Skip to main content
Log in

Acetate supplementation restores testicular function by modulating Nrf2/PPAR-γ in high fat diet-induced obesity in Wistar rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Several studies have established impaired testicular function in obese male population, including the young males with childhood obesity, contributing to increased male infertility, which is a universal trend in the last few decades. Short chain fatty acids (SCFAs) have been recently demonstrated to inhibit progression to metabolic comorbidities. The present study therefore hypothesized that SCFAs, acetate attenuates testicular dysfunction in high fat diet (HFD)-induced obese rat model, possibly by modulating Nrf2/PPAR-γ.

Methods

Adult male Wistar rats weighing 160–190 g were randomly allotted into three groups (n = 6/group): The groups received vehicle (distilled water), 40% HFD and sodium acetate (200 mg/kg) plus 40% HFD respectively. The administration lasted for 12 weeks.

Results

HFD caused obesity, which is characterized with increased body weight and visceral adiposity and insulin resistance/hyperinsulinemia. In addition, it increased testicular lipid deposition, malondialdehyde, pro-inflammatory mediators, lactate/pyruvate ratio, γ-Glutamyl transferase, and circulating leptin as well as decreased testicular glutathione, nitric oxide, Nrf2, PPAR-γ and circulating follicle stimulating hormone and testosterone without a significant change in testicular lactate dehydrogenase, blood glucose and luteinizing hormone when compared to the control group. Nevertheless, administration of acetate reversed the HFD-induced alterations.

Conclusion

The present results demonstrates that HFD causes obesity-driven testicular dysfunction, associated with testicular lipid deposition, oxidative stress, and inflammation. The study in addition suggests the restoration of testicular function in obese animals by acetate, an effect that is accompanied by elevated Nrf2/PPAR-γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World Health Organization. Overweight and obesity. Geneva: World Health Organization; 2018. Available.from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. 2018.

  2. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70(1):3–21.

    Article  PubMed  Google Scholar 

  3. Al-Qahtani AM. Prevalence and predictors of obesity and overweight among adults visiting primary care settings in the southwestern region, Saudi Arabia. BioMed Res Int. 2019; Article ID 8073057. https://doi.org/10.1155/2019/8073057.

  4. Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673–89.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tremmel M, Gerdtham UG, Nilsson PM, Saha S. Economic burden of obesity: a systematic literature review. Int J Environ Res Public Health. 2017;14(4):435.

    Article  PubMed Central  Google Scholar 

  6. Seidell JC, Björntorp P, Sjöström L, Kvist H, Sannerstedt R. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metabolism. 1990;39(9):897–901.

    Article  CAS  PubMed  Google Scholar 

  7. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ilacqua A, Francomano D, Aversa A. Obesity and testicular function. In Multidisciplinary Approach to Obesity 2015 (pp. 99–106). Springer, Cham.

  9. Bombelli M, Facchetti R, Sega R, Carugo S, Fodri D, Brambilla G, Giannattasio C, Grassi G, Mancia G. Impact of body mass index and waist circumference on the long-term risk of diabetes mellitus, hypertension, and cardiac organ damage. Hypertension. 2011;58(6):1029–35.

    Article  CAS  PubMed  Google Scholar 

  10. Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, Lear SA, Ndumele CE, Neeland IJ, Sanders P, St-Onge MP. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;143(21):e984-1010.

    Article  PubMed  PubMed Central  Google Scholar 

  11. MacDonald A, Herbison GP, Showell M, Farquhar CM. The impact of body mass index on semen parameters and reproductive hormones in human males: a systematic review with meta-analysis. Hum Reprod Update. 2010;16(3):293–311.

    Article  CAS  PubMed  Google Scholar 

  12. Katib A. Mechanisms linking obesity to male infertility. Cent Eur J Urol. 2015;68(1):79.

    Google Scholar 

  13. Jia YF, Feng Q, Ge ZY, Guo Y, Zhou F, Zhang KS, Wang XW, Lu WH, Liang XW, Gu YQ. Obesity impairs male fertility through long-term effects on spermatogenesis. BMC Urol. 2018;18(1):1–8.

    Article  CAS  Google Scholar 

  14. Moore RH, Sarwer DB, Lavenberg JA, Lane IB, Evans JL, Volger S, Wadden TA. Relationship between sexual function and quality of life in obese persons seeking weight reduction. Obesity. 2013;21(10):1966–74.

    Article  PubMed  Google Scholar 

  15. Laakso S, Viljakainen H, Lipsanen-Nyman M, Turpeinen U, Ivaska KK, Anand-Ivell R, Ivell R, Mäkitie O. Testicular function and bone in young men with severe childhood-onset obesity. Horm Res Paediatr. 2018;89:442–9.

