Skip to main content

Advertisement

Log in

Metabolic syndrome and underlying genetic determinants-A systematic review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

The metabolic syndrome is a cluster of heritable and related traits which has been associated with a range of pathophysiological factors including dyslipidaemia, abdominal obesity, increased fasting plasma glucose (FPG) and hypertension. The documented genetic basis of the metabolic syndrome include several chromosomal positions, numerous candidate gene-associated polymorphisms, different genetic variants, which are linked to the syndrome either as a trait or entities mainly linked to metabolic process. Additionally, the latest findings related to the contribution of epigenetic mechanisms, microRNAs, sporadic variants, non-coding RNAs, and assessing the role of genes in molecular systems has enhanced our understanding of the syndrome. Considerable work has been done to understand the underlying disease mechanisms by elucidating its genetic etiology. Nonetheless, a common shared genetic cause has not been established to clarify the coexistence of their components and further investigation is required. While mostly neglected and rarely known, hereditary predisposition needs to be studied, including with the current defective phenotypic condition descriptions. Metabolic syndrome is a multi-faceted characteristic with abundant properties and the condition can arise from interactions between environmental variables such as physical inactivity, caloric obesity and genetic susceptibility. Although there is support for genetic determinants from family and twin research, there is still no recognised genomic DNA marker for genetic association and linkages with quite a long way off potential for clinical application. In the present review efforts have been made to through light on the various genetic determinants with large effects that underlie with the association of these traits to this syndrome. The heterogeneity and multifactorial heritability of MetS, however, has been a challenge towards understanding the factors underlying the association of these traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Smith SC Jr. Joint scientific statement. Circulation. 2009;120:1640–5.

    Article  CAS  PubMed  Google Scholar 

  2. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WPT, Loria CM, Smith SC Jr, et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

    Article  CAS  PubMed  Google Scholar 

  3. Eckel RH, Alberti KGMM, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375:181–3.

    Article  PubMed  Google Scholar 

  4. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al. On behalf of the American Heart Association Council on Epidemiology and Prevention statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics—2020 update: A report from the American Heart Association. Circulation. 2020;141:e139–596.

    Article  PubMed  Google Scholar 

  5. Scuteri A, Laurent S, Cucca F, Cockcroft J, Cunha PG, Mañas LR, Raso FUM, Muiesan ML, Ryliškytė L, Rietzschel E, et al. Metabolic syndrome across Europe: Different clusters of risk factors. Eur J Prev Cardiol. 2015;22:486–91.

    Article  PubMed  Google Scholar 

  6. Sygnowska E, Piwońska A, Waśkiewicz A, Broda G. Socioeconomic factors and the risk of metabolic syndrome in the adult Polish population: The WOBASZ study. Kardiol Pol. 2012;70:718–27.

    PubMed  Google Scholar 

  7. Yankey BA. The Connection between marijuana, cigarette smoking and netabolic syndrome among adults in the United States. Dissertation, Georgia State University. 2017. https://scholarworks.gsu.edu/sph_diss/18.

  8. Suliga E, Kozieł D, Cieśla E, Rebak D, Głuszek S. Dietary patterns in relation to metabolic syndrome among adults in Poland: A Cross-sectional study. Nutrients. 2017;9:1366.

    Article  PubMed Central  CAS  Google Scholar 

  9. Kant AK, Graubard BI. 40-year trends in meal and snack eating behaviors of American adults. J Acad Nutr Diet. 2015;115:50–63.

    Article  PubMed  Google Scholar 

  10. Riou J, Lefevre T, Parizot I, Lhuissier A, Chauvin P. Is there still a French eating model? A taxonomy of eating behaviors in adults living in the Paris metropolitan area in 2010. PLoS ONE. 2015;10:e0119161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gupta NJ, Kumar V, Panda S. A camera-phone based study reveals erratic eating pattern and disrupted daily eating-fasting cycle among adults in India. PLoS ONE. 2017;12:e0172852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gill S, Panda S. A Smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22:789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chow LS, Manoogian ENC, Alvear A, Fleischer JG, Thor H, Dietsche K, Wang Q, Hodges JS, Esch N, Malaeb S, et al. Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: A feasibility study. Obesity. 2020;28:860–9.

