Skip to main content

Advertisement

Log in

Nutritional Genomics of Cardiovascular Disease

  • Cardiovascular Genetics (B Mitchell, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular disease (CVD) is the leading cause of death in the USA and globally. There is significant evidence implicating genetic and dietary factors in the development and progression of CVD and its risk factors. Nutritional genomics is a comparatively new field of science that focuses on the relationship of individual genetic variation with response to nutrition. The purpose of this review is to summarize recent progress, in the field of nutritional genomics as it relates to cardiovascular disease.

Recent Findings

Evidence from recent studies has shown significant effects of gene-diet interactions on CVD biomarkers and the development and progression of CVD. The cardiovascular effects of gene-nutrient interactions with respect to macronutrients and genes such as FTO, ACE, PPARs, TCF7L2, BDNF, MC4R, APOAs, and FADS have shown consistent results across age groups and populations, whereas gene-nutrient interaction effects of other genes have only been limited to specific ages, genders, or populations, and need to be validated and confirmed.

Summary

The identification of individual genetic variation influencing diet-related CVD risk is important and may inform future nutritional intervention studies. Although there is ample scientific evidence indicating that the genetic susceptibility to CVD can be modified by diet, we are still not at a stage where this information is easily translated into dietary plans. Thus, there is a need for better approaches to achieve precision in dietary data collection and streamline computational approaches for meaningful and effective nutritional interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stewart J, Manmathan G. Wilkinson. Primary prevention of cardiovascular disease: a review of contemporary guidance and literature. JRSM Cardiovas Dis. 2017;6:1–9.

    Google Scholar 

  2. Nabel EG. Cardiovascular disease. NEJM. 2003;349:60–72.

    Article  PubMed  CAS  Google Scholar 

  3. Roth GA, Huffman MD, Moran AE, Feigin V, Mansah GA, Naghavi M, et al. Global and regional patterns in cardiovascular mortality from 1990-2013. Circulation. 2015;132:1667–78.

    Article  PubMed  Google Scholar 

  4. Writing group members, Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, et al. Heart disease and stroke statistics—2017 update. Circulation. 2017;135:e146–603.

    Article  PubMed Central  Google Scholar 

  5. Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell. 2012;148:1242–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. O’Donnell NEG. Genomics of cardiovascular disease. NEJM. 2011;365:2098–109.

    Article  PubMed  Google Scholar 

  7. O’Donnell C, Elosia R. Cardiovascular risk factors. Insights from framingham heart study. Rev Esp Cardiol. 2008;61:299–310.

    Article  PubMed  Google Scholar 

  8. Oparil S, Oberman A. Nontraditional cardiovascular risk factors. Am J Med Sci. 1999;317:193–207.

    Article  PubMed  CAS  Google Scholar 

  9. Stover PJ. Influence of human genetic variation on nutritional requirements. Am J Clin Nutr. 2006;83:436S–42S.

    Article  PubMed  CAS  Google Scholar 

  10. Simopoulos AP. Genetic variation and nutrition. Biomed Environ Sci. 1996;9:124–9.

    PubMed  CAS  Google Scholar 

  11. • Dellapenna D. Nutritional genomics: manipulating plant micronutrients to improve human health. Science. 1999;285:375–9. One of the initial reports explaining the concept of nutritional genomics.

    Article  PubMed  CAS  Google Scholar 

  12. Ordovas JM. Nutrigenetics and nutrigenomics. Curr Opin Lipidol. 2004;15:101–8.

    Article  PubMed  CAS  Google Scholar 

  13. Qi L. Nutrition, genetics and cardiovascular disease. Curr Nutr Rep. 2012;1:93–9.

    Article  CAS  Google Scholar 

  14. Kohlmeier M. Nutrigenetics: applying the science of personal nutrition. Acad Press. 2013;

  15. • Ordovas JM, Corella D. Nutritional genomics. Ann Rev Genomics Human Gen. 2004;5:71–118. A detailed summary about the importance of nutritional genomics in public health

    Article  CAS  Google Scholar 

  16. Nicolosi RJ, Wilson TA, Lawton C, Handelman GJ. Dietary effects on cardiovascular disease risk factors: beyond saturated fatty acids and cholesterol. J Am Coll Nutr. 2001;20:421S–7S.

