Skip to main content

Advertisement

Log in

Identifying natural products for gastric cancer treatment through pharmacophore creation, 3D QSAR, virtual screening, and molecular dynamics studies

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Gastric cancer (GC) is known as the fourth leading cause of cancer-related death and the fifth major cancer in the world, and this is a serious threat to general health all over the world. The lack of early detection markers results in a belated diagnosis, i.e. the final stages, which could be associated with the ineffectiveness of the treatment strategies, and naturally, it leads to poor prognosis. Even though a variety of treatments have been developed, there is a trend of studying traditional medicinal plants, due to the worrying side effect of drugs available in the market.

Methods

In this study, pharmacophore generation and 3D-QSAR model were created using 50 compounds with anti-gastric cancer activity (with IC50 had been reported in the previous studies).

Results

Based on three of the best pharmacophoric hypotheses, virtual screening was performed to discover the top anti-gastric cancer compounds from a database of 183,885 compounds. The selected compounds were used for molecular docking with three protein receptors 7BKG, 4F5B, and 4ZT1 to investigate the intermolecular interactions between these ligands and receptors. Finally, 21 lead compounds with the highest amount of docking score ranging from − 13.366 to -6.404 kcal/mol were selected, and then the ADME/Tox properties of these compounds were calculated. All these compounds have a fitness score above 1.8, a molecular weight of less than 500 g/mol, hydrogen bond donors up to 3, hydrogen bond acceptors up to 8.50, and logP of 1.013 to 4.174. Finally, molecular dynamic simulations for top-scoring ligand-receptor complexes were investigated.

Conclusion

These selected lead compounds have the most anti-gastric cancer effects among the 183,885 compounds in the database. Therefore, lead compounds might be considered for gastric cancer therapy in future studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data will be available upon request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–89.

    Article  CAS  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.

    Article  Google Scholar 

  4. Zaafouri H, Jouini R, Khedhiri N, Khanchel F, Cherif M, Mesbahi M, et al. Comparison between signet-ring cell carcinoma and non-signet-ring cell carcinoma of the stomach: clinicopathological parameters, epidemiological data, outcome, and prognosis—a cohort study of 123 patients from a non-endemic country. World J Surg Oncol. 2022;20(1):1–12.

    Article  Google Scholar 

  5. Liu D, Zhang R, Chen S, Sun B, Zhang K. Analysis of gastric microbiome reveals three distinctive microbial communities associated with the occurrence of gastric cancer. BMC Microbiol. 2022;22(1):1–13.

    Article  CAS  Google Scholar 

  6. Jiang X-j, Lin J, Cai Q-h, Zhao J-f, Zhang H-j. CDH17 alters MMP-2 expression via canonical NF-κB signalling in human gastric cancer. Gene. 2019;682:92–100.

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y, Chen Y, Hu Y, Feng Y, Mao Q, Xue W. Outcomes of laparoscopic versus open total gastrectomy with D2 lymphadenectomy for gastric cancer: a systematic review and meta-analysis. Eur J Med Res. 2022;27(1):1–9.

    Article  Google Scholar 

  8. Shi J, Li N, Tang Y, Jiang L, Yang L, Wang S, et al. Total neoadjuvant therapy for locally advanced gastric cancer and esophagogastric junction adenocarcinoma: study protocol for a prospective, multicenter, single-arm, phase II clinical trial. BMC Gastroenterol. 2022;22(1):1–9.

    Article  CAS  Google Scholar 

  9. Lee HJ, Venkatarame Gowda Saralamma V, Kim SM, Ha SE, Vetrivel P, Kim EH, et al. Comparative proteomic profiling of tumor-associated proteins in human gastric cancer cells treated with pectolinarigenin. Nutrients. 2018;10(11): 1596.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Zhi Q, Liu S, Xue S-L, Shen C, Li Y, et al. Identification of specific biomarkers for gastric adenocarcinoma by ITRAQ proteomic approach. Sci Rep. 2016;6(1):1–15.

    Google Scholar 

  11. Zhu AK, Shan YQ, Zhang J, Liu XC, Ying RC, Kong WC. Exosomal NNMT from peritoneum lavage fluid promotes peritoneal metastasis in gastric cancer. Kaohsiung J Med Sci. 2021;37(4):305–13.

