Skip to main content

Advertisement

Log in

HSA-curcumin nanoparticles: a promising substitution for Curcumin as a Cancer chemoprevention and therapy

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Many solutions have been evaluated to deal with “chemotherapy and radiation-resistant cancer cells’ as well as “severe complications of chemotherapy drugs”. One of these solutions is the use of herbal compounds with antioxidant properties. Among these antioxidant compounds, curcumin is identified as the strongest one to inhibit cancerous cells proliferation. However, its clinical trials have encountered many constraints, because curcumin is insoluble in water and unstable in physiological conditions. To overcome these limitations, in this study, curcumin was conjugated with human serum albumin (HSA) and its effects on breast cancer cell lines were also measured.

Methods

After making of HSA-curcumin nanoparticles (NPs) by the desolvation technique, they were characterized by the FTIR, DLS, TEM, and SEM method. At the end, its anticancer effects have been examined using MTT test and apoptosis assay.

Results

The FTIR graph confirmed that curcumin and HSA have been conjugated along with each other. Particles size was reported to be 220 nm and 180 nm by DLS and SEM, respectively. The zeta potential of HSA-curcumin NPs was −7 mV, while it was −37 mV for curcumin. The MTT and apoptosis assay results indicated that the toxicity of HSA-curcumin NPs on the normal cell are less than curcumin; however, its anti-cancer effects on the cancer cells are much greater, compared to curcumin.

Conclusion

HSA-curcumin NPs increase curcumin solubility in water as well as its stability in physiological and acidic conditions. These factors have the ability of overwhelming the limitations on using curcumin alone, and they could result in a significant increase in the toxicity of curcumin on the cancer cells without increasing its toxicity on the normal cells.

Grapical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yallapu M, Jaggi MM, Chauhan SC. Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des. 2013;19(11):1994–2010.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Bansal SS, et al. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2011;4(8):1158–71.

    CAS  Google Scholar 

  3. Aggarwal, B.B., et al., 10 Curcumin—biological and medicinal properties. 2006.

    Google Scholar 

  4. Singh S, Khar A. Biological effects of curcumin and its role in cancer chemoprevention and therapy. ANTI-CANCER AGENT ME. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2006;6(3):259–70.

    CAS  Google Scholar 

  5. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.

    PubMed  CAS  Google Scholar 

  6. Sharma R, Gescher A, Steward W. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955–68.

    PubMed  CAS  Google Scholar 

  7. Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation. Oncol Lett. 2012;4(6):1151–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011;11(9):671–7.

    PubMed  CAS  Google Scholar 

  9. Gerweck LE. Tumor pH: implications for treatment and novel drug design. Semin Radiat Oncol. 1998. Elsevier. .

  10. Gerweck LE, Seetharaman K. Cellular pH gradient in tumor <em>versus</em> Normal tissue: potential exploitation for the treatment of Cancer. Cancer Res. 1996;56(6):1194–8.

    PubMed  CAS  Google Scholar 

  11. Wang Y-J, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867–76.

    PubMed  CAS  Google Scholar 

  12. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–49.

    PubMed  PubMed Central  Google Scholar 

  13. Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4(1):94.

    Google Scholar 

  14. Syed Abdul Kuddusa, S.A.R.a.F.A., Cancer nanotechnology: hopes and hurdles. International Journal Of Environmental & Science Education (IJESE), 2017. 12: p. 1317–1340.

  15. Khan T, Gurav P. PhytoNanotechnology: enhancing delivery of plant based anti-cancer drugs. Front Pharmacol. 2018;8:1002.

    PubMed  PubMed Central  Google Scholar 

  16. Kar SK, et al. Curcumin nanoparticles and methods of producing the same. 2009. Google Patents.

  17. Lee W-H, Loo CY, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 2014;11(8):1183–201.

    PubMed  CAS  Google Scholar 

  18. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365–83.

    PubMed  CAS  Google Scholar 

  19. Yallapu MM, Nagesh PK, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015;17(6):1341–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Subramani PA, Panati K, Narala VR. Curcumin nanotechnologies and its anticancer activity. Nutr Cancer. 2017;69(3):381–93.

    PubMed  CAS  Google Scholar 

  21. Wang S, et al. Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. J Nanomater. 2011;2011:51.

    Google Scholar 

  22. Loxley A. Solid lipid nanoparticles for the delivery of pharmaceutical actives. Drug Deliv Technol. 2009;9(8):32–7.

    CAS  Google Scholar 

  23. Rahman MH, Ramanathan M, Sankar V. Preparation, characterization and in vitro cytotoxicity assay of curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line. Pak J Pharm Sci. 2014;27:1281–5.