    Article  PubMed  CAS  Google Scholar 

  17. Eilat-Adar S, Sinari T, Yosefy C, Henkin Y. Nutritional recommendations for cardiovascular disease prevention. Nutrients. 2013;5:3646–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2017;S2213-8587(17):30200. https://doi.org/10.1016/S2213-8587(17)30200-0.

    Article  Google Scholar 

  19. Castillo JJ, Oralndo RA, Garver WS. Gene-nutrient interactions and susceptibility to human obesity. Genes Nutr. 2017;12:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nettleton JA, Follis JL, Ngwa JS, Smith CE, Ahmad S, Tanaka T, et al. Gene x dietary pattern interactions in obesity: analysis of up to 68,317 adults of European ancestry. Hum Mol Genet. 2015;24:4728–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jou C. The biology and genetics of obesity—a century of inquiries. 2014; 370: 1874–1877.

  22. Xia Q, Grant SFA. The genetics of human obesity. Ann N Y Acad Sci. 2013;128:178–90.

    Article  CAS  Google Scholar 

  23. Locke AE, Kahali B, Berndt SI, Justice AE, Per TH, Day FR, et al. Genetics studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. • Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50:26–41. This paper provides evidence that the effect size of rare variants is ten times larger than common variants in extreme obesity, mainly with MC4R variants.

    Article  PubMed  CAS  Google Scholar 

  25. Lu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 2016;7:10495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rukh G, Sonestedt E, Melander O, Hedblad B, Wirfait E, Ericson U, et al. Genetic susceptibility to obesity and diet intakes: association and interaction analyses of the Malmo diet and Cancer study. Genes Nutr. 2013;8:535–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Qi Q, Downer MK, Kilpelainen TO, Taal HR, Barton SJ, Ntalia I, et al. Dietary intake, FTO genetic variants, and adiposity: a combined analysis of over 16000 children and adolescents. Diabetes. 2015;64:2467–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sonestedt E, Roos C, Gullberg G, Ericson U, Wirfait E, Orho-Melander M. Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity. Am J Clin Nutr. 2009;90:1418–25.

    Article  PubMed  CAS  Google Scholar 

  29. Phillips CM, Kesse-Guyot E, McManus R, Hercberg S, Lairon D, Planells R, et al. High dietary saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated gene in adults. J Nutr. 2012;142:824–31.

    Article  PubMed  CAS  Google Scholar 

  30. Qi Q, Chy AY, Kang JH, Huang J, Rose LM, Jensen MK, et al. Fried food consumption, genetic risk and body mass index: gene-diet interaction analysis in three cohort studies. BMJ. 2014;348:g1610.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012;367:1387–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dominguez-Reyes T, Astudillo-Lopez CC, Salgado-Goytia L, Muno-Valle JF, Salgado-Bernave AB, Guzman-Guzman IP, et al. Interaction of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its relationship with obesity and dyslipidemia in young subjects. Lipids Health Dis. 2015;14:106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vimaleswaran KS, Bodhini D, Lakshmipriya N, Ramya K, Anjana RM, Sudha V, et al. Interaction between FTO gene variants and lifestyle factors on metabolic traits in an Asian Indian population. Nutr Metab (Lond). 2016;13:39.

    Article  CAS  Google Scholar 

  34. Hosseini-Esfahani F, Koochakpoor G, Daneshpour MS, Mirmiran P, Sedaghati-Khayat B, Azizi F. The interaction of fat mass and obesity associated gene polymorphisms and dietary fiber intake in relation to obesity phenotypes. Sci Rep. 2017;7:18057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nature Genet. 2010;42:1086–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhao Y, Barrere-Cain RE, Yang X. Nutritional systems biology of type 2 diabetes. Genes Nutr. 2015;10:31.

