Skip to main content
Log in

Finite Element Simulations of Crack Propagation in Al2O3/6061Al Composites

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, the local fracture initiation behaviour of an Al2O3/6061Al composite is studied numerically. The damage behaviour of the microstructure is evaluated in consideration of the path and the amount of damage as well as the stress–strain performance of the microstructure. The damage behaviour of the ductile matrix has been simulated using the damage parameter D. For the simulation of fracture of the ceramic particles, a normal stress criterion is applied. For the analysis of the damage behaviour of the transition zone between particulate and matrix, both damage models (D parameter and normal stress criteria) are applied in this region. Parameter studies of crack propagation prediction in the Al2O3/6061Al composite on the basis of an Element Elimination technique have been performed for two differently heat-treated variants resulting in different mechanical properties. In addition, residual stress effects on the damage behaviour are examined for various microstructural situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  2. S.C. Sharma, Metall. Mater. Trans. A 31, 773 (2000)

    Article  Google Scholar 

  3. T.W. Clyne, in Comprehensive Composite Materials, ed. by T.W. Clyne (Elsevier, Amsterdam, 2000), p. 1

    Chapter  Google Scholar 

  4. Z.H.A. Kassam, R.J. Zhang, Z. Wang, Mater. Sci. Eng. A 203, 286 (1995)

    Article  Google Scholar 

  5. A. Ayyar, N. Chawla, Compos. Sci. Technol. 66, 1980 (2006)

    Article  Google Scholar 

  6. E. Soppa, S. Schmauder, G. Fischer, J. Thesing, R. Ritter, Comput. Mater. Sci. 16, 323 (1999)

    Article  Google Scholar 

  7. Leichmetallkompetenzzentrum-Ranshofen (LKR), Austria

  8. R. Mellert, Kurzdokumentation: Automatische Netzgenerierung von Pixelbildern mit PATRAN, Interner Bericht, Materialprüfungsanstalt Universität Stuttgart, (2004)

  9. J. Rice, D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969)

    Article  Google Scholar 

  10. J. Arndt, H. Majedi, W. Dahl, J. Phys. IV C6, 23 (1996)

    Google Scholar 

  11. S. Hönle, M. Dong, L. Mishnaevsky Jr., S. Schmauder, in Proceedings of the Euromech-Mecamat, Mechanics of Materials with Intrinsic Length Scale: Physics, Experiments, Modelling and Applications, Magdeburg, ed.by A. Bertram, S. Forest, F. Sidoroff, (Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, 1998), p. 189

  12. S. Höhnle, L. Mishnaevsky, S. Schmauder, Compos. Mater. Sci. 13, 56 (1998)

    Article  Google Scholar 

  13. ABAQUS2002, Version 6.11 User’s Manual (Pawtucket, Rhode Island, USA: ABAQUS Inc.)

  14. L. J. Seok, Dissertation, University of Stuttgart, 2008

  15. N. Moes, T. Belytschko, Eng. Fract. Mech. 69, 813 (2002)

    Article  Google Scholar 

  16. N. Moes, J. Dolbow, T. Belytschko, Int. J. Numer. Methods Eng. 46, 131 (1999)

    Article  Google Scholar 

  17. T. Belytschko, T. Black, Int. J. Numer. Methods Eng. 45, 601 (1999)

    Article  Google Scholar 

  18. I. Scheider, W. Brocks, in Key Engineering Materials, ed. by F.G. Buchholz, H.A. Richard, M.H. Aliabadi, vol. 251–2 (Trans Tech Publications Ltd., Switzerland, 2003) pp. 313–318

  19. I. Scheider, W. Brocks, Eng. Fract. Mech. 70, 1943 (2003)

    Article  Google Scholar 

  20. H.C. Lee, J.S. Choi, K.H. Jung, Y.T. Im, J. Achiev, Mater. Manuf. Eng. 35, 2 (2009)

    Google Scholar 

  21. L. Banjs-Sills, V. Boniface, R. Eliasi, Interface Sci. 11, 339 (2003)

    Article  Google Scholar 

  22. E. Maawad, Y. Sano, L. Wagner, H.G. Brokmeier, C. Genzel, Mater. Sci. Eng. A 536, 82 (2012)

    Article  Google Scholar 

  23. R. Becker, M.E. Karabin, J.C. Liu, R.E. Smelser, J. Appl. Mech. 63, 699 (1996)

    Article  Google Scholar 

  24. M.O. Speidel, Metall. Trans. A 6, 631 (1975)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support from German Research Foundation (DFG), under project Schm 746/55-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Lasko.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasko, G., Weber, U. & Schmauder, S. Finite Element Simulations of Crack Propagation in Al2O3/6061Al Composites. Acta Metall. Sin. (Engl. Lett.) 27, 853–861 (2014). https://doi.org/10.1007/s40195-014-0124-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0124-5

Keywords

Navigation