    PubMed  CAS  Google Scholar 

  24. Chirio D, et al. Formulation of curcumin-loaded solid lipid nanoparticles produced by fatty acids coacervation technique. J Microencapsul. 2011;28(6):537–48.

    PubMed  CAS  Google Scholar 

  25. Orr WS, Denbo JW, Saab KR, Myers AL, Ng CY, Zhou J, et al. RETRACTED: liposome-encapsulated curcumin suppresses neuroblastoma growth through nuclear factor-kappa B inhibition. Surgery. 2012;151(5):736–44.

    PubMed  PubMed Central  Google Scholar 

  26. Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumin. Cancer. 2005;104(6):1322–31.

    PubMed  CAS  Google Scholar 

  27. Esmatabadi MD, et al. Comparative evaluation of curcumin and curcumin loaded-dendrosome nanoparticle effects on the viability of SW480 colon carcinoma and Huh7 hepatoma cells. Research Journal of Pharmacognosy (RJP). 2015;2(3):9–16.

    CAS  Google Scholar 

  28. Esmatabadi MD, et al. Dendrosomal curcumin inhibits metastatic potential of human SW480 colon cancer cells through down-regulation of claudin1, zeb1 and hef1-1 gene expression. Asian Pac J of Cancer Prev. 2015;16:2473–81.

    Google Scholar 

  29. Erfani-Moghadam V, et al. Design and synthesis of a novel Dendrosome and a PEGylated PAMAM Dendrimer Nanocarrier to improve the anticancer effect of turmeric (Curcuma longa) Curcumin. Modares Journal of Medical Sciences: Pathobiology. 2014;17(1):63–77.

    Google Scholar 

  30. Zou P, Helson L, Maitra A, Stern ST, McNeil S. Polymeric curcumin nanoparticle pharmacokinetics and metabolism in bile duct cannulated rats. Mol Pharm. 2013;10(5):1977–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Souguir H, et al. Nanoencapsulation of curcumin in polyurethane and polyurea shells by an emulsion diffusion method. Chem Eng J. 2013;221:133–45.

    CAS  Google Scholar 

  32. Nagarajan S, Reddy BSR, Tsibouklis J. In vitro effect on cancer cells: synthesis and preparation of polyurethane membranes for controlled delivery of curcumin. J J Biomed Mater Res A. 2011;99(3):410–7.

    Google Scholar 

  33. Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG. A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther. 2011;11(5):464–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Betbeder D, et al. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties. Int J Nanomedicine. 2015;10:5355.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17(1):71–80.

    PubMed  CAS  Google Scholar 

  36. Dutta AK, Ikiki E. Novel drug delivery systems to improve bioavailability of curcumin. J Bioequiv Availab. 2013;6(1):001–9.

    Google Scholar 

  37. Tang H, Murphy CJ, Zhang B, Shen Y, Sui M, van Kirk E, et al. Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. Nanomedicine. 2010;5(6):855–65.

    PubMed  CAS  Google Scholar 

  38. Peng J-R, Qian Z-Y. Drug delivery systems for overcoming the bioavailability of curcumin: not only the nanoparticle matters. Nanomedicine. 2014;9(6):747–50.

    PubMed  CAS  Google Scholar 

  39. Damascelli B, Patelli GL, Lanocita R, di Tolla G, Frigerio LF, Marchianò A, et al. A novel intraarterial chemotherapy using paclitaxel in albumin nanoparticles to treat advanced squamous cell carcinoma of the tongue: preliminary findings. AJR Am J Roentgenol. 2003;181(1):253–60.

    PubMed  Google Scholar 

  40. Kouyoumdjian, H.K., Molecular umbrellas and human serum albumin as novel drug delivery vehicles. 2009.

    Google Scholar 

  41. Kushwaha SK, et al. Novel drug delivery system for anticancer drug: a review. Int J PharmTech Res. 2012;4(2):542–53.

    CAS  Google Scholar 

  42. Gopinath, H., et al., Anti-cancer nanoparticulate drug delivery system using biodegradable polymers. 2013.

    Google Scholar 

  43. Kolluru LP, Rizvi SA, D'Souza M, D'Souza MJ. Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. J Drug Target. 2013;21(1):77–86.