    Article  PubMed Central  CAS  Google Scholar 

  38. • Berna G, Oliveras-Lopez MJ, Jurado-Ruiz E, Tejedo J, Bedoya F, Soria B, et al. Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients. 2014;6:5338–69. A comprehensive discussion about the role of gene-nutrient interactions and epigenetic modifications by diet in the development and treatment of diabetes mellitus. It also presents an overview of cellular signaling response to diet and potential role of diet to prevent the onset of diabetes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lamri A, Bi-Khalil C, Jaziri R, Velho G, Lantieri O, Vol S, et al. Dietary fat intake and polymorphism at the PPARG locus modulate BMI and type 2 diabetes risk. In the D.E.S.I.R. prospective study. Int J Obes. (Lond). 2012;36:218–24.

    Article  CAS  Google Scholar 

  40. • Lamri A, Bonnefond A, Meyre D, Roussel R, Marre M, Froguel P, et al. Interaction between GPR120 p.R270H loss-of-function variant and dietary fat intake on incident type 2 diabetes risk in the D.E.S.I.R. study. Nutr Metab Cardiovasc Dis. 2016;26:931–6. The authors report that H-carriers of R270H are at a higher risk for T2D than RR homozygotes who consumed low fat and not in those who consumed high-fat diet.

    Article  PubMed  CAS  Google Scholar 

  41. Ruchat SM, Elks CE, Loos RJ, Vohl MC, Weisnagel SJ, Rankinen T, et al. Evidence of interaction between type 2 diabetes susceptibility genes and dietary fat intake for adiposity and glucose homeostasis-related phenotypes. J Nutrigenet Nutrigenomics. 2009;2:225–34.

    Article  PubMed  CAS  Google Scholar 

  42. Daily JW, Park S. Interaction of BDNF rs6265 variants and energy and protein intake in the risk for glucose intolerance and type 2 diabetes in middle-aged adults. Nutrition. 2017;33:187–94.

    Article  PubMed  CAS  Google Scholar 

  43. Waken RJ, de Las Fuentes L, Rao DC. A review of the genetics of hypertension with a focus in gene-environment interactions. Curr Hypertens Rep. 2017;19:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bakris G, Sorrentino M. Redefining hypertension—assessing the new blood-pressure guidelines. N Engl J Med. 2018;378:497–9.

    Article  PubMed  Google Scholar 

  45. Ioannidis JPA. Diagnosis and treatment of hypertension in the 2017 ACC/AHA guidelines and in the real world. JAMA. 2018;319:115–6.

    Article  PubMed  Google Scholar 

  46. Butler MG. Genetics of hypertension. Curr Status J Med Liban. 2010;58:175–8.

    Google Scholar 

  47. Dojki K, Bakris GL. Blood pressure control and cardiovascular/renal outcomes. Endocrinol Metab Clin N Am. 2018;47:175–84.

    Article  Google Scholar 

  48. •• Schüler R, Osterhoff MA, Frahnow T, Seltmann AC, Busjahn A, Kabisch S, et al. High-saturated-fat diet increases circulating amgiotensin-converting enzyme, which is enhanced by the rs4343 polymorphism defining persons at risk of nutrient-dependent increases of blood pressure. J Am Heart Assoc. 2017;6:e004465. The authors found that high-saturated-fat diet increases the serum concentrations of angiotensin-converting enzyme (ACE) which may further increase the risk for hypertension and CVD.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kawarazaki W, Fujita T. The role of aldosterone in obesity-related hypertension. Am J Hypertens. 2016;29:415–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Manosroi W, Tan JW, Rariy CM, Sun B, Goodarzi MO, Saxena AR, et al. The association of estrogen receptor-β gene variation with salt-sensitive blood pressure. J Clin Endocrinol Metab. 2017;102:4124–35.