    Article  CAS  PubMed  Google Scholar 

  14. Zarrinpar A, Chaix A, Panda S. Daily eating patterns and their impact on health and disease. Trends Endocrinol Metab. 2016;27:69–83.

    Article  CAS  PubMed  Google Scholar 

  15. Cahill LE, Chiuve SE, Mekary RA, Jensen MK, Flint AJ, Hu FB, Rimm EB. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation. 2013;128:337–43.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pot GK, Almoosawi S, Stephen AM. Meal irregularity and cardiometabolic consequences: Results from observational and intervention studies. Proc Nutr Soc. 2016;75:475–86.

    Article  PubMed  Google Scholar 

  17. Ha K, Song Y. Associations of meal timing and frequency with obesity and metabolic syndrome among Korean adults. Nutrients. 2019;11:2437.

    Article  CAS  PubMed Central  Google Scholar 

  18. Suliga E, Cieśla E, Rębak D, Kozieł D, Głuszek S. Relationship between sitting time, physical activity, and metabolic syndrome among adults depending on body mass index (BMI). Med Sci Monit. 2018;24:7633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sperling LC, Mechanick JI, Neeland IJ, Herrick CJ, Després JP, Ndumele CE, Vijayaraghavan K, Handelsman Y, Puckrein GA, Araneta MRG, et al. The CardioMetabolic Health Alliance. Working toward a new care model for the metabolic syndrome. Am Coll Cardiol. 2015;66:1050–67.

    Article  Google Scholar 

  20. Vera B, Dashti HS, Gómez-Abellán P, Hernández AM, Esteban A, Scheer FAJL, Saxena R, Garaulet M. Modifiable lifestyle behaviors, but not a genetic risk score, associate with metabolic syndrome in evening chronotypes. Sci Rep. 2018;8:945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pérez-Martínez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI, de Koning L, Delgado-Lista J, Díaz-López A, Drevon CA, et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr Rev. 2017;75:307–26.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Heymsfield SB, Harp JB, Reitman ML, Beetsch JW, Schoeller DA, Erondu N, Pietrobelli A. Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. Am J Clin Nutr. 2007;85:346–54.

    Article  CAS  PubMed  Google Scholar 

  23. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, Accurso A, Frassetto L, Gower BA, McFarlane SI, et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition. 2015;31:1–13.

    Article  CAS  PubMed  Google Scholar 

  24. Fallaize R, Carvalho-Wells AL, Tierney AC, Marin C, Kieć-Wilk B, Dembińska-Kieć A, et al. APOE genotype influences insulin resistance, apolipoprotein CII and CIII according to plasma fatty acid profile in the Metabolic Syndrome. Sci Rep. 2017;7:6274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rodriguez-Nunez I, Caluag T, Kirby K, Rudick CN, Dziarski R, Gupta D. Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction. Sci Rep. 2017;7(1):548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang H, Dong S, Xu H, Qian J, Yang J. Genetic variants in FTO associated with metabolic syndrome: a meta- and gene-based analysis. Mol Biol Rep. 2012;39(5):5691–8.

    Article  CAS  PubMed  Google Scholar 

  27. Stančáková A, Laakso M. Genetics of metabolic syndrome. Rev Endocr Metab Disord. 2014;15(4):243–52.

    Article  PubMed  CAS  Google Scholar 

  28. Milagro FI, Gomez-Abellan P, Campion J, Martinez JA, Ordovas JM, Garaulet M. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29(9):1180–94.

  29. Hosoki K, Ogata T, Kagami M, Tanaka T, Saitoh S. Epimutation (hypomethylation) affecting the chromosome 14q32.2 imprinted region in a girl with upd(14)mat-like phenotype. European Journal of Human Genetics : EJHG. 2008;16(8):1019–23.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Kent JW 2nd, Lee A, Cerjak D, Ali O, et al. Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a Northern European family population. BMC Med Genomics. 2013;6:9.

  31. Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 2014;43:1–23.

    Article  PubMed  Google Scholar 

  32. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56:1113–32.

    Article  PubMed  Google Scholar 

  33. Lahiry P, Pollex RL, Hegele RA. Uncloaking the genetic determinants of metabolic syndrome. J Nutrigenet Nutrigenomics. 2008;1(3):118–25.

