Skip to main content

Advertisement

Log in

Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

This study sought to investigate anti-hyperglycemic potentials of free and bound phenolic-rich extracts of Andrographis paniculata (A. paniculata) leaves, commonly called “king of the bitter”, a plant locally employed in folkloric alternative medicine.

Method

In vitro antioxidant potentials such as total phenolic and flavonoid contents were evaluated in addition to phosphomolybdenum reducing total antioxidant activity in bound and free polyphenol-rich extracts of A. paniculata. Also, following induction of diabetes through a single intraperitoneal injection of freshly prepared alloxan monohydrate (150 mg/kg body weight, b.w), diabetic rats were divided into seven (7) treatment groups with six rats each (n = 6) i.e. group 1 (normal control), 2 (diabetic untreated), 3 (5 mg/kg glibenclamide -treated control), while 4–7 were administered 50 and 100 mg/kg b.w of free and bound phenolic extracts of A. paniculata, respectively for twenty-one (21) days.

Results

There was a significant (p < 0.05) difference in hematological indices, hepatic biomarkers, total protein, antioxidant enzymes activities, total thiol and fasting blood glucose levels of diabetic groups administered polyphenolic-rich extracts of A. paniculata compared to diabetic untreated control. Similarly, serum insulin levels, hexokinase and glucose-6-phoshatase activities were significantly (p < 0.05) improved in phenolic-rich extracts of A. paniculata-treated diabetic groups compared to diabetic untreated control. A significant (p < 0.05) reduction was as well observed in the levels of inflammatory biomarkers such as interleukin-6 (IL-6) and tumor necrosis factor (TNFα) among extract of A. paniculata administered diabetic groups compared diabetic untreated group.

Conclusions

Anti-hyperglycemic activities demonstrated by polyphenolic-rich extracts of A. paniculata when compared to glibenclamide and normal control, could possibly have been occasioned by β-cell protection, restoration of glycolytic enzymes as well as mitigation of inflammatory markers via antioxidant defensive/protective properties of the extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

They will be provided on request.

References

  1. Nelson DC, Cox MM. Lehninger principles of biochemistry. 4th ed. New York: WH. Freeman and Co.; 2010.

    Google Scholar 

  2. Shaw J, Chisholm D. Epidemiology and prevention of type II diabetes and the metabolic syndrome. Med J Aust. 2010;179:379–83.

    Article  Google Scholar 

  3. James C, Frances MA. Q&A: insulin secretion and type 2 diabetes: why do β-cells fail? BMC Biol. 2015;13:33.

    Article  Google Scholar 

  4. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46:3–19.

    Article  CAS  PubMed  Google Scholar 

  5. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diab Res Clin Pract. 2010;87:4–14.

    Article  CAS  Google Scholar 

  6. Turner N, Zeng XY, Osborne B, Rogers S, Ye JM. Repurposing drugs to target the diabetes epidemic. Trend Pharm Sci. 2016;37:379–89.

    Article  CAS  Google Scholar 

  7. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biol Sci. 2008;4(2):89–96.

    CAS  Google Scholar 

  8. Khan AN, Khan RA, Ahmad M, Mushtaq N. Role of antioxidant in oxidative stress and diabetes mellitus. J Pharmacogn Phytochem. 2015;3(6):217–20.

    Google Scholar 

  9. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24–38.

    Article  CAS  PubMed  Google Scholar 

  10. Rehman K, Akash MS. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem. 2017;118(11):3577–85.

    Article  CAS  PubMed  Google Scholar 

  11. Ssenyange WC, Namulindwa A, Oyik B, Ssebuliba J. Plants used to manage diabetes mellitus type II in selected districts of Central Uganda. Afr Health Sci. 2015;15:496–502.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mohammed S, Yaqub A, Nicholas A, Arastus W, Muhammad M, Abdullahi S. Review on diabetes, synthetic drugs and glycemic effects of medicinal plants. J Med Plant Res. 2013;7:2628–37.

    CAS  Google Scholar 

  13. Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 2011;89(3):217–33.