    Article  PubMed  Google Scholar 

  12. Chen Y, Ye B, Wang C, Nie Y, Qin J, Shen Z. PLOD3 contributes to HER-2 therapy resistance in gastric cancer through FoxO3/Survivin pathway. Cell Death Discovery. 2022;8(1):1–12.

    Article  Google Scholar 

  13. Zhao S, Bi Y, Wang Z, Zhang F, Zhang Y, Xu Y. Accuracy evaluation of combining gastroscopy, multi-slice spiral CT, Her-2, and tumor markers in gastric cancer staging diagnosis. World J Surg Oncol. 2022;20(1):1–10.

    Article  Google Scholar 

  14. Lordick F, Kang Y-K, Chung H-C, Salman P, Oh SC, Bodoky G, et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14(6):490–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Yin X, Chen L, Yin Z, Zuo Z. Discovery and evaluation of cytisine N-isoflavones as novel EGFR/HER2 dual inhibitors. Bioorg Chem. 2022;127: 105868.

    Article  CAS  PubMed  Google Scholar 

  16. Xu S, Chen W, Wang Y, Zhang Y, Xia R, Shen J, et al. N6-methyladenosine-related lncRNAs identified as potential biomarkers for predicting the overall survival of asian gastric cancer patients. BMC Cancer. 2022;22(1):1–18.

    Article  CAS  Google Scholar 

  17. Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol. 2011;29(30):3968–76.

    Article  CAS  PubMed  Google Scholar 

  18. Chu X-d, Lin Z-b, Huang T, Ding H, Zhang Y-r, Zhao Z, et al. Thrombospondin-2 holds prognostic value and is associated with metastasis and the mismatch repair process in gastric cancer. BMC Cancer. 2022;22(1):1–13.

    Article  Google Scholar 

  19. Iveson T, Donehower RC, Davidenko I, Tjulandin S, Deptala A, Harrison M, et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol. 2014;15(9):1007–18.

    Article  CAS  PubMed  Google Scholar 

  20. Anestis A, Zoi I, Karamouzis MV. Current advances of targeting HGF/c-Met pathway in gastric cancer. Ann Transl Med. 2018;6(12):247.

  21. Yuan J, Tan L, Yin Z, Tao K, Wang G, Shi W, et al. Glis2 redundancy causes chemoresistance and poor prognosis of gastric cancer based on co–expression network analysis. Oncol Rep. 2019;41(1):191–201.

    CAS  PubMed  Google Scholar 

  22. Kim HK, Reyzer ML, Choi IJ, Kim CG, Kim HS, Oshima A, et al. Gastric cancer-specific protein profile identified using endoscopic biopsy samples via MALDI mass spectrometry. J Proteome Res. 2010;9(8):4123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang L, Chen J, Zuo Q, Wu C, Yu T, Zheng P, et al. Calreticulin enhances gastric cancer metastasis by dimethylating H3K9 in the E-cadherin promoter region mediating by G9a. Oncogenesis. 2022;11(1):1–11.

    Article  Google Scholar 

  24. Zhang L, Song M, Zhang F, Yuan H, Chang W, Yu G, et al. Accumulation of nicotinamide N-methyltransferase (NNMT) in cancer-associated fibroblasts: a potential prognostic and predictive biomarker for gastric carcinoma. J Histochem Cytochem. 2021;69(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  25. Pozzi V, Campagna R, Sartini D, Emanuelli M. Nicotinamide N-methyltransferase as promising tool for management of gastrointestinal neoplasms. Biomolecules. 2022;12(9): 1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okamoto W, Okamoto I, Yoshida T, Okamoto K, Takezawa K, Hatashita E, et al. Identification of c-Src as a potential therapeutic target for gastric Cancer and of MET activation as a cause of resistance to c-Src inhibitionc-src as a therapeutic target for gastric Cancer. Mol Cancer Ther. 2010;9(5):1188–97.