    CAS  PubMed  Google Scholar 

  34. Falkner B, Cossrow ND. Prevalence of metabolic syndrome and obesity-associated hypertension in the racial ethnic minorities of the United States. Curr Hypertens Rep. 2014;16(7):449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Berenjy S, Rahmat AB, Hanachi P, Sunn LM, Yassin ZB, Sahebjamee F. Metabolic Syndrome in Iran, Global. J Health Sci. 2010;2(2):117–22.

    Google Scholar 

  36. Krishnamoorthy Y, Rajaa S, Murali S, Rehman T, Sahoo J, Kar SS. Prevalenceof metabolic syndrome among adult population in India: A systematic review and meta-analysis. PLoS ONE. 2020;15(10): e0240971. https://doi.org/10.1371/journal.pone.0240971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song QB, Zhao Y, Liu YQ, Zhang J, Xin SJ, Dong GH. Sex difference in the prevalence of metabolic syndrome and cardiovascular-related risk factors in urban adults from 33 communities of China: the CHPSNE study. Diabe-tes Vasc Dis Res. 2015;12(3):189–98.

    Article  CAS  Google Scholar 

  38. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28. https://doi.org/10.1016/S0140-6736(05)66378-7.

    Article  CAS  PubMed  Google Scholar 

  39. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: defini-tions and controversies. BMC Med. 2011;9:48.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009;2(5–6):231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jang MJ, Choi WI, Bang SM, Lee T, Kim YK, Ageno W, et al. Metabolic syndrome is associated with venous thromboembolism in the Korean population. Arterioscler Thromb Vasc Biol. 2009;29(3):311–5.

    Article  CAS  PubMed  Google Scholar 

  42. Gisondi P, Fostini AC, Fossà I, Girolomoni G, Targher G. Psoriasis and the metabolic syndrome. Clin Dermatol. 2018;36(1):21–8.

    Article  PubMed  Google Scholar 

  43. Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol. 2018;40(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  44. Habtezion A. Inflammation in acute and chronic pancreatitis. Curr Opin Gastroenterol. 2015;31(5):395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen Z, Wang X, Zhen Z, Wang Y, Sun P. Metabolic syndrome components and acute pancreatitis: a case–control study in China. BMC Gastroenterol. 2021;21(1):1–8.

    Article  CAS  Google Scholar 

  46. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care. 2005;28:1769–78.

    Article  PubMed  Google Scholar 

  47. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.

    Article  CAS  PubMed  Google Scholar 

  48. WHO (1999). Report of a WHO consultation. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. [http://www.staff.newcastle.ac.uk/.philip.home/who_dmc.htm] (accessed 9 May 2006).

  49. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  50. Alberti KG, et al. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366:1059–62.

    Article  PubMed  Google Scholar 

  51. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med. 1999;16:442–3.

    Article  CAS  PubMed  Google Scholar 

  52. Einhorn D, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract. 2003;9:237–52.

    Article  PubMed  Google Scholar 

  53. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517:302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: From experimental genetics to human disease. Circ Res. 2010;106:447–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szewczyk-Golec K, Woźniak A, Reiter RA. Inter-relationship of the chronobiotic, melatonin, with leptin and adiponectin: Implications for obesity. J Pineal Res. 2015;59:277–91.

    Article  CAS  PubMed  Google Scholar 

  56. Szewczyk-Golec K, Rajewski P, Gackowski M, Mila-Kierzenkowska C, Wesołowski R, Sutkowy P, Pawłowska M, Woźniak A. Melatonin supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet. Oxid Med Cell Longev. 2017;2017:8494107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Qian J, Morris CJ, Caputo R, Garaulet M, Scheer FAJL. Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans. Int J Obes. 2019;43:1644–9.

    Article  CAS  Google Scholar 

  58. Garaulet M, Qian J, Florez JC, Arendt J, Saxena R, Scheer FAJL. Melatonin effects on glucose metabolism: Time to unlock the controversy. Trends Endocrinol Metab. 2020;31:192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12.