    Article  CAS  Google Scholar 

  14. Afolabi OB, Oloyede OI, Agunbiade SO. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress. J Integr Med. 2018;16:192–8.

    Article  PubMed  Google Scholar 

  15. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev. 2009;2:270–8.

    Article  Google Scholar 

  16. Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013;12(1):43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Niranjan A, Tewari S, Lehri A. Biological activities of Kalmegh (Andrographis paniculata Nees). Indian J Nat Proc Res. 2010;1:125–35.

    CAS  Google Scholar 

  18. Jayakumar T, Hsieh CY, Lee JJ, Sheu JR. Experimental and clinical pharmacology of Andrographis paniculata and its major bioactive phytoconstituent andrographolide. Evid Based Complement Alternat Med. 2013:1–16.

  19. Zhang XF, Tan BK. Antidiabetic property of ethanolic extract of Andrographis paniculata in streptozotocin-diabetic rats. Acta Pharma. 2000;21:1157–64.

    CAS  Google Scholar 

  20. Ogbera AO, Ekpebegh C. Diabetes mellitus in Nigeria: the past, present and future. World J Diabetes. 2014;6:905–11.

    Article  Google Scholar 

  21. Chao WW, Lin BF. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med. 2010;5:17–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chu Y, Sun J, Wu X, Liu RH. Antioxidant and antiproliferative activity of common vegetables. J Agric Food Chem. 2002;50:6910–6.

    Article  CAS  PubMed  Google Scholar 

  23. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. In: Packer L, editor. Methods in enzymology. Oxidants and antioxidants, part A. San Diego: Academic; 1999. p. 152–78.

    Chapter  Google Scholar 

  24. Bao J, Cai Y, Sun M, Wang G, Corke H. Anthocyanins, flavonols and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J Agric Food Chem. 2005;53:2327–32.

    Article  CAS  PubMed  Google Scholar 

  25. Prieto P, Pineda M, Aguliar M. Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269:337–41.

    Article  CAS  PubMed  Google Scholar 

  26. Nagappa AN, Thahudesai PA, Venkatic RN, Sing J. Antidiabetic activity of Terminalia catappa Linn fruits. J Ethnopharmacol. 2003;88:45–50.

    Article  CAS  PubMed  Google Scholar 

  27. Bamikole AO, Olukayode OA, Obajuluwa T, Pius O, Ibidun OO, Adewale FO, et al. Exposure to a 2.5 GHz non-ionizing electromagnetic field alters hematological profiles, biochemical parameters, and induces oxidative stress in male albino rats. Biomed Environ Sci. 2019;32(11):860–3.

    Google Scholar 

  28. Obici S, Otobone JF, da Silva Sela VR, Ishida K, da Silva JC, Nakamura CV, et al. Preliminary toxicity study of dichloromethane extract of Kielmeyera coriacea stems in mice and rats. J Ethnopharmacol. 2008;115:131–9.

    Article  PubMed  Google Scholar 

  29. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxaloacetate and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28:56–63.

    Article  CAS  PubMed  Google Scholar 

  30. Alía M, Horcajo C, Bravo L, Goya L. Effect of grape antioxidant dietary fiber on the total antioxidant capacity and the activity of liver antioxidant enzymes in rats. Nutr Res. 2003;3:1251–67.

    Article  CAS  Google Scholar 

  31. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.

    Article  CAS  PubMed  Google Scholar 

  32. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    Article  CAS  PubMed  Google Scholar 

  33. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reactions. Anal Biochem. 1979;95:351–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ahmad K, Khan ZI, Shah ZA, Ibrahim M, Mustafa I, Valeem EE. Evaluation of available sugars in plant species indigenous to Soone valley (Punjab) Pakistan. Pak J Bot. 2008;40:1877–83.

    CAS  Google Scholar 

  35. Koide H, Oda T. Pathological occurrence of glucose-6- phosphatase in serum in liver diseases. Clin Chim Acta. 1959;4:554–61.

