Skip to main content

Advertisement

Log in

Blood Biomarkers in Brain Injury Medicine

  • Brain Injury Medicine and Rehabilitation (M Segal, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review seeks to explore blood-based biomarkers with the potential for clinical implementation.

Recent Findings

Emerging non-proteomic biomarkers hold promise for more accurate diagnostic and prognostic capabilities, especially in the subacute to chronic phase of TBI recovery. Furthermore, there is a growing understanding of the overlap between TBI-related and dementia-related blood biomarkers.

Summary

Given the significant heterogeneity inherent in the clinical diagnosis of traumatic brain injury (TBI), there has been an exponential increase in TBI-related biomarker research over the past two decades. While TBI-related biomarker assessments include both cerebrospinal fluid analysis and advanced neuroimaging modalities, blood-based biomarkers hold the most promise to be non-invasive biomarkers widely available to Brain Injury Medicine clinicians in diverse practice settings. In this article, we review the most relevant blood biomarkers for the field of Brain Injury Medicine, including both proteomic and non-proteomic blood biomarkers, biomarkers of cerebral microvascular injury, and biomarkers that overlap between TBI and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, et al. Blood biomarkers for traumatic brain injury: a quantitative assessment of diagnostic and prognostic accuracy. Front Neurol. 2019;10:446. https://doi.org/10.3389/fneur.2019.00446. This comprehensive review provides a quantitative assessment of blood biomarkers for TBI, parsed by specific clinical questions pertinent to practicing Brain Injury Medicine clinicians.

    Article  PubMed  PubMed Central  Google Scholar 

  2. ••Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, et al. Blood-based traumatic brain injury biomarkers - clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn. 2021;21(12):1303–21. https://doi.org/10.1080/14737159.2021.2005583. This recent comprehensive review and analysis provides information on emerging blood biomarkers likely headed for clinical implementation, along with a discussion of regulatory pathways from various countries.

    Article  CAS  PubMed  Google Scholar 

  3. Edalatfar M, Piri SM, Mehrabinejad MM, Mousavi MS, Meknatkhah S, Fattahi MR, et al. Biofluid biomarkers in traumatic brain injury: a systematic scoping review. Neurocrit Care. 2021;35(2):559–72. https://doi.org/10.1007/s12028-020-01173-1.

    Article  CAS  PubMed  Google Scholar 

  4. Mondello S, Sorinola A, Czeiter E, Vamos Z, Amrein K, Synnot A, et al. Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis. J Neurotrauma. 2021;38(8):1086–106. https://doi.org/10.1089/neu.2017.5182.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shahim P, Politis A, van der Merwe A, Moore B, Chou YY, Pham DL, et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology. 2020;95(6):e610–22. https://doi.org/10.1212/WNL.0000000000009983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43. https://doi.org/10.1016/j.expneurol.2012.01.013.

    Article  CAS  PubMed  Google Scholar 

  7. Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral microvascular injury: a potentially treatable endophenotype of traumatic brain injury-induced neurodegeneration. Neuron. 2019;103(3):367–79. https://doi.org/10.1016/j.neuron.2019.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. ••Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci Biobehav Rev. 2021;130:433–47. https://doi.org/10.1016/j.neubiorev.2021.08.029. This review highlights the most recent research in key proteomic blood-biomarkers of TBI and characterizes emerging non-proteomic biomarkers of TBI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •Shahim P, Politis A, van der Merwe A, Moore B, Ekanayake V, Lippa SM, et al. Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology. 2020;95(6):e623–36. https://doi.org/10.1212/WNL.0000000000009985. This prospective study highlights the diagnostic and prognostic features of serum NFL, GFAP, UCH-L1, and tau as blood biomarkers for TBI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu LB, Yue JK, Korley F, Puccio AM, Yuh EL, Sun X, et al. High-sensitivity c-reactive protein is a prognostic biomarker of six-month disability after traumatic brain injury: results from the TRACK-TBI study. J Neurotrauma. 2021;38(7):918–27. https://doi.org/10.1089/neu.2020.7177.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lugones M, Parkin G, Bjelosevic S, Takagi M, Clarke C, Anderson V, et al. Blood biomarkers in paediatric mild traumatic brain injury: a systematic review. Neurosci Biobehav Rev. 2018;87:206–17. https://doi.org/10.1016/j.neubiorev.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  12. Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemela O, Hillbom M. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma. 2004;56(6):1229–34; discussion 34. https://doi.org/10.1097/01.ta.0000096644.08735.72.