    PubMed  CAS  Google Scholar 

  44. Lohcharoenkal W, et al. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int. 2014;2014.

  45. Larsen MT, et al. Albumin-based drug delivery: harnessing nature to cure disease. Molecular and cellular therapies. 2016;4(1):3.

    PubMed  PubMed Central  Google Scholar 

  46. Saifer A, Goldman L. The free fatty acids bound to human serum albumin. J Lipid Res. 1961;2(3):268–70.

    CAS  Google Scholar 

  47. Van der Vusse, G.J., et al., Transport of long-chain fatty acids across the muscular endothelium, in Skeletal muscle metabolism in exercise and diabetes. 1998, Springer. p. 181–191.

  48. Jithan A, et al. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int J Pharm Investig. 2011;1(2):119.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Kim TH, et al. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. I Int J Pharm. 2011;403(1):285–91.

    PubMed  CAS  Google Scholar 

  50. Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. Nutr J. 2010;9(1):69.

    PubMed  PubMed Central  Google Scholar 

  51. Liu X, Meng QH, Ye Y, Hildebrandt MA, Gu J, Wu X. Prognostic significance of pretreatment serum levels of albumin, LDH and total bilirubin in patients with non-metastatic breast cancer. Carcinogenesis. 2014;36(2):243–8.

    PubMed  Google Scholar 

  52. Königsbrügge O, Posch F, Riedl J, Reitter EM, Zielinski C, Pabinger I, et al. Association between decreased serum albumin with risk of venous thromboembolism and mortality in cancer patients. Oncologist. 2016;21(2):252–7.

    PubMed  PubMed Central  Google Scholar 

  53. Merriel SW, Carroll R, Hamilton F, Hamilton W. Association between unexplained hypoalbuminaemia and new cancer diagnoses in UK primary care patients. Fam Pract. 2016;33(5):449–52.

    PubMed  Google Scholar 

  54. Sitar ME, Aydin S, Cakatay U. Human serum albumin and its relation with oxidative stress. Clin Lab. 2013;59(9–10):945–52.

    PubMed  CAS  Google Scholar 

  55. Taverna M, et al. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3(1):4.

    PubMed  PubMed Central  Google Scholar 

  56. Weber C, Kreuter J, Langer K. Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm. 2000;196(2):197–200.

    PubMed  CAS  Google Scholar 

  57. Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm. 2000;194(1):91–102.

    PubMed  CAS  Google Scholar 

  58. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 1). Trop J Pharm Res. 2013;12(2):255–64.

    Google Scholar 

  59. Patil S, et al. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134(5):703–7.

    PubMed  CAS  Google Scholar 

  61. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008;13(6):472–82.

    PubMed  CAS  Google Scholar 

  62. Dobrzyńska I, Skrzydlewska E, Figaszewski ZA. Changes in electric properties of human breast cancer cells. J Membr Biol. 2013;246(2):161–6.

    PubMed  Google Scholar 

  63. Frei E. Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetol Metab Syndr. 2011;3(1):11.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Mocan L, et al. Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi Apparatus–ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor. Int J Nanomedicine. 2015;10:5435.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin—more than just a serum protein. Front Physiol. 2014;5:299.

    PubMed  PubMed Central  Google Scholar 

  66. Singh S, Aggarwal BB. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem. 1995;270(42):24995–5000.

    PubMed  CAS  Google Scholar 

  67. Buhrmann, C., et al., Curcumin modulates NF-κB-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase-Akt pathway. J. Biol Chem, 2011: p. jbc. M111. 256180.

  68. Olivera A, et al. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3, 5-Bis (2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. 2012;12(2):368–77.

    PubMed  CAS  Google Scholar 

  69. Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, Pinna F, Lee YH, Kitade M, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol. 2015;63(3):661–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Yang J, Cao Y, Sun J, Zhang Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol. 2010;27(4):1114–8.

    PubMed  CAS  Google Scholar 

  71. Bhattacharyya, S., et al., Curcumin prevents tumor-induced T cell apoptosis through stat-5a-mediated Bcl-2 induction. J. Biol Chem, 2007.

    Google Scholar 

  72. Syng-ai C, Kumari AL, Khar A. Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther. 2004;3(9):1101–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported as a Ph.D. thesis by Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuhair Hassan.

Ethics declarations

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matloubi, Z., Hassan, Z. HSA-curcumin nanoparticles: a promising substitution for Curcumin as a Cancer chemoprevention and therapy. DARU J Pharm Sci 28, 209–219 (2020). https://doi.org/10.1007/s40199-020-00331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-020-00331-2

Keywords

Navigation