    Article  CAS  PubMed  Google Scholar 

  36. Branstrup N, Krik JE, Bruni C. The hexokinase and phosphoglucoisomerase activities of aorta and pulmonary artery tissue in individuals of various ages. J Gerontol B-Psychol. 1957;12:166–71.

    Article  Google Scholar 

  37. Voller A, Bartlett A, Bidwell DE. Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol. 1978;31:507–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. American Diabetes Association (ADA). Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34:62–9.

    Article  CAS  Google Scholar 

  39. Shimoi K, Masuda S, Shen B, Furugori M, Kinae N. Radioprotective effects of antioxidative plant flavonoids in mice. Mut Res/Fund Mol Mech Mutag. 1996;350(1):153–61.

    Article  Google Scholar 

  40. Afolabi OB, Oloyede OI. Antioxidant properties of the extracts of Talinum triangulare and its effect on antioxidant enzymes in tissue homogenate of Swiss albino rat. Toxicol Int. 2014;21(3):307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zahra B, Parvin M, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013;12:43.

    Article  CAS  Google Scholar 

  42. Manickam M, Ramanathan M, Farboodniay Jahromi MA, Chansouria JP, Ray AB. Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod. 1997;60(6):609–10.

    Article  CAS  PubMed  Google Scholar 

  43. Yun SI, Park HO, Kang JH. Effect of Lactobacillus gasseri BNR17 on blood glucose levels and body weight in a mouse model of type 2 diabetes. J Appl Microbiol. 2009;107(5):1681–6.

    Article  CAS  PubMed  Google Scholar 

  44. Guyton AC, Hall JE. Textbook of medical physiology. Bangalore: Prism Book Limited; 2011.

    Google Scholar 

  45. Stewart HL, Alfred LG, William EM. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006;17:1807–19.

    Article  CAS  Google Scholar 

  46. NseAbasi NE, Mary EW, Uduak A, Edem EAO. Haematological parameters and factors affecting their values. Agric Sci. 2014;2:37–47.

    Google Scholar 

  47. Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of autoxidative glycosylation in diabetes. Biochem J. 1987;245:243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Balasubraimanian T, Lal MS, Mahananda S, Chatterjee TK. Antihyperglycaemia and antioxidant activities of medicinal plant Stereospermum suaveolens in streptozotocin-induced diabetic rats. J Diet Suppl. 2009;6:227–51.

    Article  Google Scholar 

  49. Polenakovic M, Sikole A. Is erythropoietin a survival factor for red blood cells? J Am Soc Nephrol. 1996;7:1178–82.

    Article  CAS  PubMed  Google Scholar 

  50. Oyedeji KO. Effect of Corchorus olitorius extract on hematological and plasma biochemical parameters in male albino rats. IOSR J Dental Med Sci. 2013;5:68–71.

    Article  Google Scholar 

  51. Ohlsson A, Aher SM. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2006;19:CD004863.

    Google Scholar 

  52. Sellamuthu PS, Arulselvan P, Fakurazi S, Kandasamy M. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes. Pak J Pharm Sci. 2014;27(1):161–7.

    CAS  PubMed  Google Scholar 

  53. Cho NH, Jang HC, Choi SH, Kim HR, Lee HK, Chan JCN, et al. Abnormal liver function test predicts type 2 diabetes: a community-based prospective study. Diabetes Care. 2007;30:2566–8.

    Article  CAS  PubMed  Google Scholar 

  54. Li XM. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int J Biol Macromol. 2007;40:461–5.

    Article  CAS  PubMed  Google Scholar 

  55. Maiti R, Jana D, Das UK, Ghosh D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2004;92:85–91.

    Article  CAS  PubMed  Google Scholar 

  56. Yang JY, Kang MY, Nam SH, Friedman M. Antidiabetic effects of rice hull smoke extract in alloxan-induced diabetic mice. J Agric Food Chem. 2012;60(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  57. El-Demerdash FM, Yousef MI, Abou El-Naga NI. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol. 2005;43(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  58. Sivaraj A, Vinothkumar P, Sathiyaraj K, Sundaresan S, Devi K, Senthilkumar B. Hepatoprotective potential of Andrographis paniculata aqueous leaf extract on ethanol induced liver toxicity in albino rats. J Appl Pharm Sci. 2011;1:204–8.