    Article  CAS  PubMed  Google Scholar 

  16. Jarvis S, Gethings LA, Samanta L, Pedroni SM, Withers DJ, Gray N, Plumb RS, Winston RM, Williamson C, Bevan CL. High fat diet causes distinct aberrations in the testicular proteome. Int J Obes. 2020;44(9):1958–69.

    Article  CAS  Google Scholar 

  17. Hampton T. Scientists study fat as endocrine organ. JAM. 2006;296(13):1573–5.

    CAS  Google Scholar 

  18. Ye J, Luo D, Xu X, Sun M, Su X, Tian Z, Zhang M, Yu C, Guan Q. Metformin improves fertility in obese males by alleviating oxidative stress-induced blood-testis barrier damage. Oxid Med Cell Longev 2019; Article ID 9151067, 17 pages.

  19. Xu D, Liu L, Zhao Y, Yang L, Cheng J, Hua R, Zhang Z, Li Q. Melatonin protects mouse testes from palmitic acid-induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1-dependent manner. J Pineal Res. 2020;69(4):e12690.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Ding Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction. 2017;154(4):R123–31.

    Article  PubMed  Google Scholar 

  21. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disordFers. PROTEOMICS Clin Appl. 2012;6(1–2):91–101.

    Article  CAS  PubMed  Google Scholar 

  22. Fan W, Xu Y, Liu Y, Zhang Z, Lu L, Ding Z. Obesity or overweight, a chronic inflammatory status in male reproductive system, leads to mice and human subfertility. Front Physiol. 2018;8:1117.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dutta S, Biswas A, Sengupta P. Obesity, endocrine disrup-tion and male infertility. Asian Pac J Reprod. 2019;8(5):195–202.

    Article  CAS  Google Scholar 

  24. Chang B, Song C, Gao H, Ma T, Li T, Ma Q, Yao T, Wang M, Li J, Yi X, Tang D. Leptin and inflammatory factors play a synergistic role in the regulation of reproduction in male mice through hypothalamic kisspeptin-mediated energy balance. Reprod Biol Endocrinol. 2021;19(1):1–3.

    Article  Google Scholar 

  25. Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E. Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev. 2018.

  26. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Tabbi-Anneni I, Gunda V, Wang L. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu LL, Xian H, Cao JC, Zhang C, Zhang YH, Chen MM, Qian Y, Jiang M. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology. Asian J Androl. 2015;17(6):942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson CJ, Ross SM, Hensley J, Liu K, Heinze SC, Young SS, Gaido KW. Differential steroidogenic gene expression in the fetal adrenal gland versus the testis and rapid and dynamic response of the fetal testis to di (n-butyl) phthalate. Biol Reprod. 2005;73(5):908–17.

    Article  CAS  PubMed  Google Scholar 

  30. Froment P, Gizard F, Defever D, Staels B, Dupont J, Monget P. Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. J Endocrinol. 2006;189(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  31. Schwimmer JB, Behling C, Newbury R, Deutsch R, Nievergelt C, Schork NJ, Lavine JE. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology. 2005;42(3):641–9.

    Article  PubMed  Google Scholar 

  32. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem. 2008;77:289–312.

    Article  CAS  PubMed  Google Scholar 

  33. Gumieniczek A, Hopkała H, Ząbek A. Protective effects of a PPARγ agonist pioglitazone on anti-oxidative system in testis of diabetic rabbits. Pharmazie. 2008;63(5):377–8.

    CAS  PubMed  Google Scholar 

  34. Su Y, He L, Hu Z, Li Y, Zhang Y, Fan Z, Zhao K, Zhang H, Liu C. Obesity causes abrupt changes in the testicular microbiota and sperm motility of zebrafish. Front Immunol. 2021;12:639239.

  35. Soliman ML, Smith MD, Houdek HM, Rosenberger TA. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J Neuroinflamm. 2012;9(1):1–4.

    Article  CAS  Google Scholar 

  36. Moriyama M, Kurebayashi R, Kawabe K, Takano K, Nakamura Y. Acetate attenuates lipopolysaccharide-induced nitric oxide production through an antioxidative mechanism in cultured primary rat astrocytes. Neurochem Res. 2016;41:3138–46.

    Article  CAS  PubMed  Google Scholar 

  37. Omolekulo TE, Michael OS, Olatunji LA. Sodium acetate improves disrupted glucoregulation and hepatic triglyceride content in insulin-resistant female rats: involvement of adenosine deaminase and dipeptidyl peptidase-4 activities. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(1):103–16.

    Article  CAS  PubMed  Google Scholar 

  38. Olaniyi KS, Amusa OA. Sodium acetate-mediated inhibition of histone deacetylase alleviates hepatic lipid dysregulation and its accompanied injury in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother. 2020;128:110226.

