Skip to main content
Log in

Microstructure and Mechanical Properties of Intercritical Heat-affected Zone of X80 Pipeline Steel in Simulated In-Service Welding

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The intercritical heat-affected zone (ICHAZ) of X80 pipeline steel was simulated by using the Gleeble-3500 thermal/mechanical simulator according to the thermal cycle of in-service welding. The microstructures of ICHAZ with different cooling rates were examined, and the hardness, the toughness and corresponding fractography were investigated. Results show that untransformed bainite and ferrite as well as retransformed fine bainite and martensite–austenite (M–A) constituents constitute the microstructure of ICHAZ. The two different morphologies of M–A constituents are stringer and block. Second phase particles which mainly composed of Ti, Nb, C, Fe and Cu coarsened in ICHAZ. Compared with normal welding condition, the toughness of ICHAZ is poor when the cooling time is short under in-service welding condition because of the large area fraction and size of M–A constituents that connect into chains and distribute at the grain boundaries. The Vickers hardness of ICHAZ that decreases with the increase in the cooling time is independent with the area fraction of M–A constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.Y. Huang, Q. Shi, F.Q. Chen, Y.F. Shi, Acta Metall. Sin. (Engl. Lett.) 27, 421 (2014)

  2. A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, A. Pineau, Metall. Mater. Trans. A 35, 1053 (2004)

    Google Scholar 

  3. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, Mater. Sci. Eng. A 529, 200 (2011)

    Article  Google Scholar 

  4. Y. You, C.J. Shang, N. Wenjin, S. Subramanian, Mater. Sci. Eng. A 558, 701 (2012)

    Article  Google Scholar 

  5. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, Acta Metall. Sin. 47, 1054 (2011). (in Chinese)

    Google Scholar 

  6. M.A. Wahab, P.N. Sabapathy, M.J. Painter, J. Mater. Process. Technol. 168, 422 (2005)

    Article  Google Scholar 

  7. X.L. Xue, J.G. Zhu, G.E.O. Widera, Z.F. Sang, J. Press. Vessel Technol. 129, 72 (2005)

    Google Scholar 

  8. C.W. Li, Y. Wang, Mater. Des. 52, 1057 (2013)

    Google Scholar 

  9. V.T. Farid, M.A. Hamed, J. Appl. Sci. 9, 626 (2009)

    Google Scholar 

  10. P.T. Jia, T. Han, Y. Wang, Trans. China Weld. Inst. 34, 37 (2013). (in Chinese)

    Google Scholar 

  11. H.M. Asl, A. Vatani, Int. J. Press. Vesssel Pip. 105–106, 59 (2013)

    Google Scholar 

  12. C.W. Li, Y. Wang, T. Han, B. Han, L.Y. Li, J. Mater. Sci. 46, 733 (2011)

    Google Scholar 

  13. Y. Wang, L.J. Wang, X.J. Di, Y.T. Shi, X.W. Bao, X.M. Gao, Comput. Mater. Sci. 68, 205 (2013)

    Google Scholar 

  14. K.W. Andrews, J. Iron Steel Inst. 203, 727 (1965)

    Google Scholar 

  15. Z.C. Liu, H.P. Ren, Austenite Formation and Pearlite Transformation, 1st edn. (Metallurgical Industry Press, Beijing, 2010), p. 32. (in Chinese)

    Google Scholar 

  16. Y. You, C.J. Shang, L. Chen, S. Subramanian, Mater. Des. 43, 491 (2013)

    Article  Google Scholar 

  17. X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 616, 147 (2014)

    Google Scholar 

  18. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, J. Mater. Sci. 47, 4742 (2012)

    Article  Google Scholar 

  19. K. Poorhaydari, B.M. Patchett, D.G. Ivey, Mater. Sci. Eng. A 435–436, 382 (2006)

    Google Scholar 

  20. M. Chang, H. Yu, Int. J. Min. Metall. Mater. 20, 432 (2013)

    Article  Google Scholar 

  21. J. Huang, W.J. Poole, M. Militzer, Mater. Trans. A 35, 3375 (2004)

    Google Scholar 

  22. V. Biss, R.L. Cryderman, Metall. Trans. 2, 2267 (1971)

    Article  Google Scholar 

  23. L.M. Fu, H.R. Wang, W. Wang, A.D. Shan, Mater. Sci. Technol. 27, 1001 (2011)

    Article  Google Scholar 

  24. Q.P. Zhong, Z.H. Zhao, Fractography, 1st edn. (Higher Education Press, Beijing, 2006), pp. 153–156. (in Chinese)

    Google Scholar 

  25. C.L. Davis, J.E. King, Metall. Mater. Trans. A 25, 573 (1994)

    Google Scholar 

  26. X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, R.D.K. Misra, Metall. Mater. Trans. E (in press)

  27. G.R. Irwin, Fracture Dynamics: Fracture of Metals (America Society for Metals, Cleveland, 1948), pp. 147–166

    Google Scholar 

  28. Y. Li, T.N. Baker, J. Mater. Sci. Technol. 26, 1040 (2010)

    Google Scholar 

  29. X.D. Li, Y.R. Fan, X.P. Ma, S.V. Subramanian, C.J. Shang, Mater. Des. 67, 457 (2015)

    Article  Google Scholar 

  30. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, E. Østby, Metall. Mater. Trans. A 45, 394 (2014)

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by Key Project of Tianjin Municipal Science and Technology Support Program (No. 11ZCGYSF00100), and Tianjin Natural Science Foundation (No. 11JCYBJC06000), and the Gansu province Science and Technology Support Program (No. 1204GKCA007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Jie Di.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, XJ., Cai, L., Xing, XX. et al. Microstructure and Mechanical Properties of Intercritical Heat-affected Zone of X80 Pipeline Steel in Simulated In-Service Welding. Acta Metall. Sin. (Engl. Lett.) 28, 883–891 (2015). https://doi.org/10.1007/s40195-015-0272-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0272-2

Keywords

Navigation