    Google Scholar 

  59. Mitra SK, Gopumadhavan S, Muralidhar TS, Anturlikar SD, Sujatha MB. Effect of D-400, a herbomineral preparation on lipid profile, glycated hemoglobin and glucose tolerance in streptozotocin induced diabetes in rats. Indian J Exp Biol. 1995;33:798–800.

    CAS  PubMed  Google Scholar 

  60. Al-Shamaony L, Al-Khazraji SM, Twaij HAA. Hypoglycemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol. 1994;43:167–71.

    Article  CAS  PubMed  Google Scholar 

  61. Bopanna KN, Kannan J, Sushma G, Balaraman R, Rathod SP. Antidiabetic and antihyperlipidemic effects of neem seed kernal powder on alloxan diabetic rabbits. Indian J Pharmacol. 1997;29:162–7.

    CAS  Google Scholar 

  62. Yagi K. Lipid peroxides and human disease. Chem Phys Lipids. 1987;45:337–51.

    Article  CAS  PubMed  Google Scholar 

  63. Bako HY, Mohammad JS, Waziri PM, Bulus T, Gwarzo M, Zubairu MM. Lipid profile of alloxan-induced diabetic wistar rats treated with methanolic extract of Adansonia digitata fruit pulp. Sci World J. 2014;9:19–25.

    Google Scholar 

  64. Naik P. Biochemistry textbook. 3rd ed. India: Jaypee Brother Medical Publisher; 2011.

    Google Scholar 

  65. Sivakumar V, Rajeshkumar S. Protective effect of Andrographis paniculata on hyperglycemic mediated oxidative damage in renal tissues of diabetic rats. J Phytopharm. 2015;4:287–94.

    Article  Google Scholar 

  66. Mina B, Arash K, Fatemeh F, Amir AK, Elham G. Anti-oxidative role of quercetin derived from Allium cepa on aldehyde oxidase (OX-LDL) and hepatocytes apoptosis in streptozotocin-induced diabetic rat. Asian Pac J Trop Biomed. 2012;2(7):528–31.

    Article  CAS  Google Scholar 

  67. Sathishsekar D, Subramanian S. Antioxidant properties of Momordica Charantia (bitter gourd) seeds on Streptozotocin induced diabetic rats. Asia Pac J Clin Nutr. 2005;14(2):153–8.

    PubMed  Google Scholar 

  68. Ahmed RG. The physiological and biochemical effects of diabetes on the balance between oxidative stress and antioxidant defense system. Med J Islam Acad Sci. 2005;15(1):31–42.

    Google Scholar 

  69. Mungli P, Shetty MS, Tilak P, Anwar N. Total thiols: biomedical importance and their alteration in various disorders. Online J Health Allied Sci. 2009;8(2):2.

    Google Scholar 

  70. Prakash M, Upadhya S, Prabhu R. Protein thiol oxidation and lipid peroxidation in patients with uremia. Scand J Clin Lab Invest. 2004;64:599–604.

    Article  CAS  PubMed  Google Scholar 

  71. Van CA, Van CC, Lagrou AR, Abrams P, Moorkens G, Van GL, et al. Impact of diabetes mellitus on the relationships between iron-, inflammatory-and oxidative stress status. Diabetes Metabol Res Rev. 2006;22(6):444–54.

    Article  CAS  Google Scholar 

  72. Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behaviour of flavonoids: structure–activity relationships. Free Radic Biol Med. 1997;22:749–60.

    Article  CAS  PubMed  Google Scholar 

  73. Shekher PA, Chan TS, O’Brien PJ, Rice-Evans CA. Flavonoids B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem Biophys Res Commun. 2001;282:1161–8.

    Article  CAS  Google Scholar 

  74. Marlon EC. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37.

    Google Scholar 

  75. Ajiboye BO, Ojo OA, Chikezie GS, Fadaka OA, Jaiyesimi K, Olaoye O. Antihyperanaemic and antihyperlipidemic activities of Artocarpus altilis fruit based-diet on alloxan-induced diabetic rats. Int Food Res J. 2017;24:2133–9.