    Article  PubMed  Google Scholar 

  51. Gu X, Gu D, He J, Rao DC, Hixson JE, Chen J, et al. Resequencing epithelial sodium channel genes identifies rare variants associated with blood pressure salt-sensitivity: the GenSalt study. Am J Hypertens. 2018;31:205–11.

    Article  PubMed  Google Scholar 

  52. Nierenberg JL, Li C, He J, Gu D, Chen J, Lu X, et al. Blood pressure genetic risk score predicts blood pressure responses to dietary sodium and potassium: the GenSalt study (genetic epidemiology network of salt sensitivity). Hypertension. 2017;70:1106–12.

    Article  PubMed  CAS  Google Scholar 

  53. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl MC. Polymorphisms in genes involved in fatty acid β-oxidation interact with dietary fat intakes to modulate the plasma TG response to a fish oil supplementation. Nutrients. 2014;6:1145–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Thifault E, Cormier H, Bouchard-Mercier A, Rudkowska I, Paradis AM, Garneau V, et al. Effects of age, sex, body mass index and APOE genotype on cardiovascular biomarker response to a n-3 polyunsaturated fatty acid supplementation. J Nutrigenet Nutrigenomics. 2013;6:73–82.

    Article  PubMed  CAS  Google Scholar 

  55. Chouinard-Watkins R, Conway V, Minihane AM, Jackson KG, Lovegrove JA, Plourde M. Interaction between BMI and APOE genotype is associated with changes in the plasma long-chain-PUFA response to a fish-oil supplementation in health participants. Am J Clin Nutr. 2015;102:505–13.

    Article  PubMed  CAS  Google Scholar 

  56. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, et al. Dietary fat and cardiovascular disease. A presidential advisory from the American Heart Association. Circulation. 2017;136:e1–e23.

    Article  PubMed  Google Scholar 

  57. Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl MC. An interaction effect between glucokinase gene variation and carbohydrate intake modulates the plasma triglyceride response to a fish oil supplementation. Genes Nutr. 2014;9:395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. de Medeiros Cavalcante IG, Silva AS, Costa MJ, Persuhn DC, Issa CT, de Luna Freire TL, et al. Effect of vitamin D3 supplementation and influence of Bsml polymorphism of the VDR genes of the inflammatory profile and oxidative stress in elderly women with vitamin D insufficiency: the vitamin D3 megadose reduces inflammatory markers. Exp Gerontol. 2015;66:10–6.

    Article  PubMed  CAS  Google Scholar 

  59. Yamakawa-Kobayashi K, Otagi E, Ohhara Y, Goda T, Kasezawa N, Kayashima Y. The combined effects of genetic variation in the CNDP1 and CNDP2 genes and dietary carbohydrate and carotene intake on obesity risk. J Nutrigenet Nutrigenomics. 2018;10:146–54.

    Article  CAS  Google Scholar 

  60. Mocchegiani E, Costarelli GR, Malavolta M, Basso A, Piacenza F, Ostan R, et al. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity I ageing and inflammation. A systematic review. Mech Ageing and Dev. 2014;136-137:29–49.

    Article  CAS  Google Scholar 

  61. Mocchegiani E, Costarelli GR, Piacenza F, Basso A, Malavolta M. Micronutrient (Zn. Cu. Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev. 2012;11:297–319.

    Article  PubMed  CAS  Google Scholar 

  62. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.