    Article  CAS  PubMed  Google Scholar 

  13. Castellani C, Stojakovic T, Cichocki M, Scharnagl H, Erwa W, Gutmann A, et al. Reference ranges for neuroprotein S-100B: from infants to adolescents. Clin Chem Lab Med. 2008;46(9):1296–9. https://doi.org/10.1515/CCLM.2008.262.

    Article  CAS  PubMed  Google Scholar 

  14. Allouchery G, Moustafa F, Roubin J, Pereira B, Schmidt J, Raconnat J, et al. Clinical validation of S100B in the management of a mild traumatic brain injury: issues from an interventional cohort of 1449 adult patients. Clin Chem Lab Med. 2018;56(11):1897–904. https://doi.org/10.1515/cclm-2018-0471.

    Article  CAS  PubMed  Google Scholar 

  15. Bazarian JJ, Blyth BJ, He H, Mookerjee S, Jones C, Kiechle K, et al. Classification accuracy of serum Apo A-I and S100B for the diagnosis of mild traumatic brain injury and prediction of abnormal initial head computed tomography scan. J Neurotrauma. 2013;30(20):1747–54. https://doi.org/10.1089/neu.2013.2853.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;48(6):1255–8; discussion 8-60. https://doi.org/10.1097/00006123-200106000-00012.

    Article  CAS  PubMed  Google Scholar 

  17. Rogatzki MJ, Keuler SA, Harris AE, Ringgenberg SW, Breckenridge RE, White JL, et al. Response of protein S100B to playing American football, lifting weights, and treadmill running. Scand J Med Sci Sports. 2018;28(12):2505–14. https://doi.org/10.1111/sms.13297.

    Article  PubMed  Google Scholar 

  18. Hasselblatt M, Mooren FC, von Ahsen N, Keyvani K, Fromme A, Schwarze-Eicker K, et al. Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology. 2004;62(9):1634–6. https://doi.org/10.1212/01.wnl.0000123092.97047.b1.

    Article  CAS  PubMed  Google Scholar 

  19. Ljungqvist J, Zetterberg H, Mitsis M, Blennow K, Skoglund T. Serum neurofilament light protein as a marker for diffuse axonal injury: results from a case series study. J Neurotrauma. 2017;34(5):1124–7. https://doi.org/10.1089/neu.2016.4496.

    Article  PubMed  Google Scholar 

  20. Gao W, Zhang Z, Lv X, Wu Q, Yan J, Mao G, et al. Neurofilament light chain level in traumatic brain injury: a system review and meta-analysis. Medicine (Baltimore). 2020;99(38):e22363. https://doi.org/10.1097/MD.0000000000022363.

    Article  CAS  Google Scholar 

  21. Al-Adli N, Akbik OS, Rail B, Montgomery E, Caldwell C, Barrie U, et al. The clinical use of serum biomarkers in traumatic brain injury: a systematic review stratified by injury severity. World Neurosurg. 2021;155:e418–38. https://doi.org/10.1016/j.wneu.2021.08.073.

    Article  PubMed  Google Scholar 

  22. Czeiter E, Amrein K, Gravesteijn BY, Lecky F, Menon DK, Mondello S, et al. Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine. 2020;56:102785. https://doi.org/10.1016/j.ebiom.2020.102785.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Diaz-Arrastia R, Wang KK, Papa L, Sorani MD, Yue JK, Puccio AM, et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma. 2014;31(1):19–25. https://doi.org/10.1089/neu.2013.3040.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shahjouei S, Sadeghi-Naini M, Yang Z, Kobeissy F, Rathore D, Shokraneh F, et al. The diagnostic values of UCH-L1 in traumatic brain injury: a meta-analysis. Brain Inj. 2018;32(1):1–17. https://doi.org/10.1080/02699052.2017.1382717.