    Google Scholar 

  76. Boden G, Chen X, Stein TP. Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2001;280(1):E23–30.

    Article  CAS  PubMed  Google Scholar 

  77. Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-Mizrachi E. Natural history of β-cell adaptation and failure in type 2 diabetes. Mol Asp Med. 2015;42:19–41.

    Article  CAS  Google Scholar 

  78. Das J, Vasan V, Sil PC. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol. 2012;258:296–308.

    Article  CAS  PubMed  Google Scholar 

  79. Gisela W. Insulin and insulin resistance. Clin Biochem Rev. 2005;26:19–39.

    Google Scholar 

  80. Stanely P, Prince M, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol. 2000;70(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  81. Nugroho AE, Kusumaramdani G, Widyaningar A, Anggoro DP, Pramono S. Antidiabetic effect of combinations of n-hexane insoluble fraction of ethanolic extract of Andrographis paniculata with other traditional medicines. Int Food Res J. 2014;21:785–9.

    Google Scholar 

  82. Clara SS, Ronald Kahn C, Allison BG. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev. 2004;25:807–30.

    Article  CAS  Google Scholar 

  83. Arulselvan P, Subramanian S. Effect of Murraya koenigii leaf extract on carbohydrate metabolism studied in streptozotocin induced diabetic rats. Int J Biol Chem. 2007;1:21–8.

    Google Scholar 

  84. Hassan HA, El-Agmy SM, Gaur RL, Fernando A, Raj MHG, Ouhtit A. In vivo evidence of hepato and reno-protective effects of garlic oil against sodium nitrite-induced oxidative stress. Int J Biol Sci. 2009;5:249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kazeem MI, Akanji MA, Yakubu MT, Ashafa AO. Protective effect of free and bound polyphenol extracts from ginger (Zingiber officinale Roscoe) on the hepatic antioxidant and some carbohydrate metabolizing enzymes of streptozotocin-Induced diabetic rats. Evid Based Complement Alternat Med. 2013. https://doi.org/10.1155/2013.

  86. Carey NL, Alan RS. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111–7.

    Article  CAS  Google Scholar 

  87. AlAmri OD, Albeltagy RS, Akabawy AM, Mahgoub S, Abdel-Mohsen DM, Moneim AE, et al. Investigation of antioxidant and anti-inflammatory activities as well as the renal protective potential of green coffee extract in high fat-diet/streptozotocin-induced diabetes in male albino rats. J Funct Foods. 2020;71:103996.

    Article  CAS  Google Scholar 

  88. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:141–50.

    Article  CAS  PubMed  Google Scholar 

  89. Afolabi OB, Oloyede OI, Olayide II, Obafemi TO, Awe JO, Afolabi BA, et al. Antioxidant enhancing ability of different solvents extractable components of Talinum traingulare in some selected tissue homogenates of albino rat-in vitro. J Appl Pharm Sci. 2015;5:56–61.

    Article  CAS  Google Scholar 

  90. Low M, Khoo CS, Munch G, Govindaraghavan S, Sucher NJ. An in vitro study of anti-inflammatory activity of standardized Andrographis paniculata extracts and pure andrographolide. BMC Complement Altern Med. 2015;15:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Authors of this work hereby appreciate the staff of Biochemistry Laboratory, Afe Babalola University where the larger part of this work was carried out.

Funding

The authors hereby declared no funding/grant was received for this study either from governmental/NGO or any foreign bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olakunle Bamikole Afolabi.

Ethics declarations

Conflict of interest

The authors of the manuscript declare no conflict of interest concerning the work.

Ethical approval

This study was approved with ethical code: 16/SCI03/1003.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiyesimi, K.F., Agunbiade, O.S., Ajiboye, B.O. et al. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. J Diabetes Metab Disord 19, 1543–1556 (2020). https://doi.org/10.1007/s40200-020-00690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00690-2

Keywords

Navigation