Skip to main content
Log in

Prediction of Cold Dwell-Fatigue Crack Growth of Titanium Alloys

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The dwell effect of the material can reduce the fatigue lives of titanium alloys at room temperature. A unified fatigue life prediction method developed by the authors’ group is modified in this paper to predict dwell-fatigue crack growth taking into account the effects of dwell time and maximum stress. The modified model can be successfully used to predict the crack growth rate and calculate the fatigue life of different titanium alloys under pure fatigue and dwell-fatigue conditions. It is validated by comparing prediction results with the experimental data of several titanium alloys with different microstructures, dwell time, hydrogen contents, stress ratios and stress levels .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A 1 :

Material and environmentally sensitive constant of dimensions in the crack growth rate model

m 1 :

Constant representing the slope of the corresponding fatigue crack growth rate curve in the crack growth rate model

△K th :

Threshold stress intensity factor range

K max :

The maximum stress intensity factor

K min :

The minimum stress intensity factor

△K op :

Stress intensity factor range at the opening level

△K effth :

Effective range of the stress intensity factor range at the threshold level

K cf :

Fracture toughness of the material

σ u :

Ultimate strength of the material

σ y :

Yield strength of the material

σ fl :

Flow stress of the material

σ v :

Virtual strength of the material representing the material strength at limit of ‘perfect’ condition (r e = 0)

σ max :

The maximum stress level

σ min :

The minimum stress level

ν :

Poisson’s ratio

R :

Stress ratio defined by σ max/σ min

r e :

Empirical material constant of the inherent flaw length of the order of 1 μm

f op :

Crack opening function defined as the ratio K op /△K

da/dN :

Fatigue crack growth rate

k :

Material constant which reflects the rate of crack closure development with crack advance

n 1 :

Index indicating the unstable fracture in the crack growth rate model

a :

Crack length

Y :

Geometrical factor to calculate the stress intensity factors

α′:

Plane stress/strain constraint factor

α :

Parameter used to calculate the ‘virtual strength’ of the material

A 1, A 2, A 3, A 4 :

Coefficients defined to calculate the crack opening function f op

△K th-cl :

Component of the stress intensity factor range corresponding to crack closure

Δσ R :

Plain fatigue limit under stress ratioR

d :

Intrinsic crack length

△K th-s :

Crack propagation threshold for short fatigue crack under stress ratioR

△K thR :

Threshold for long crack under the stress ratioR

A 2, m 2, n 2 :

Material and environmental parameters, similar as A 1, m 1, n 1

κ :

Material parameter for the influence level of the maximum stress

t :

Dwell time

References

  1. M.R. Bache, Int. J. Fatigue 25, 1079 (2003)

    Article  Google Scholar 

  2. R. Wanhill, S. Barter, Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys (Springer, The Netherlands, 2012)

    Book  Google Scholar 

  3. P. Lefranc, V. Doquet, M. Gerland, C. Sarrazin-Baudoux, Acta Mater. 56, 4450 (2008)

    Article  Google Scholar 

  4. W.J. Evans, C.R. Gostelow, Metall. Trans. A 10, 1837 (1979)

    Article  Google Scholar 

  5. W.J. Evans, M.R. Bache, Int. J. Fatigue 16, 443 (1994)

    Article  Google Scholar 

  6. W.J. Harrison, M.T. Whittaker, R. Lancaster, Mater. Sci. Eng., A 574, 130 (2013)

    Article  Google Scholar 

  7. F. McBagonluri, E. Akpan, C. Mercer, W. Shen, W.O. Soboyejo, Mater. Sci. Eng., A 405, 111 (2005)

    Article  Google Scholar 

  8. W. Shen, W.O. Soboyejo, A.B.O. Soboyejo, Metall. Mater. Trans. A 35, 163 (2004)

    Article  Google Scholar 

  9. W. Shen, W.O. Soboyejo, A.B.O. Soboyejo, Mech. Mater. 36, 117 (2004)

    Article  Google Scholar 

  10. M.R. Bache, M. Cope, H.M. Davies, W.J. Evans, G. Harrison, Int. J. Fatigue 19, 83 (1997)

    Article  Google Scholar 

  11. W.J. Evans, Mater. Sci. Eng., A 243, 89 (1998)

    Article  Google Scholar 

  12. J.E. Hack, G.R. Leverant, Metall. Trans. A 13, 1729 (1982)

    Article  Google Scholar 

  13. M.R. Bache, W.J. Evans, H.M. Davies, J. Mater. Sci. 32, 3435 (1997)

    Article  Google Scholar 

  14. W.J. Evans, J. Mater. Sci. Lett. 6, 571 (1987)

    Article  Google Scholar 

  15. W.J. Evans, Fatigue Fract. Eng. Mater. Struct. 27, 543 (2004)

    Article  Google Scholar 

  16. B.R. Bache, W.J. Evans, V. Randle, R.J. Wilson, Mater. Sci. Eng., A 257, 139 (1998)

    Article  Google Scholar 

  17. J.C. Radon, K. Nikbin, Influence of Specimen Geometry on the Random Load Fatigue Crack Growth, in: ASTM Special Technical Publication, vol. 1406, (ASTM International, PA, USA, 2001), pp. 88–104