    Article  PubMed  Google Scholar 

  25. Mondello S, Papa L, Buki A, Bullock MR, Czeiter E, Tortella FC, et al. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care. 2011;15(3):R156. https://doi.org/10.1186/cc10286.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lippa SM, Gill J, Brickell TA, French LM, Lange RT. Blood biomarkers relate to cognitive performance years after traumatic brain injury in service members and veterans. J Int Neuropsychol Soc. 2021;27(5):508–14. https://doi.org/10.1017/S1355617720001071.

    Article  PubMed  Google Scholar 

  27. Mondello S, Linnet A, Buki A, Robicsek S, Gabrielli A, Tepas J, et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery. 2012;70(3):666–75. https://doi.org/10.1227/NEU.0b013e318236a809.

    Article  PubMed  Google Scholar 

  28. Shemilt M, Boutin A, Lauzier F, Zarychanski R, Moore L, McIntyre LA, et al. Prognostic value of glial fibrillary acidic protein in patients with moderate and severe traumatic brain injury: a systematic review and meta-analysis. Crit Care Med. 2019;47(6):e522–9. https://doi.org/10.1097/CCM.0000000000003728.

    Article  CAS  PubMed  Google Scholar 

  29. Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem. 1999;45(1):138–41.

    Article  CAS  PubMed  Google Scholar 

  30. Brouns R, De Vil B, Cras P, De Surgeloose D, Marien P, De Deyn PP. Neurobiochemical markers of brain damage in cerebrospinal fluid of acute ischemic stroke patients. Clin Chem. 2010;56(3):451–8.

    Article  CAS  PubMed  Google Scholar 

  31. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75(20):1786–93. https://doi.org/10.1212/WNL.0b013e3181fd62d2.

    Article  CAS  PubMed  Google Scholar 

  32. Forouzan A, Barzegari H, Hosseini O, Delirrooyfard A. The diagnostic competence of glial fibrillary acidic protein in mild traumatic brain injury and its prognostic value in patient recovery. Turk Neurosurg. 2021;31(3):355–60. https://doi.org/10.5137/1019-5149.JTN.31021-20.2.

    Article  PubMed  Google Scholar 

  33. Hainfellner JA, Voigtlander T, Strobel T, Mazal PR, Maddalena AS, Aguzzi A, et al. Fibroblasts can express glial fibrillary acidic protein (GFAP) in vivo. J Neuropathol Exp Neurol. 2001;60(5):449–61. https://doi.org/10.1093/jnen/60.5.449.

    Article  CAS  PubMed  Google Scholar 

  34. Jessen KR, Thorpe R, Mirsky R. Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. J Neurocytol. 1984;13(2):187–200. https://doi.org/10.1007/BF01148114.

    Article  CAS  PubMed  Google Scholar 

  35. Bazarian JJ, Welch RD, Caudle K, Jeffrey CA, Chen JY, Chandran R, et al. Accuracy of a rapid glial fibrillary acidic protein/ubiquitin carboxyl-terminal hydrolase L1 test for the prediction of intracranial injuries on head computed tomography after mild traumatic brain injury. Acad Emerg Med. 2021;28(11):1308–17. https://doi.org/10.1111/acem.14366.

    Article  PubMed  Google Scholar 

  36. Ahmadzadeh H, Smith DH, Shenoy VB. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model. Biophys J. 2014;106(5):1123–33. https://doi.org/10.1016/j.bpj.2014.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D. Blood biomarkers for brain injury: what are we measuring? Neurosci Biobehav Rev. 2016;68:460–73. https://doi.org/10.1016/j.neubiorev.2016.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rubenstein R, Chang B, Yue JK, Chiu A, Winkler EA, Puccio AM, et al. Comparing plasma phospho tau, total tau, and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol. 2017;74(9):1063–72. https://doi.org/10.1001/jamaneurol.2017.0655.