    Article  CAS  PubMed  Google Scholar 

  60. Park HK, Kwak MK, Kim HJ, Ahima RS. Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med. 2017;32:239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rutter M, Meigs JB, Sullivan LM, D’Agostino RB, Wilson PW. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the framingham offspring study. Circulation. 2004;110:380–5.

    Article  CAS  PubMed  Google Scholar 

  62. Robertsa CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84:705–12.

    Article  CAS  Google Scholar 

  63. Han TS, Sattar N, Williams K, Gonzalez-Villalpando C, Lean ME, Haffner SM. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City diabetes study. Diabetes Care. 2002;25:2016–21.

    Article  CAS  PubMed  Google Scholar 

  64. Sattar N, Gaw A, Scherbakova O, Ford I, O’Reilly DS, Haffner SM, Isles C, Macfarlane PW, Packard CJ, Cobbe SM, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland coronary prevention study. Circulation. 2003;108:414–9.

    Article  CAS  PubMed  Google Scholar 

  65. Malik S, Wong ND, Franklin S, Pio J, Fairchild C, Chen R. Cardiovascular disease in U.S. patients with metabolic syndrome, diabetes, and elevated C-reactive protein. Diabetes Care. 2005;28:690–3.

    Article  CAS  PubMed  Google Scholar 

  66. Swiatkiewicz I, Taub PR. The usefulness of C-reactive protein for the prediction of post-infarct left ventricular systolic dysfunction and heart failure. Kardiol Pol. 2018;76:821–9.

    Article  PubMed  Google Scholar 

  67. Swiatkiewicz I, Magielski P, Kubica A, Zadourian A, DeMaria AN, Taub PR. Enhanced inflammation is a marker for risk of post-infarct ventricular dysfunction and heart failure. Int J Mol Sci. 2020;21:807.

    Article  CAS  PubMed Central  Google Scholar 

  68. Aronson D, Bartha P, Zinder O, Kerner A, Markiewicz W, Avizohar O, Brook GJ, Levy Y. Obesity is the major determinant of elevated C-reactive protein in subjects with the metabolic syndrome. Int J Obes. 2004;28:674–9.

    Article  CAS  Google Scholar 

  69. Aronson D, Sella R, Sheikh-Ahmad M, Kerner A, Avizohar O, Rispler S, Bartha P, Markiewicz W, Levy Y, Brook GJ. The association between cardiorespiratory fitness and C-reactive protein in subjects with the metabolic syndrome. J Am Coll Cardiol. 2004;44:2003–7.

    Article  CAS  PubMed  Google Scholar 

  70. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944–8.

    Article  CAS  PubMed  Google Scholar 

  71. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50:567–75.

    Article  CAS  PubMed  Google Scholar 

  72. Rania V, Deepb G, Singhc RK, Palled K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93.

    Article  CAS  Google Scholar 

  73. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    Article  CAS  PubMed  Google Scholar 

  74. Kahn R, et al. The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2005;48:1684–99.

    Article  CAS  PubMed  Google Scholar 

  75. Stern MP, et al. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care. 2004;27:2676–81.

    Article  PubMed  Google Scholar 

  76. Greenland P, O’Malley PG. When is a new prediction marker useful? A consideration of lipoprotein-associated phospholipase A2 and C-reactive protein for stroke risk. Arch Intern Med. 2005;165:2454–6.

    Article  CAS  PubMed  Google Scholar 

  77. Lawlor DA, et al. Plasma adiponectin levels are associated with insulin resistance, but do not predict future risk of coronary heart disease in women. J Clin Endocrinol Metab. 2005;90:5677–83.

    Article  CAS  PubMed  Google Scholar 

  78. Hegele RA, Pollex RL. Genetic and physiological insights into the metabolic syndrome. Am J Physiol Regul Integr Comp Physiol. 2005;289:R663–9.

    Article  CAS  PubMed  Google Scholar 

  79. Sutton BS, et al. Genetic analysis of adiponectin and obesity in Hispanic families: the IRAS Family Study. Hum Genet. 2005;117:107–18.

    Article  CAS  PubMed  Google Scholar 

  80. Jeunemaitre X, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992;71:169–80.

    Article  CAS  PubMed  Google Scholar 

  81. Sing CF, Davignon J. Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Am J Hum Genet. 1985;37:268–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Waterworth DM, et al. Contribution of apolipoprotein C-III gene variants to determination of triglyceride levels and interaction with smoking in middle-aged men. Arterioscler Thromb Vasc Biol. 2000;20:2663–9.

