disease. Progress Cardiovasc Dis. 1997;40(3):265–86.

    Article  CAS  Google Scholar 

  108. Bahtiyar G, Gutterman D, Lebovitz H. Heart failure: a major cardiovascular complication of diabetes mellitus. Curr Diabetes Rep. 2016;16(11):1–14.

    Article  CAS  Google Scholar 

  109. Bursell SE, Clermont AC, Aiello LP, Aiello LM, Schlossman DK, Feener EP, Laffel LORL, King GL. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care. 1999;22(8):1245–51. https://doi.org/10.2337/diacare.22.8.1245.

    Article  CAS  PubMed  Google Scholar 

  110. Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH. Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-de pend ent manner. J Biol Chem. 2009;284(24):16090–8.

    Article  CAS  Google Scholar 

  111. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4(3):181–9. https://doi.org/10.1038/nri1312.

    Article  CAS  PubMed  Google Scholar 

  112. Leopold G. Balanced pharmacokinetics and metabolism of bisoprolol. J Cardiovasc Pharmacol. 1986;8:S16-20. https://doi.org/10.1097/00005344-198511001-00003.

    Article  CAS  PubMed  Google Scholar 

  113. Mingrone G. Carnitine in type 2 diabetes. Ann N Y Acad Sci. 2004;1033(1):99–107. https://doi.org/10.1196/annals.1320.009.

    Article  CAS  PubMed  Google Scholar 

  114. Power RA, Hulver MW, Zhang JY, Dubois J, Marchand RM, Ilkayeva O, Muoio DM, Mynatt RL. Carnitine revisited: potential use as adjunctive treatment in diabetes. Diabetologia. 2007;50(4):824–32.

    Article  CAS  Google Scholar 

  115. Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T, Kuroi T, Iwashita T, Funakubo M, Kayama Y, Akazawa C. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience. 2013;248:345–58. https://doi.org/10.1016/j.neuroscience.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  116. Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 2013;528:27–48.

    Article  CAS  Google Scholar 

  117. Vidal-Casariego A, Burgos-Peláez R, Martínez-Faedo C, Calvo-Gracia F, Valero-Zanuy MÁ, Luengo-Pérez LM, Cuerda-Compés C. Metabolic effects of L-carnitine on type 2 diabetes mellitus: systematic review and meta-analysis. Exp Clin Endocrinol Diabetes. 2013;121(04):234–8. https://doi.org/10.1055/s-0033-1333688.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, Lopaschuk GD. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ Heart Fail. 2013;6(5):1039–48. https://doi.org/10.1161/circheartfailure.112.000228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amala Reddy.

Ethics declarations

Conflict of interest

There is no potential Conflict of Interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, V., Kunnath, J. & Reddy, A. Prospective dietary radical scavengers: Boon in Pharmacokinetics, overcome insulin obstruction via signaling cascade for absorption during impediments in metabolic disorder like Diabetic Mellitus. J Diabetes Metab Disord 21, 1149–1169 (2022). https://doi.org/10.1007/s40200-022-01038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01038-8

Keywords

Navigation