Skip to main content
Log in

Corrosion Behavior of Low-Alloy Pipeline Steel with 1% Cr Under CO2 Condition

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Carbon dioxide corrosion behavior of low-alloy pipeline steel with 1% Cr exposed to CO2-saturated solution was investigated by immersion experiment. SEM, EDX, TEM, EPMA and XRD were utilized to investigate the microstructure, corrosion morphologies, corrosion phases and elements distribution of corrosion scale. The results demonstrate that the microstructure of tested steel consists of ferrite and carbides. During the corrosion process, ferrite dissolves preferentially, leaving carbide particles behind. The residual carbide particles may promote the nucleation of FeCO3 crystal. The phase comprising of the inner layer is Cr compound, and the one of the outer layer is FeCO3. The formation process of corrosion scale can be illustrated as follows: Firstly, a thin scale consisting of thin inner layer and outer layer is formed, which represents poor corrosion resistance; then, the inner layer changes little, once it has been formed, and the outer layer becomes thick and compact, which demonstrates that a fine corrosion resistance is obtained. The chemical elements of chromium and molybdenum accumulate in the inner layer of corrosion scale. The corrosion behavior of low-alloy steel based on microstructure and morphology characterization is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Zhang, Z.L. Wang, Z.M. Wang, X. Han, Corros. Sci. 65, 397 (2012)

    Article  Google Scholar 

  2. Q.L. Wu, Z.H. Zhang, X.M. Dong, J.Q. Yang, Corros. Sci. 75, 400 (2013)

    Article  Google Scholar 

  3. I.S. Cole, P. Corrigan, S. Sim, N. Birbilis, Int. J. Greenh. Gas Con. 5, 749 (2011)

    Article  Google Scholar 

  4. A. Pfennig, A. Kranzmann, Int. J. Greenh. Gas Con. 5, 757 (2011)

    Article  Google Scholar 

  5. J. Gale, J. Davison, Energy 29, 1319 (2004)

    Article  Google Scholar 

  6. L.H. Shi, C.Q. Wang, C.J. Zou, Eng. Fail. Anal. 36, 372 (2014)

    Article  Google Scholar 

  7. Z.J. Jia, C.W. Du, Z.Y. Liu, J. Gao, X.G. Li, Acta Metall. Sin. (Engl. Lett.) 24, 373 (2011)

  8. G.A. Zhang, Y.F. Chen, Corros. Sci. 51, 1589 (2009)

    Article  Google Scholar 

  9. L.N. Xu, S.Q. Guo, W. Chang, T.H. Cheng, L.H. Hu, M.X. Lu, Appl. Surf. Sci. 270, 395 (2013)

    Article  Google Scholar 

  10. F.F. Eliyan, A. Alfantazi, Corros. Sci. 85, 380 (2014)

    Article  Google Scholar 

  11. S.D. Zhu, A.Q. Fu, J. Miao, Z.F. Yin, G.S. Zhou, J.F. Wei, Corros. Sci. 53, 3156 (2011)

    Article  Google Scholar 

  12. S.L. Wu, Z.D. Cui, F. He, Z.Q. Bai, S.L. Zhu, X.J. Yang, Mater. Lett. 58, 1076 (2004)

    Article  Google Scholar 

  13. Y.C. Zhang, X.L. Pang, S.P. Qu, X. Li, K.W. Gao, Int. J. Greenh. Gas. Con. 5, 1643 (2011)

    Article  Google Scholar 

  14. M. Honarvar Nazari, S.R. Allahkaram, M.B. Kermani, Mater. Des. 31, 3559 (2010)

    Article  Google Scholar 

  15. M. Gao, X. Pang, K. Gao, Corros. Sci. 53, 557 (2011)

    Article  Google Scholar 

  16. A. Pfennig, A. Kranzmann, Corros. Sci. 65, 441 (2012)

    Article  Google Scholar 

  17. S.Q. Guo, L.N. Xu, L. Zhang, W. Chang, M.X. Lu, Corros. Sci. 63, 246 (2012)

    Article  Google Scholar 

  18. Y. Xie, L.N. Xu, C.L. Gao, W. Chang, M.X. Lu, Mater. Des. 36, 54 (2012)

    Article  Google Scholar 

  19. M. Ko, B. Ingham, N. Laycock, D.E. Williams, Corros. Sci. 80, 237 (2014)

    Article  Google Scholar 

  20. B. Ingham, M. Ko, G. Kear, P. Kappen, N. Laycock, J.A. Kimpton, D.E. Williams, Corros. Sci. 52, 3052 (2010)

    Article  Google Scholar 

  21. Q.Y. Liu, L.J. Mao, S.W. Zhou, Corros. Sci. 84, 165 (2014)

    Article  Google Scholar 

  22. A. Pfennig, P. Zastrow, A. Kranzmann, Int. J. Greenh. Gas Con. 15, 213 (2013)

    Article  Google Scholar 

  23. J.O.M. Bockris, D. Drazic, Electrochim. Acta 7, 293 (1962)

    Article  Google Scholar 

  24. J.B. Sun, G.A. Zhang, W. Liu, M.X. Lu, Corros. Sci. 57, 131 (2012)

    Article  Google Scholar 

  25. D.A. Lápez, T. Pérez, S.N. Simison, Mater. Des. 24, 561 (2003)

    Article  Google Scholar 

  26. C.F. Chen, M.X. Lu, D.B. Sun, Z.H. Zhang, W. Chang, Corrosion 61, 594 (2005)

    Article  Google Scholar 

  27. W. Sun, S. Nešić, R.C. Woollam, Corros. Sci. 51, 1273 (2009)

    Article  Google Scholar 

  28. J.L. Mora-Mendoza, S. Turgoose, Corros. Sci. 44, 1223 (2002)

    Article  Google Scholar 

  29. Z. Ahmad, I.M. Allam, B.J. Abdul Aleem, Anti-Corros. Method Mater. 47, 215 (2000)

Download references

Acknowledgments

This work was financially supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China during the “12th Five-Year Plan”(Grant No. 2011BAE25B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Hua Gao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZG., Gao, XH., Yu, C. et al. Corrosion Behavior of Low-Alloy Pipeline Steel with 1% Cr Under CO2 Condition. Acta Metall. Sin. (Engl. Lett.) 28, 739–747 (2015). https://doi.org/10.1007/s40195-015-0255-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0255-3

Keywords

Navigation