    Article  CAS  PubMed  Google Scholar 

  83. Rosmond R. The glucocorticoid receptor gene and its association to metabolic syndrome. Obes Res. 2002;10:1078–86.

    Article  CAS  PubMed  Google Scholar 

  84. Kondo H, et al. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes. 2002;51:2325–8.

    Article  CAS  PubMed  Google Scholar 

  85. Ohashi K, et al. Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J Am Coll Cardiol. 2004;43:1195–200.

    Article  CAS  PubMed  Google Scholar 

  86. Siffert W, et al. Association of a human G-protein β3 subunit variant with hypertension. Nat Genet. 1998;18:45–8.

    Article  CAS  PubMed  Google Scholar 

  87. Siffert W, et al. Worldwide ethnic distribution of the G protein β3 subunit 825T allele and its association with obesity in Caucasian, Chinese, and Black African individuals. J Am Soc Nephrol. 1999;10:1921–30.

    Article  CAS  PubMed  Google Scholar 

  88. Ridderstrale M, et al. FOXC2 mRNA expression and a 5’ untranslated region polymorphism of the gene are associated with insulin resistance. Diabetes. 2002;51:3554–60.

    Article  CAS  PubMed  Google Scholar 

  89. Kotzka J, Muller-Wieland D. Sterol regulatory element-binding protein (SREBP)-1: gene regulatory target for insulin resistance? Expert Opin Ther Targets. 2004;8:141–9.

    Article  CAS  PubMed  Google Scholar 

  90. Lin H-F, Boden-Albala B, Juo S, Park N, Rundek T, Sacco R. Heritabilities of the metabolic syndrome and its components in the Northern Manhattan Family Study. Diabetologia. 2005;48(10):2006–12.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sookoian S, Pirola CJ. Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep. 2011;13(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  92. Carmelli D, et al. Clustering of hypertension, diabetes, and obesity in adult male twins: same genes or same environments? Am J Hum Genet. 1994;55:566–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Edwards KL, et al. Heritability of factors of the insulin resistance syndrome in women twins. Genet Epidemiol. 1997;14:241–53.

    Article  CAS  PubMed  Google Scholar 

  94. Austin MA, et al. Heritability of multivariate factors of the metabolic syndrome in nondiabetic Japanese americans. Diabetes. 2004;53:1166–9.

    Article  CAS  PubMed  Google Scholar 

  95. Chen W, et al. The association of cardiovascular risk factor clustering related to insulin resistance syndrome (Syndrome X) between young parents and their offspring: the Bogalusa Heart Study. Atherosclerosis. 1999;145:197–205.

    Article  CAS  PubMed  Google Scholar 

  96. Lee KE, et al. Familial aggregation of components of the multiple metabolic syndrome in the Framingham Heart and Offspring Cohorts: Genetic Analysis Workshop Problem 1. BMC Genet. 2003;4(Suppl 1):S94.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wu KD, et al. Clustering and heritability of insulin resistance in Chinese and Japanese hypertensive families: a Stanford-Asian Pacific Program in Hypertension and Insulin Resistance sibling study. Hypertens Res. 2002;25:529–36.

    Article  CAS  PubMed  Google Scholar 

  98. Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigantype familial partial lipodystrophy. Hum Mol Genet. 2000;9:109–12.

    Article  CAS  PubMed  Google Scholar 

  99. Hegele RA. Premature atherosclerosis associated with monogenic insulin resistance. Circulation. 2001;103:2225–9.

    Article  CAS  PubMed  Google Scholar 

  100. Kissebah AH, et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA. 2000;97:14478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arya R, et al. Factors of insulin resistance syndrome—related phenotypes are linked to genetic locations on chromosomes 6 and 7 in nondiabetic Mexican-Americans. Diabetes. 2002;51:841–7.

    Article  CAS  PubMed  Google Scholar 

  102. Loos RJ, et al. Genome-wide linkage scan for the metabolic syndrome in the HERITAGE Family Study. J Clin Endocrinol Metab. 2003;88:5935–43.