    Article  CAS  PubMed  Google Scholar 

  39. Shirai T, Shichi Y, Sato M, Tanioka Y, Furusho T, Ota T, Tadokoro T, Suzuki T, Kobayashi KI, Yamamoto Y. High dietary fat–induced obesity in Wistar rats and type 2 diabetes in nonobese Goto-Kakizaki rats differentially affect retinol binding protein 4 expression and vitamin A metabolism. Nutr Res. 2016;36(3):262–70.

    Article  CAS  PubMed  Google Scholar 

  40. Schiavone S, Camerino GM, Mhillaj E, Zotti M, Colaianna M, De Giorgi A, Trotta A, Cantatore FP, Conte E, Bove M, Tucci P. Visceral fat dysfunctions in the rat social isolation model of psychosis. Front Pharmacol. 2017;8:787.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Olaniyi KS, Olatunji LA. L-glutamine ameliorates adipose-hepatic dysmetabolism in OC-treated female rats. J Endocrinol. 2020;246(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  42. Schrauwen P, Westerterp KR. The role of high-fat diets and physical activity in the regulation of body weight. Br J Nutr. 2000;84(4):417–27.

    Article  CAS  PubMed  Google Scholar 

  43. Adamska E, Ostrowska L, Gościk J, Waszczeniuk M, Krętowski A, Górska M. Intake of meals containing high levels of carbohydrates or high levels of unsaturated fatty acids induces postprandial dysmetabolism in young overweight/obese men. BioMed Res Int. 2015; Article ID 147196, 9 pages. https://doi.org/10.1155/2015/147196.

  44. Cameron DF, Murray FT, Drylie DD. Interstitial compartment pathology and spermatogenic disruption in testes from impotent diabetic men. Anat Rec. 1985;213(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  45. Palmer NO, Bakos HW, Owens JA, Setchell BP, Lane M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am J Physiol Endocrinol Metab. 2012;302(7):E768–80.

    Article  CAS  PubMed  Google Scholar 

  46. Hodson L, Humphreys SM, Karpe F, Frayn KN. Metabolic signatures of human adipose tissue hypoxia in obesity. Diabetes. 2013;62(5):1417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev. 2005;26(6):833–76.

    Article  CAS  PubMed  Google Scholar 

  48. Veldhuis JD, Dufau ML. Estradiol modulates the pulsatile secretion of biologically active luteinizing hormone in man. J Clin Investig. 1987;80(3):631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lima N, Cavaliere H, Knobel M, Halpern A, Medeiros-Neto G. Decreased androgen levels in massively obese men may be associated with impaired function of the gonadostat. Int J Obes. 2000;24(11):1433–7.

    Article  CAS  Google Scholar 

  50. Wu X, Huang J, Shen C, Liu Y, He S, Sun J, Yu B. NRF2 deficiency increases obesity susceptibility in a mouse menopausal model. PloS One. 2020;15(2):e0228559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, Tostes RC. Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases. Front Pharmacol. 2019;10:382.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shawky NM, Pichavaram P, Shehatou GS, Suddek GM, Gameil NM, Jun JY, Segar L. Sulforaphane improves dysregulated metabolic profile and inhibits leptin-induced VSMC proliferation: Implications toward suppression of neointima formation after arterial injury in western diet-fed obese mice. J Nutr Biochem. 2016;32:73–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sampath C, Rashid MR, Sang S, Ahmedna M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed Pharmacother. 2017;87:73–81.

    Article  CAS  PubMed  Google Scholar 

  54. Duval C, Muller M, Kersten S. PPARalpha and dyslipidemia. Biochim Biophys Acta. 2007;2007(1771):961–71.

    Article  Google Scholar 

  55. Schafer C, Moore V, Dasgupta N, Javadov S, James JF, Glukhov AI, Strauss AW, Khuchua Z. The effects of PPAR stimulation on cardiac metabolic pathways in Barth syndrome mice. Front Pharmacol. 2018;9:318.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Djouadi F, Bastin J. PPARs as therapeutic targets for correction of inborn mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis. 2008;31(2):217–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of the management of Afe Babalola University, Ado-Ekiti, Nigeria, and the technical support of Bridge-Biotech, GRA, Ilorin, Nigeria.

Author information

Authors and Affiliations

Authors

Contributions

KSO conceived and designed the research. KSO and COA conducted the experiments. KSO analyzed and interpreted the data. KSO, COA, AAO, AOO, MBO and AAF drafted the manuscript, read, revised and approved the final manuscript.

Corresponding author

Correspondence to Kehinde S. Olaniyi.

Ethics declarations

Conflict of interests

The authors have no conflict of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olaniyi, K.S., Akintayo, C.O., Oniyide, A.A. et al. Acetate supplementation restores testicular function by modulating Nrf2/PPAR-γ in high fat diet-induced obesity in Wistar rats. J Diabetes Metab Disord 20, 1685–1696 (2021). https://doi.org/10.1007/s40200-021-00924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00924-x

Keywords

Navigation