    Article  PubMed  PubMed Central  Google Scholar 

  39. •Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21(1):66–77. https://doi.org/10.1016/S1474-4422(21)00361-6. This comprehensive review of emerging blood biomarkers for Alzheimer’s disease and other dementias highlights those blood-based biomarkers which overlap with TBI biomarkers.

    Article  CAS  PubMed  Google Scholar 

  40. Shahim P, Tegner Y, Wilson DH, Randall J, Skillback T, Pazooki D, et al. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014;71(6):684–92. https://doi.org/10.1001/jamaneurol.2014.367.

    Article  PubMed  Google Scholar 

  41. Gill J, Merchant-Borna K, Jeromin A, Livingston W, Bazarian J. Acute plasma tau relates to prolonged return to play after concussion. Neurology. 2017;88(6):595–602. https://doi.org/10.1212/WNL.0000000000003587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bogoslovsky T, Wilson D, Chen Y, Hanlon D, Gill J, Jeromin A, et al. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid beta up to 90 days after traumatic brain injury. J Neurotrauma. 2017;34(1):66–73. https://doi.org/10.1089/neu.2015.4333.

    Article  PubMed  PubMed Central  Google Scholar 

  43. El-Menyar A, Sathian B, Wahlen BM, Al-Thani H. Serum cardiac troponins as prognostic markers in patients with traumatic and non-traumatic brain injuries: a meta-analysis. Am J Emerg Med. 2019;37(1):133–42. https://doi.org/10.1016/j.ajem.2018.10.002.

    Article  PubMed  Google Scholar 

  44. Chen M, Ren AH, Prassas I, Soosaipillai A, Lim B, Fraser DD, et al. Plasma protein profiling by proximity extension assay technology reveals novel biomarkers of traumatic brain injury-a pilot study. J Appl Lab Med. 2021;6(5):1165–78. https://doi.org/10.1093/jalm/jfab004.

    Article  PubMed  Google Scholar 

  45. Flynn S, Leete J, Shahim P, Pattinson C, Guedes VA, Lai C, et al. Extracellular vesicle concentrations of glial fibrillary acidic protein and neurofilament light measured 1 year after traumatic brain injury. Sci Rep. 2021;11(1):3896. https://doi.org/10.1038/s41598-021-82875-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olczak M, Poniatowski LA, Siwinska A, Kwiatkowska M, Chutoranski D, Wierzba-Bobrowicz T. Elevated serum and urine levels of progranulin (PGRN) as a predictor of microglia activation in the early phase of traumatic brain injury: a further link with the development of neurodegenerative diseases. Folia Neuropathol. 2021;59(1):81–90. https://doi.org/10.5114/fn.2021.105137.

    Article  PubMed  Google Scholar 

  47. Crichton A, Ignjatovic V, Babl FE, Oakley E, Greenham M, Hearps S, et al. Interleukin-8 predicts fatigue at 12 months post-injury in children with traumatic brain injury. J Neurotrauma. 2021;38(8):1151–63. https://doi.org/10.1089/neu.2018.6083.

    Article  PubMed  Google Scholar 

  48. Dai JX, Lin Q, Ba HJ, Ye LZ, Li ZW, Cai JY. Utility of serum macrophage migration inhibitory factor as a potential biomarker for detection of cerebrocardiac syndrome following severe traumatic brain injury. Clin Chim Acta. 2021;512:179–84. https://doi.org/10.1016/j.cca.2020.11.007.

    Article  CAS  PubMed  Google Scholar 

  49. •O’Connell GC, Alder ML, Smothers CG, Chang JHC. Large-scale informatic analysis to algorithmically identify blood biomarkers of neurological damage. Proc Natl Acad Sci U S A. 2020;117(34):20764–75. https://doi.org/10.1073/pnas.2007719117. This article utilized large amounts of mRNA expression data to systematically evaluate many proteomic biomarker candidates for TBI. It assessed a multitude of previously proposed biomarkers along with potential novel biomarkers and discussed the advantages and disadvantages of these biomarkers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci. 2017;11:55. https://doi.org/10.3389/fncel.2017.00055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saint-Pol J, Gosselet F, Duban-Deweer S, Pottiez G, Karamanos Y. Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells. 2020;9(4). https://doi.org/10.3390/cells9040851.