    Article  CAS  PubMed  Google Scholar 

  103. Langefeld CD, et al. Linkage of the metabolic syndrome to 1q23-q31 in Hispanic families: the Insulin Resistance Atherosclerosis Study Family Study. Diabetes. 2004;53:1170–4.

    Article  CAS  PubMed  Google Scholar 

  104. Pollex RL, Hegele RA. Complex trait locus linkage mapping in atherosclerosis: time to take a step back before moving forward? Arterioscler Thromb Vasc Biol. 2005;25:1541–4.

    Article  CAS  PubMed  Google Scholar 

  105. Ambye L, et al. Studies of the Gly482Ser polymorphism of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) gene in Danish subjects with the metabolic syndrome. Diabetes Res Clin Pract. 2005;67:175–9.

    Article  CAS  PubMed  Google Scholar 

  106. Andersen G, et al. Studies of the association of the GNB3 825C → T polymorphism with components of the metabolic syndrome in white Danes. Diabetologia. 2005;49:75–82.

    Article  PubMed  CAS  Google Scholar 

  107. Bing C, et al. Large-scale studies of the Leu72Met polymorphism of the ghrelin gene in relation to the metabolic syndrome and associated quantitative traits. Diabet Med. 2005;22:1157–60.

    Article  CAS  PubMed  Google Scholar 

  108. Costa LA, et al. The ACE insertion/deletion polymorphism is not associated with the metabolic syndrome (WHO Definition) in Brazilian type 2 diabetic patients. Diabetes Care. 2002;25:2365–6.

    Article  PubMed  Google Scholar 

  109. Dallongeville J, et al. The Gly16 → Arg16 and Gln27 → Glu27 polymorphisms of β2-adrenergic receptor are associated with metabolic syndrome in men. J Clin Endocrinol Metab. 2003;88:4862–6.

    Article  CAS  PubMed  Google Scholar 

  110. Erkkila AT, et al. Variation in the fatty acid binding protein 2 gene is not associated with markers of metabolic syndrome in patients with coronary heart disease. Nutr Metab Cardiovasc Dis. 2002;12:53–9.

    CAS  PubMed  Google Scholar 

  111. Fernandez ML, et al. Association of NOS3 gene with metabolic syndrome in hypertensive patients. Thromb Haemost. 2004;92:413–48.

    Article  CAS  PubMed  Google Scholar 

  112. Frederiksen L, et al. Comment: studies of the Pro12Ala polymorphism of the PPAR-γ gene in the Danish MONICA cohort: homozygosity of the Ala allele confers a decreased risk of the insulin resistance syndrome. J Clin Endocrinol Metab. 2002;87:3989–92.

    CAS  PubMed  Google Scholar 

  113. Frederiksen L, et al. No interactions between polymorphisms in the β3-adrenergic receptor gene and the PPAR-γ gene on the risk of the insulin resistance syndrome in the Danish MONICA cohort. Diabetologia. 2003;46:729–31.

    Article  CAS  PubMed  Google Scholar 

  114. Guettier JM, et al. Polymorphisms in the fatty acid-binding protein 2 and apolipoprotein C-III genes are associated with the metabolic syndrome and dyslipidemia in a South Indian population. J Clin Endocrinol Metab. 2005;90:1705–11.

    Article  CAS  PubMed  Google Scholar 

  115. Hamid YH, et al. Variations of the interleukin-6 promoter are associated with features of the metabolic syndrome in Caucasian Danes. Diabetologia. 2005;48:251–60.

    Article  CAS  PubMed  Google Scholar 

  116. Hamid YH, et al. The common T60N polymorphism of the lymphotoxin-alpha gene is associated with type 2 diabetes and other phenotypes of the metabolic syndrome. Diabetologia. 2005;48:445–51.

    Article  CAS  PubMed  Google Scholar 

  117. Lee YJ, Tsai JC. ACE gene insertion/deletion polymorphism associated with 1998 World Health Organization definition of metabolic syndrome in Chinese type 2 diabetic patients. Diabetes Care. 2002;25:1002–8.

    Article  CAS  PubMed  Google Scholar 

  118. McCarthy JJ, et al. Evidence for substantial effect modification by gender in a large-scale genetic association study of the metabolic syndrome among coronary heart disease patients. Hum Genet. 2003;114:87–98.