    Article  CAS  PubMed  Google Scholar 

  27. Nam H-J, Im S-A, Oh D-Y, Elvin P, Kim H-P, Yoon Y-K, et al. Antitumor Activity of Saracatinib (AZD0530), a c-Src/Abl kinase inhibitor, alone or in combination with chemotherapeutic agents in gastric cancerantitumor effects of saracatinib in gastric Cancer. Mol Cancer Ther. 2013;12(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  28. Malpeli G, Barbi S, Innamorati G, Alloggio M, Filippini F, Decimo I, et al. Landscape of druggable molecular pathways downstream of genomic CDH1/Cadherin-1 alterations in gastric Cancer. J Personalized Med. 2022;12(12): 2006.

    Article  Google Scholar 

  29. Yan Q, Wu Y, Li D, Li Y. A-Kinase anchoring protein 9 promotes gastric cancer progression as a downstream effector of cadherin 1. J Oncology 2022:2830634.

  30. Wanga X-z, Gu J-l, Gao M, Bian Y, Liang J-y, Wen H-m, et al. Peperomin E induces promoter hypomethylation of metastatic-suppressor genes and attenuates metastasis in poorly differentiated gastric Cancer. Cell Physiol. 2018;50(6):2341–64.

    CAS  Google Scholar 

  31. Ngabire D, Seong Y, Patil MP, Niyonizigiye I, Seo YB, Kim G-D. Induction of apoptosis and G1 phase cell cycle arrest by Aster incisus in AGS gastric adenocarcinoma cells. Int J Oncol. 2018;53(5):2300–8.

    CAS  PubMed  Google Scholar 

  32. Trinh TA, Lee D, Park S, Kim SH, Park JG, Kim JH, et al. Stilbenes contribute to the anticancer effects of Rheum undulatum L. through activation of apoptosis. Oncol Lett. 2019;17(3):2953–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shukla S, Mehta A. Anticancer potential of medicinal plants and their phytochemicals: a review. Brazilian J Bot. 2015;38(2):199–210.

    Article  Google Scholar 

  34. Ashktorab H, Soleimani A, Singh G, Amin A, Tabtabaei S, Latella G, et al. Saffron: the golden spice with therapeutic properties on digestive diseases. Nutr Cancer. 2019;11(5):943.

    CAS  Google Scholar 

  35. Alibeiki F, Jafari N, Karimi M, Peeri Dogaheh H. Potent anti-cancer effects of less polar curcumin analogues on gastric adenocarcinoma and esophageal squamous cell carcinoma cells. Sci Rep. 2017;7(1):1–9.

    Article  CAS  Google Scholar 

  36. Ham I-H, Wang L, Lee D, Woo J, Kim TH, Jeong HY, et al. Curcumin inhibits the cancer–associated fibroblast–derived chemoresistance of gastric cancer through the suppression of the JAK/STAT3 signaling pathway. Int J Oncol. 2022;61(1):1–12.

    Article  Google Scholar 

  37. Mohammadi A, Khanbabaei H, Zandi F, Ahmadi A, Haftcheshmeh SM, Johnston TP et al. Curcumin: a therapeutic strategy for targeting the Helicobacter pylori-related diseases. Microb Pathog. 2022:105552.

  38. Shang HS, Lu HF, Lee CH, Chiang HS, Chu YL, Chen A, et al. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ Toxicol. 2018;33(11):1168–81.

    Article  CAS  PubMed  Google Scholar 

  39. Sathianarayanan S, Aparna V, Biswas R, Anita B, Sukumaran S, Venkidasamy B. A new approach against Helicobacter pylori using plants and its constituents: a review study. Microb Pathog. 2022:168:105594.

  40. Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang B, et al. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and akt signaling pathways. Biomed Pharmacother. 2020;128: 110245.

    Article  CAS  PubMed  Google Scholar 

  41. Li L-L, Peng Z, Hu Q, Xu L-J, Zou X, Huang D-M, et al. Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4α. World J Gastrointest Oncol. 2022;14(4): 842.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tsai C-L, Chiu Y-M, Ho T-Y, Hsieh C-T, Shieh D-C, Lee Y-J, et al. Gallic acid induces apoptosis in human gastric adenocarcinoma cells. Anticancer Res. 2018;38(4):2057–67.