  52. Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol. 2018;13:379–94. https://doi.org/10.1146/annurev-pathol-051217-111018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, et al. Extracellular vesicle proteins and micrornas as biomarkers for traumatic brain injury. Front Neurol. 2020;11:663. https://doi.org/10.3389/fneur.2020.00663.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mondello S, Guedes VA, Lai C, Czeiter E, Amrein K, Kobeissy F, et al. Circulating brain injury exosomal proteins following moderate-to-severe traumatic brain injury: temporal profile, outcome prediction and therapy implications. Cells. 2020;9(4). https://doi.org/10.3390/cells9040977.

  55. Goetzl EJ, Elahi FM, Mustapic M, Kapogiannis D, Pryhoda M, Gilmore A, et al. Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. FASEB J. 2019;33(4):5082–8. https://doi.org/10.1096/fj.201802319R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gill J, Mustapic M, Diaz-Arrastia R, Lange R, Gulyani S, Diehl T, et al. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj. 2018;32(10):1277–84. https://doi.org/10.1080/02699052.2018.1471738.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kawata K, Mitsuhashi M, Aldret R. A preliminary report on brain-derived extracellular vesicle as novel blood biomarkers for sport-related concussions. Front Neurol. 2018;9:239. https://doi.org/10.3389/fneur.2018.00239.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4). https://doi.org/10.3390/cells8040307.

  59. Devoto C, Lai C, Qu BX, Guedes VA, Leete J, Wilde E, et al. Exosomal microRNAs in military personnel with mild traumatic brain injury: preliminary results from the chronic effects of neurotrauma consortium biomarker discovery project. J Neurotrauma. 2020;37(23):2482–92. https://doi.org/10.1089/neu.2019.6933.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Di Pietro V, Ragusa M, Davies D, Su Z, Hazeldine J, Lazzarino G, et al. MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild and severe traumatic brain injury. J Neurotrauma. 2017;34(11):1948–56. https://doi.org/10.1089/neu.2016.4857.P.

    Article  PubMed  Google Scholar 

  61. Atif H, Hicks SD. A review of microrna biomarkers in traumatic brain injury. J Exp Neurosci. 2019;13:1179069519832286. https://doi.org/10.1177/1179069519832286.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yang T, Song J, Bu X, Wang C, Wu J, Cai J, et al. Elevated serum miR-93, miR-191, and miR-499 are noninvasive biomarkers for the presence and progression of traumatic brain injury. J Neurochem. 2016;137(1):122–9. https://doi.org/10.1111/jnc.13534.

    Article  CAS  PubMed  Google Scholar 

  63. Schindler CR, Woschek M, Vollrath JT, Kontradowitz K, Lustenberger T, Stormann P, et al. miR-142–3p expression is predictive for severe traumatic brain injury (TBI) in trauma patients. Int J Mol Sci. 2020;21(15). https://doi.org/10.3390/ijms21155381.