    Article  PubMed  CAS  Google Scholar 

  63. Ros E, Martinez-Gonzalez MA, Estruch R, Salas-Salvado J, Fito M, Martinez JA, et al. Mediterranean diet and cardiovascular health: teachings of the PREDIMED trial. Adv Nutr. 2014;5:330S–6S.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ortega-Azorin C, Sorli JV, Asensio EM, Coltell O, Martinez-Gonzalez MA, Salas-Salvado J, et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol. 2012;11:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ortega-Azorin C, Sorli JV, Estruch R, Asensio EM, Coltell O, Gonzalez JI, et al. Amino acid change in the carbohydrate response element binding protein is associated with lower triglycerides and myocardial infarction incidence depending the level of adherence to the Mediterranean diet in the PREDIMED trial. Circ Cardiovasc Genet. 2014;7:49–58.

    Article  PubMed  CAS  Google Scholar 

  66. Casas R, Sacanella E, Urpí-Sardà M, Corella D, Castañer O, Lamuela-Raventos RM, et al. Long-term immunomodulatory effects of a Mediterranean diet in adults at a high risk of cardiovascular disease in the Prevencion con Dieta Mediterrenea (PREDIMED) randomized controlled trial. J Nutr. 2016;146:1684–93.

    Article  PubMed  CAS  Google Scholar 

  67. Castañer O, Corella D, Covas MI, Sorlí JV, Subirana I, Flores-Mateo G, et al. PREDIMED study investigators. In vivo transcriptomic profile after a Mediterranean diet in high-cardiovascular risk patients: a randomized controlled trial. AM J Clin Nutr. 2013;98:845–53.

    Article  PubMed  CAS  Google Scholar 

  68. • Ortega-Azorin C, Sorli JV, Estruch AEM, Coltell O, Gonzalez JI, et al. Amino acid change in the carbohydrate response element binding protein is associated with lower triglycerides and myocardial infarction incidence depending on level of adherence to the Mediterranean diet in the PREDIMED trial. Circ Cardiovasc Genet. 2014;7:49–58. This study is focused in a dietary pattern (Mediterranean diet) and not on a single nutrient. The authors show the beneficial effects of Mediterranean diet on CVD risk factors and CVD events.

    Article  PubMed  CAS  Google Scholar 

  69. Lim GB. Hypertension: low sodium and SAS diet to lower blood pressure. Nat Rev Cardiol. 2018;15:68.

    Article  PubMed  Google Scholar 

  70. Svetkey LP, Harris EL, Martin E, Vollmer WM, Meltesen GT, Ricchiuti V, et al. Modulation of the BP response to diet by genes in the renin-angiotensin system and the adrenergic nervous system. Am J Hypertens. 2011;24:209–17.

    Article  PubMed  CAS  Google Scholar 

  71. Vedin I, Cederholm T, Freund-Levi Y, Basun H, Garlind A, Irving GF, et al. Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the OmegAD study. PLoS One. 2012;7:e35425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rudkowska I, Paradis AM, Thifault E, Julien P, Tchernof A, Couture P, et al. Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population. J Nutr Biochem. 2013;24:54–61.

    Article  PubMed  CAS  Google Scholar 

  73. Tome-Carneiro J, Larrosa M, Yanez-Gascon MJ, Davalos A, Gil-Zamorano J, Gonzalez M, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69–82.

    Article  PubMed  CAS  Google Scholar 

  74. De Lorenzo A, Bernardini S, Gualtieri P, Cabibbo A, Perrone MA, Giambini I, et al. Mediterranean meal versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: a randomized controlled trial for nutrigenomic approach in cardiometabolic risk. Acta Diabetol. 2017;54:141–9.

    Article  PubMed  CAS  Google Scholar 

  75. Bouchard-Mercier A, Paradis AM, Rudkowska I, Lemieux S, Coutoure P, Vohl MC. Associations between dietary patterns and gene expression profiles of healthy men and women: a cross-sectional study. Nut J. 2013;12:24.

    Article  CAS  Google Scholar 

  76. Camargo A, Delgado-Lista J, Garcia-Rios A, Cruz-Teno C, Yubero-Serrano EM, Perez-Martinez P, et al. Expression of proinflammatory, proatherogenic genes is reduced by the Mediterranean diet in elderly people. Br J Nutr. 2012;108:500–8.