  18. M.R. Bache, W.J. Evans, Int. J. Fatigue 14, 331 (1992)

    Article  Google Scholar 

  19. C.A. Stubbington, S. Pearson, Eng. Fract. Mech. 10, 723 (1978)

    Article  Google Scholar 

  20. P. Lefranc, C. Sarrazin-Baudoux, V. Doquet, Dwell-fatigue behaviour of a beta-forged Ti 6242 alloy, in Fracture of Nano and Engineering Materials and Structures, ed. by E.E. Gdoutos (Springer, The Netherlands, 2006), pp. 171–172

    Chapter  Google Scholar 

  21. P. Lefranc, C. Sarrazin-Baudoux, V. Doquet, J. Petit, Scr. Mater. 60, 281 (2009)

    Article  Google Scholar 

  22. M. Gerland, P. Lefranc, V. Doquet, C. Sarrazin-Baudoux, Mater. Sci. Eng., A 507, 132 (2009)

    Article  Google Scholar 

  23. P. Lefranc, C. Sarrazin-Baudoux, M. Gerland, V. Doquet, J. Petit, Dwell-fatigue behavior of a near Alpha-Ti 6242 alloy, Paper presented at the 17th European Conference on Fracture: Multilevel Approach to Fracture of Materials, Components and Structures, Brno, Czech Republic, 2–5 September 2008

  24. W.C. Cui, X.P. Huang, Acta. Metall. Sin. (Engl. Lett.) 16, 342 (2003)

  25. X.Y. Li, W.C. Cui, W.M. Zhang, J. Ship Mech. 10, 54 (2006)

    Google Scholar 

  26. Y.F. Wang, W.C. Cui, X.Y. Wu, F. Wang, X.P. Huang, Int. J. Fatigue 30, 1851 (2008)

    Article  Google Scholar 

  27. A.J. McEvily, Y.S. Shin, J. Eng. Mater. Technol. 117, 408 (1995)

    Article  Google Scholar 

  28. S. Pearson, Eng. Fract. Mech. 7, 235 (1975)

    Article  Google Scholar 

  29. S. Suresh, R.O. Ritchie, Int. Met. Rev. 29, 445 (1984)

    Article  Google Scholar 

  30. J. Lankford, Int. J. Fract. 16, R7 (1980)

    Article  Google Scholar 

  31. O.N. Romaniv, V.N. Simin’kovich, A.N. Tkach, Mater. Sci. 18, 234 (1982)

    Article  Google Scholar 

  32. K. Tanaka, Y. Nakai, M. Yamashita, Int. J. Fract. 17, 519 (1981)

    Google Scholar 

  33. K. Tanaka, M. Hojo, Y. Nakai. Mater. Sci. Eng. 55, 85 (1982)

    Article  Google Scholar 

  34. D.L. Chen, B. Weiss, R. Stickler, Int. J. Fatigue 16, 485 (1994)

    Article  Google Scholar 

  35. C. Santus, D. Taylor, Int. J. Fatigue 31, 1356 (2009)

    Article  Google Scholar 

  36. A.J. McEvily, Mater. Sci. Eng., A 143, 127 (1991)

    Article  Google Scholar 

  37. A.J. McEvily, K. Minakawa, Scr. Metall. 18, 71 (1984)

    Article  Google Scholar 

  38. A.J. McEvily, Key Eng. Mater. 510, 15 (2012)

    Article  Google Scholar 

  39. D.S. Dugdale, J. Mech. Phys. Solids 8, 100 (1960)

    Article  Google Scholar 

  40. M.D. Chapetti, Int. J. Fatigue 25, 1319 (2003)

    Article  Google Scholar 

  41. D. Munz, V. Bachmann, Z Werkstofftech. J. Mater. Technol. 11, 168 (1980)

    Google Scholar 

  42. R.P. Wei, Z. Huang, Mater. Sci. Eng., A 336, 209 (2002)

    Article  Google Scholar 

  43. T. Wakai, C. Poussard, B. Drubay, Nucl. Eng. Des. 224, 245 (2003)

    Article  Google Scholar 

  44. A. Saxena, Fatigue Fract. Eng. Mater. Struct. 3, 247 (1980)

    Article  Google Scholar 

  45. K.X. Shi, F.S. Lin, J. Chin. Soc. Power Eng. 30, 304 (2010). (in Chinese)

    Google Scholar 

  46. P. Wang, J.X. Dong, M.C. Zhang, L. Zheng, X.S. Xie, Rare Met. Mater. Eng. 40, 630 (2011). (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by Youth Foundation of Jiangsu Province “Study on the time-scale crack growth rate model used in fatigue life assessment of pressure hull of deep-sea submersibles” (No. BK2012095), the National Natural Science Foundation of China (Nos. 51109100 and 51439004), the National Natural Science Foundation for Young Scholars of China (No. E091002/51109101) and the Shanghai Committee of Science and Technology Projects (Nos. 14DZ1205500 and 14DZ2250900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Cheng Cui.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wang, F., Cui, WC. et al. Prediction of Cold Dwell-Fatigue Crack Growth of Titanium Alloys. Acta Metall. Sin. (Engl. Lett.) 28, 619–627 (2015). https://doi.org/10.1007/s40195-015-0240-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0240-x

Keywords

Navigation