  64. Redell JB, Moore AN, Ward NH 3rd, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma. 2010;27(12):2147–56. https://doi.org/10.1089/neu.2010.1481.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Papa L, Slobounov SM, Breiter HC, Walter A, Bream T, Seidenberg P, et al. Elevations in microRNA biomarkers in serum are associated with measures of concussion, neurocognitive function, and subconcussive trauma over a single National Collegiate Athletic Association Division I Season in collegiate football players. J Neurotrauma. 2019;36(8):1343–51. https://doi.org/10.1089/neu.2018.6072.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ghai V, Fallen S, Baxter D, Scherler K, Kim TK, Zhou Y, et al. Alterations in plasma microRNA and protein levels in war veterans with chronic mild traumatic brain injury. J Neurotrauma. 2020;37(12):1418–30. https://doi.org/10.1089/neu.2019.6826.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42. https://doi.org/10.1016/j.neuron.2017.07.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci. 2018;21(10):1318–31. https://doi.org/10.1038/s41593-018-0234-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6(7):393–403. https://doi.org/10.1038/nrneurol.2010.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38. https://doi.org/10.1038/nrn3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sandsmark DK, Bogoslovsky T, Qu BX, Haber M, Cota MR, Davis C, et al. Changes in plasma von Willebrand factor and cellular fibronectin in MRI-defined traumatic microvascular injury. Front Neurol. 2019;10:246. https://doi.org/10.3389/fneur.2019.00246.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Petrov T, Steiner J, Braun B, Rafols JA. Sources of endothelin-1 in hippocampus and cortex following traumatic brain injury. Neuroscience. 2002;115(1):275–83. https://doi.org/10.1016/s0306-4522(02)00345-7.

    Article  CAS  PubMed  Google Scholar 

  73. Maier B, Lehnert M, Laurer HL, Marzi I. Biphasic elevation in cerebrospinal fluid and plasma concentrations of endothelin 1 after traumatic brain injury in human patients. Shock. 2007;27(6):610–4. https://doi.org/10.1097/shk.0b013e31802f9eaf.

    Article  CAS  PubMed  Google Scholar 

  74. Luo J, Grammas P. Endothelin-1 is elevated in Alzheimer’s disease brain microvessels and is neuroprotective. J Alzheimers Dis. 2010;21(3):887–96. https://doi.org/10.3233/JAD-2010-091486.

    Article  CAS  PubMed  Google Scholar 

  75. Chatfield DA, Brahmbhatt DH, Sharp T, Perkes IE, Outrim JG, Menon DK. Juguloarterial endothelin-1 gradients after severe traumatic brain injury. Neurocrit Care. 2011;14(1):55–60. https://doi.org/10.1007/s12028-010-9413-7.

    Article  CAS  PubMed  Google Scholar 

  76. Peltz CB, Kenney K, Gill J, Diaz-Arrastia R, Gardner RC, Yaffe K. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology. 2020;95(9):e1126–33. https://doi.org/10.1212/WNL.0000000000010087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K. Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans. JAMA Neurol. 2018;75(9):1055–61. https://doi.org/10.1001/jamaneurol.2018.0815.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schneider ALC, Selvin E, Latour L, Turtzo LC, Coresh J, Mosley T, et al. Head injury and 25-year risk of dementia. Alzheimers Dement. 2021. https://doi.org/10.1002/alz.12315.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ramos-Cejudo J, Wisniewski T, Marmar C, Zetterberg H, Blennow K, de Leon MJ, et al. Traumatic brain injury nd alzheimer’s disease: the cerebrovascular link. EBioMedicine. 2018;28:21–30. https://doi.org/10.1016/j.ebiom.2018.01.021.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol. 2013;9(4):211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shahim P, Zetterberg H. Neurochemical markers of traumatic brain injury: relevance to acute diagnostics, disease monitoring, and neuropsychiatric outcome prediction. Biol Psychiatry. 2021. https://doi.org/10.1016/j.biopsych.2021.10.010.

    Article  PubMed  Google Scholar 

Download references

Funding

RLS was supported, in part, by the United States (U.S.) Department of Veterans Affairs Rehabilitation R&D (Rehab RD) Service under Award Number IK2 RX003651, and by the Pennsylvania Department of Health under Cure Award Number 4100077083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randel L. Swanson.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The contents of this work do not represent the views of the Department of the Veterans Affairs or the United States Government.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Brain Injury Medicine and Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McBride, W.R., Conlan, C.E., Barylski, N.A. et al. Blood Biomarkers in Brain Injury Medicine. Curr Phys Med Rehabil Rep 10, 114–121 (2022). https://doi.org/10.1007/s40141-022-00343-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-022-00343-w

Keywords

Navigation