    Article  CAS  PubMed  Google Scholar 

  119. Meirhaeghe A, et al. Association between peroxisome proliferator-activated receptor γ haplotypes and the metabolic syndrome in French men and women. Diabetes. 2005;54:3043–8.

    Article  CAS  PubMed  Google Scholar 

  120. Meirhaeghe A, et al. Lack of association between certain candidate gene polymorphisms and the metabolic syndrome. Mol Genet Metab. 2005;86:293–9.

    Article  CAS  PubMed  Google Scholar 

  121. Pollex RL, et al. Metabolic syndrome in aboriginal Canadians: prevalence and genetic associations. Atherosclerosis. 2006;184:121–9.

    Article  CAS  PubMed  Google Scholar 

  122. Rhee EJ, et al. Effects of two common polymorphisms of peroxisome proliferator-activated receptor-γ gene on metabolic syndrome. Arch Med Res. 2006;37:86–94.

    Article  CAS  PubMed  Google Scholar 

  123. Robitaille J, et al. Association between the PPARα-L162V polymorphism and components of the metabolic syndrome. J Hum Genet. 2004;49:482–9.

    Article  CAS  PubMed  Google Scholar 

  124. Steinle NI, et al. Variation in the lamin A/C gene: associations with metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24:1708–13.

    Article  CAS  PubMed  Google Scholar 

  125. Povel CM, Boer JM, Reiling E, Feskens EJ. Genetic variants and the metabolic syndrome: a systematic review, Obesity reviews : an official journal of the International Association for the Study of. Obesity. 2011;12(11):952–67.

    CAS  Google Scholar 

  126. F.V. do Nascimento, V. Piccoli, M.A. Beer, A.D. von Frankenberg, D. Crispim, F. Gerchman, Association of HSD11B1 polymorphic variants and adipose tissue gene expression with metabolic syndrome, obesity and type 2 diabetes mellitus: a systematic review, Diabetology & metabolic syndrome 7 (2015) 38

  127. Zhou JM, Zhang M, Wang S, Wang BY, Han CY, Ren YC, et al. Association of the ADIPOQ Rs2241766 and Rs266729 Polymorphisms with Metabolic Syndrome in the Chinese Population: A Metaanalysis. Biomedical and environmental sciences : BES. 2016;29(7):505–15.

    PubMed  Google Scholar 

  128. Hegele RA, et al. Genetic variation in LMNA modulates plasma leptin and indices of obesity in aboriginal Canadians. Physiol Genomics. 2000;3:39–44.

    Article  CAS  PubMed  Google Scholar 

  129. Hegele RA, et al. Common genomic variation in LMNA modulates indexes of obesity in Inuit. J Clin Endocrinol Metab. 2001;86:2747–51.

    CAS  PubMed  Google Scholar 

  130. Ziki MDA, Mani A. Metabolic Syndrome: Genetic Insights into Disease Pathogenesis. Curr Opin Lipidol. 2016;27(2):162–71. https://doi.org/10.1097/MOL.0000000000000276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Barroso I, McCarthy MI. The genetic basis of metabolic disease. Cell. 2019;177(1):146–61. https://doi.org/10.1016/j.cell.2019.02.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hegele RA. SNP judgments and freedom of association. Arterioscler Thromb Vasc Biol. 2002;22:1058–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the persons who helped in this review. Without their help this review would not have been possible.

Author information

Authors and Affiliations

Authors

Contributions

SR developed the concept and designed the methodology for the systematic search. HAW did systematic search and prepared the initial draft. SA added to the initial draft. All authors participated in revising of the manuscript before submission.

Corresponding authors

Correspondence to Hilal Ahmad Wani or Muneeb U Rehman.

Ethics declarations

Conflict of Interest

The authors declare that there was no conflict of interest.

Competing interests

The authors declare that there were no competing interests.

Ethical statement

Ethical approval was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Ali, S., Wani, H.A. et al. Metabolic syndrome and underlying genetic determinants-A systematic review. J Diabetes Metab Disord 21, 1095–1104 (2022). https://doi.org/10.1007/s40200-022-01009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01009-z

Keywords

Navigation