    CAS  PubMed  Google Scholar 

  43. Kim S, Kim W, Kim D-H, Jang J-H, Kim S-J, Park S-A, et al. Resveratrol suppresses gastric cancer cell proliferation and survival through inhibition of PIM-1 kinase activity. Arch Biochem. 2020;689: 108413.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L-Y, Zhao S, Lv G-J, Ma X-J, Zhang J-B. Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer. World J Clin Cases. 2020;8(12):2425.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qi Z, Tang T, Sheng L, Ma Y, Liu Y, Yan L, et al. Salidroside inhibits the proliferation and migration of gastric cancer cells via suppression of src–associated signaling pathway activation and heat shock protein 70 expression. Mol Med Rep. 2018;18(1):147–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ayeleso TB, Matumba MG, Mukwevho E. Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules. 2017;22(11): 1915.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li Y, Xu Q, Yang W, Wu T, Lu X. Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells. Gene. 2019;712: 143956.

    Article  CAS  PubMed  Google Scholar 

  48. Atnip A, Giusti MM, Sigurdson GT, Failla ML, Chitchumroonchokchai C, Bomser JA, et al. The NCI-N87 Cell line as a gastric epithelial model to study cellular uptake, trans-epithelial transport, and gastric anti-inflammatory properties of anthocyanins. Nutr Cancer. 2020;72(4):686–95.

    Article  CAS  PubMed  Google Scholar 

  49. Mathur S, Pareek S, Verma R, Shrivastava D, Bisen PS. Therapeutic potential of ginger bio-active compounds in gastrointestinal cancer therapy: the molecular mechanism. Nutrire. 2022;47(2):1–17.

    Google Scholar 

  50. Singh MP, Chawla V, Kaushik D, Chawla PA, Sisodia SS. Pharmacodynamic stance of phytoconstituents as a gastric Ulcer Protective mechanism: an overview. Curr Mol Med. 2022;22(5):431–41.

    Article  CAS  PubMed  Google Scholar 

  51. Bhansali SG, Kulkarni VM. Pharmacophore generation, atom-based 3D-QSAR, docking, and virtual screening studies of p38-α mitogen activated protein kinase inhibitors: pyridopyridazin-6-ones (part 2). Res Rep Med Chem. 2014;4:1.

    Google Scholar 

  52. Consonni V, Ballabio D, Todeschini R. Comments on the definition of the Q 2 parameter for QSAR validation. J Chem Inf Model. 2009;49(7):1669–78.

    Article  CAS  PubMed  Google Scholar 

  53. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006;20(10):647–71.

    Article  CAS  PubMed  Google Scholar 

  54. Abbasi M, Sadeghi-Aliabadi H, Amanlou M. Prediction of new Hsp90 inhibitors based on 3, 4-isoxazolediamide scaffold using QSAR study, molecular docking and molecular dynamic simulation. DARU J Pharm Sci. 2017;25:1–16.

    Article  Google Scholar 

  55. Alam S, Khan F. 3D-QSAR, docking, ADME/Tox studies on Flavone analogs reveal anticancer activity through tankyrase inhibition. Sci Rep. 2019;9(1):1–15.

    Article  Google Scholar 

  56. Zolghadr L, Behbehani GR, PakBin B, Hosseini SA, Divsalar A, Gheibi N. Molecular dynamics simulations, molecular docking, and kinetics study of kaempferol interaction on Jack bean urease: comparison of extended solvation model. Food Sci Nutr. 2022;10(11):3585–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank gratefully Dr. Mansour Zahedi and Dr. Bahare Noohi’s efforts and technical support of the Chemistry Computational Center at Shahid Beheshti University. We’re also grateful to Kosar Jalali for her diligent work editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Zeinab Jalali did the molecular modeling part and prepared the draft of the manuscript. Samad N Ebrahimi supervised the project. Samad N Ebrahimi and Hassan Rezadoost finalized the manuscript. All authors have approved the paper.

Corresponding author

Correspondence to Samad Nejad Ebrahimi.

Ethics declarations

Conflict of interest

The authors did not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2.37 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, Z., Nejad Ebrahimi, S. & Rezadoost, H. Identifying natural products for gastric cancer treatment through pharmacophore creation, 3D QSAR, virtual screening, and molecular dynamics studies. DARU J Pharm Sci 31, 243–258 (2023). https://doi.org/10.1007/s40199-023-00480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00480-0

Keywords

Navigation