    Article  PubMed  CAS  Google Scholar 

  77. •• Ellsworth DL, Mamula KA, Blackburn HL, FA MD, Jellema GL, van Laar R, et al. Importance of substantial weight loss for altering gene expression during cardiovascular lifestyle modification. Obesity (Silver Spring). 2015;23:1312–9. A clinical intervention including dietary and physical activity modifications was associated with downregulation of genes involved in vascular endothelium and immunity.

    Article  CAS  Google Scholar 

  78. Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, et al. Proposed guidelines to evaluate scientific validity and evidence or genotype-based dietary advice. Genes Nutr. 2017;12:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. • Corella D, Coltell O, Mattingley G, Sorli JV, Ordovas JM. Utilizing a nutritional genomics to tailor diets for the prevention of cardiovascular disease: a guide for upcoming studies and implementations. Expert Rev Mol Diagn. 2017;17:495–513. A comprehensive review of the state-of-the-art related to nutritional genomics and guide for future studies.

    Article  PubMed  CAS  Google Scholar 

  80. Wang Y, Wang Y, Zhang B, Hou L, Han W, Xue F, et al. Interaction of ACE genotypes and salt intake on hypertension among Chinese Kazakhs: results from a population-based cross-sectional study. BMJ Open. 2017;7:e014246.

    PubMed  PubMed Central  Google Scholar 

  81. Corella D, Asensio EM, Coltell O, Sorlí JV, Estruch R, Martínez-González MÁ, et al. Gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial. Cardiovasc Diabetol. 2016;15:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Loria-Kohen V, Espinosa-Salinas I, Marcos-Pasero H, Lourenco-Nogueira T, Herranz J, Molina S, et al. Polymorphisms in the CLOCK gene may influence the effect of fat reduction on weight loss. Nutrition. 2016;32:453–60.

    Article  PubMed  CAS  Google Scholar 

  83. Merritt DC, Jamnik J, El-Sohemy A. FTO genotype, dietary protein intake, and body weight in a multiethnic population of young adults: a cross sectional study. Genes Nutr. 2018;13:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. De Luis DA, Ovalle HF, Izaola O, Primo D, Aller R. rs10767664 gene variant in brain-derived neurotrophic factor (BDNF) affect metabolic changes and insulin resistance after a standard hypocaloric diet. J Diab Compl. 2018;32:216–20.

    Article  Google Scholar 

  85. Dumont J, Goumidi L, Grenier-Boley B, Cottel D, Marécaux N, Montaye M, et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clin Nutr. 2017;S0261-5614(17):30253–4.

    Google Scholar 

  86. Hellstrand S, Sonestedt E, Ericson U, Gullberg B, Wirfait E, Hedblad B, et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res. 2012;53:1183–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gomez-Delgado F, Garcia-Rios A, Alcala-DiazJF, Rangel-Zuñiga O, Delgado-Lista J, Yubero-Serrano EM, Lopez-Moreno J, et al. Chronic consumption of a low-fat diet improves cardiometabolic risk factors according to the CLOCK gene in patients with coronary heart disease. Mol Nutr. Food Res. 2015;59:2556–64.

  88. Garcia-Rios A, Gomez-Delgado FJ, Garaulet M, Alcala-Diaz JF, Delgado-Lista FJ, Marin C, et al. Beneficial effect of CLOCK gene polymorphism rs1801260 in combination with low-fat diet on insulin metabolism in the patients with metabolic syndrome. Chronobiol Int. 2014;31:401–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Saroja Voruganti.

Ethics declarations

Conflict of Interest

Dr. Voruganti reports grants from NIH/NIDDK, during the conduct of study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voruganti, V.S. Nutritional Genomics of Cardiovascular Disease. Curr Genet Med Rep 6, 98–106 (2018). https://doi.org/10.1007/s40142-018-0143-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-018-0143-z

Keywords

Navigation